
Supplementary Material for: Adversarial
Distributional Training for Robust Deep Learning

Yinpeng Dong∗, Zhijie Deng∗, Tianyu Pang, Jun Zhu, Hang Su†
Dept. of Comp. Sci. & Tech., Institute for AI, BNRist Center

Tsinghua-Bosch Joint ML Center, THBI Lab, Tsinghua University, Beijing, 100084 China
{dyp17, dzj17, pty17}@mails.tsinghua.edu.cn, {suhangss, dcszj}@mail.tsinghua.edu.cn

A Technical details and algorithms

A.1 ADTEXP

We provide the algorithm for ADTEXP in Alg. 2.

A.2 ADTEXP-AM

By amortizing the explicit adversarial distributions, we can rewrite the minimax problem of ADT as

min
θ

max
φ

1

n

n∑
i=1

{
Epφ(δi|xi)

[
L(fθ(xi + δi), yi)

]
+ λH(pφ(δi|xi))

}
, (A.1)

where θ and φ are the parameters of the DNN classifier and the generator, respectively. During
training, we perform stochastic gradient descent and ascent on θ and φ simultaneously, to accomplish
adversarial training. To enable the gradients flowing from δi to φ, we apply the same reparameteriza-
tion strategy as in Sec. 3.1. In practice, we only use one MC sample for each data. We provide the
algorithm for ADTEXP-AM in Alg. 3.

A.3 ADTIMP-AM

For the implicit adversarial distributions, we have no access to the density pφ(δi|xi), such that the
entropy of the adversarial distributions cannot be estimated exactly1. An appealing alternative is to
maximize the variational lower bound of the entropy [2] for its simplicity and success in GANs [3].
In our case, for a natural input xi, we can similarly derive the following lower bound stemming from
the mutual information between the perturbation δi and the random noise z (proof in Appendix B.3)
as

H(pφ(δi|xi)) ≥ U(q) = Ep(z) log q(z|gφ(z;xi)) + c, (A.2)

where c is a constant and q(·|·) is an introduced variational distribution. In practice, we implement q
as a diagonal Gaussian, whose mean and standard derivation are given by a ψ-parameterized neural
network. Then we have the training objective as

min
θ

max
φ,ψ

1

n

n∑
i=1

{
Ep(z)

[
L(fθ(xi + gφ(z;xi)), yi) + λ log qψ(z|gφ(z;xi))

]}
, (A.3)

which is solved by simultaneous stochastic gradient descent and ascent on θ and (φ,ψ). We provide
the algorithm for ADTIMP-AM in Alg. 4.

∗Equal contribution. † Corresponding author.
1We can also directly estimate the gradient of the entropy with advanced techniques such as spectral Stein

gradient estimator [15], and we leave this for future work.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Algorithm 2 The training algorithm for ADTEXP

Input: Training data D, objective function J
(
pφi

(δi),θ
)
, training epochs N , the number of inner

maximization steps T , the number of MC samples for gradient estimation in each step k, and
learning rates ηθ, ηφ.

1: Initialize θ;
2: for epoch = 1 to N do
3: for each minibatch B ⊂ D do
4: for each input (xi, yi) ∈ B do
5: Initialize φi;
6: for t = 1 to T do
7: Calculate the gradient gi of φi by Eq. (10) via MC integration using k samples;
8: Update φi with gradient ascent

φi ← φi + ηφ · gi.

9: end for
10: end for
11: Update θ with stochastic gradient descent

θ ← θ − ηθ · E(xi,yi)∈B
[
∇θJ

(
pφi

(δi),θ
)]
.

12: end for
13: end for

Algorithm 3 The training algorithm for ADTEXP-AM

Input: Training data D, objective function in Eq. (A.1), training epochs N , and learning rates ηθ,
ηφ.

1: Initialize θ and φ;
2: for epoch = 1 to N do
3: for each minibatch B ⊂ D do
4: Input xi to the generator and obtain the distribution parameters (µi,σi) for each data

(xi, yi) ∈ B;
5: Sample one δi from the distribution defined by Eq. (8) given (µi,σi) for each (xi, yi) ∈
B to approximately calculate the gradient of Eq. (A.1) w.r.t. θ and φ, and obtain gθ and gφ;

6: Update θ by: θ ← θ − ηθ · gθ.
7: Update φ by: φ← φ+ ηφ · gφ.
8: end for
9: end for

B Proofs

We provide the proofs in this section.

B.1 Proof of Theorem 1

Assumption 1. The loss function J
(
p(δi),θ

)
is continuously differentiable w.r.t. θ.

Assumption 2. Probability density functions of distributions in P are bounded and equicontinuous.

Remark 1. For the explicit adversarial distributions defined in Eq. (8), we can assume that the mean
and standard deviation of each dimension satisfy |µ(j)

i | < κµ and κloσ < σ
(j)
i < κupσ , where κµ, κloσ ,

and κupσ are constants. Note that they can be easily satisfied since we add an entropic regularization
term into the training objective (5), such that the mean cannot be too large while the standard
deviation cannot be too small or too large given Eq. (11). In practice, we can clip µ(j)

i and σ(j)
i if

they are out of the thresholds. Then we can prove that the density functions of the explicit adversarial
distributions defined in Eq. (8) are bounded and equicontinuous, satisfying Assumption 2. However,
for the implicit adversarial distributions introduced in Sec. 3.3, we cannot prove that Assumption 2 is
satisfied. Though unsatisfied, the experiments suggest that we can still rely on Theorem 1 and the
general algorithm for training.

2

Algorithm 4 The training algorithm for ADTIMP-AM

Input: Training data D, objective function in Eq. (A.3), training epochs N , and learning rates ηθ,
ηφ, ηψ .

1: Initialize θ, φ, and ψ;
2: for epoch = 1 to N do
3: for each minibatch B ⊂ D do
4: For each (xi, yi) ∈ B, sample a noise zi from U(−1, 1).
5: Use the sampled noises to approximately calculate the gradient of Eq. (A.3) w.r.t. θ, φ,

and ψ, and obtain gθ, gφ, and gψ .
6: Update θ by: θ ← θ − ηθ · gθ.
7: Update φ by: φ← φ+ ηφ · gφ.
8: Update ψ by: ψ ← ψ + ηψ · gψ .
9: end for

10: end for

Proof. Due to the diagonal covariance matrix, each dimension of pφi
(δi) is independent. Thus we

only consider one dimension of δi. For clarity, we denote µ(j)
i , σ(j)

i , r(j), u(j)
i , and δ(j)i as µ, σ, r,

u, and δ, respectively. The probability density function of δ is (see Appendix B.2 for details)

p(δ) =
1√
2πσ

exp
(
−

(1
2 log ε+δ

ε−δ − µ)2

2σ2

)
· ε

ε2 − δ2

=
1√
2πσ

exp
(
− r2

2

)
· 1

1− tanh(µ+ σr)2
· 1

ε
.

By calculation, we have

p(δ) =
1

4
√

2πσε

[
exp

(
− r2

2
+ 2σr + 2µ

)
+ 2 exp

(
− r2

2

)
+ exp

(
− r2

2
− 2σr − 2µ

)]
≤ 1

4
√

2πσε

[
exp (2σ2 + 2µ) + 2 + exp (2σ2 − 2µ)

]
≤ 1

4
√

2πκloσ ε

[
2 exp (2(κupσ)2 + 2κµ) + 2

]
.

Hence, p(δ) is bounded. And the probability density function pφi
(δi) is also bounded since it equals

to the product of p(δ) across all dimensions.

We next prove p(δ) is Lipschitz continuous at δ ∈ (−ε, ε). By calculating the derivative of p(δ), we
have

p′(δ) =
1√
2πσ

exp
(
−

(1
2 log ε+δ

ε−δ − µ)2

2σ2

)
·
[2εδ

(ε2 − δ2)2
+

1
2 log ε+δ

ε−δ − µ
σ2

·
(ε

ε2 − δ2
)2]

=
1√
2πσ

exp
(
− r2

2

)
·
[2 tanh(µ+ σr)

ε2(1− tanh(µ+ σr)2)2
+

r

σε2(1− tanh(µ+ σr)2)2

]
.

Note that although p′(δ) has a more complicated form, the quadratic term inside exp is still − r
2

2 .
Hence, p′(δ) can also be bounded by a constant. Then p(δ) as well as pφi

(δi) are Lipschitz continuous.
The Lipschitz constant only concerns with ε, κµ, κloσ , and κupσ . Hence, the set of explicit distributions
in P with a common Lipschitz constant is equicontinuous.

Combining the results, we prove that the probability density functions of the set of explicit adversarial
distributions defined in Eq. (8) are bound and equicontinuous, which satisfies Assumption 2.

Remark 2. Assumption 2 is used to make the search space P of the inner problem in ADT compact,
as can be seen in Lemma 1. However, it is a sufficient bot not necessary condition of making P
compact. For example, if P only contains Delta distributions, ADT degenerates to the AT formulation
in Eq. (1) and P can be represented by S. In this case, it is easy to see that Assumption 2 is not
satisfied but the search space of the inner problem is also compact.

3

Theorem 1. Suppose Assumptions 1 and 2 hold. We define ρ(θ) = maxp(δi)∈P J
(
p(δi),θ

)
, and

P∗(θ) = {p(δi) ∈ P : J
(
p(δi),θ

)
= ρ(θ)}. Then ρ(θ) is directionally differentiable, and its

directional derivative along the direction v satisfies

ρ′(θ;v) = sup
p(δi)∈P∗(θ)

v>∇θJ
(
p(δi),θ

)
. (B.1)

Particularly, when P∗(θ) = {p∗(δi)} only contains one maximizer, ρ(θ) is differentiable at θ and

∇θρ(θ) = ∇θJ
(
p∗(δi),θ

)
. (B.2)

Proof. Recall that P is a set of distributions, which can be expressed by their probability density
functions. The support of these functions is contained in S and these functions are equicontinuous
by Assumption 2. S = {δ : ‖δ‖∞ ≤ ε} is the allowed perturbation set. The Euclidean distance `2
defines a metric on S. We let

C(S,R) = {h : S → R|h is continuous}
be the collection of all continuous functions from S to R. Then P is a subset of C(S,R). We let

dC(p, q) = max
δ∈S
|p(δ)− q(δ)|

for all p, q ∈ C(S,R) be a metric on C(S,R). Then we can see that (C(S,R), dC) is a metric space.

We state the following lemma to prove that P is compact.

Lemma 1. (Arzelà-Ascoli’s Theorem) Let (X, dX) be a compact metric space. A subset K of
C(X,R) is compact if and only if it is closed, bounded, and equicontinuous.

Since (S, `2) is a compact metric space, and P is closed, bounded, and equicontinuous given by
Assumption 2, we can see that P is compact by Lemma 1.

We next need to prove that the loss function J
(
p(δi),θ

)
is continuously differentiable w.r.t. both

p(δi) and θ, i.e., the gradient ∇θJ
(
p(δi),θ

)
is joint continuous on P × Rm, where m is the

dimension of θ.

To prove it, we first define a new metric on P × Rm as

dmix((p1,θ1), (p2,θ2)) = dC(p1, p2) + `2(θ1,θ2).

Then (P × Rm, dmix) is a new metric space.

By definition, given a point (p0,θ0) ∈ P × Rm, if for each τ > 0, there is a γ > 0, such that

`2
(
∇θJ

(
p(δi),θ

)
,∇θJ

(
p0(δi),θ0

))
< τ

whenever dmix((p,θ), (p0,θ0)) < γ, then the function ∇θJ
(
p(δi),θ

)
is continuous at (p0,θ0). If

for all points in P × Rm, the function is continuous, then∇θJ
(
p(δi),θ

)
is continuous on P × Rm.

To show that, we first have

`2
(
∇θJ

(
p(δi),θ

)
,∇θJ

(
p0(δi),θ0

))
≤ `2

(
∇θJ

(
p(δi),θ

)
,∇θJ

(
p(δi),θ0

))
+ `2

(
∇θJ

(
p(δi),θ0

)
,∇θJ

(
p0(δi),θ0

))
.

(B.3)

We already have that the loss function J
(
p(δi),θ

)
is continuously differentiable w.r.t. θ by Assump-

tion 1. Then given τ
2 , there is a γ1, such that

`2
(
∇θJ

(
p(δi),θ

)
,∇θJ

(
p(δi),θ0

))
<
τ

2

whenever `2(θ,θ0) < γ1.

For the second term of the RHS of Eq. (B.3), we have

`2
(
∇θJ

(
p(δi),θ0

)
,∇θJ

(
p0(δi),θ0

))
=
∥∥∇θ(J (p(δi),θ0)− J (p0(δi),θ0

))∥∥
2

=
∥∥∫
S

(
p(δi)− p0(δi)

)
∇θL(fθ(xi + δi), yi)dδi

∥∥
2

≤ dC(p, p0) ·
∫
S

∥∥∇θL(fθ(xi + δi), yi)
∥∥
2
dδi.

4

Therefore, for the given τ
2 , there is also a γ2 which equals to

γ2 =
τ

2
∫
S

∥∥∇θL(fθ(xi + δi), yi)
∥∥
2
dδi

,

such that
`2
(
∇θJ

(
p(δi),θ0

)
,∇θJ

(
p0(δi),θ0

))
<
τ

2
whenever dC(p, p0) < γ2.

Combining the results, for a given τ > 0, we can set γ = γ1 + γ2, such that

`2
(
∇θJ

(
p(δi),θ

)
,∇θJ

(
p0(δi),θ0

))
< τ

whenever dmix((p,θ), (p0,θ0)) < γ. Thus we have proven that the loss function J
(
p(δi),θ

)
is

continuously differentiable w.r.t. both p(δi) and θ.

Given the above results, we can directly apply Danskin’s theorem [4] to prove Theorem 1. We state
the Danskin’s theorem in the following lemma.

Lemma 2. (Danskin’s Theorem) Let Q be a nonempty compact topological space and h : Q ×
Rm → R be a function satisfying that h(q, ·) is differentiable for every q ∈ Q and ∇θh(q,θ) is
continuous on Q × Rm. We define Ψ(θ) = maxq∈Q h(q,θ), and Q∗(θ) = {q ∈ Q : h(q,θ) =
Ψ(θ)}. Then Ψ(θ) is directionally differentiable, and its directional derivative along the direction v
satisfies

Ψ′(θ;v) = sup
q∈Q∗(θ)

v>∇θh(q,θ).

Particularly, when Q∗(θ) = {q∗} only contains one maximizer, Ψ(θ) is differentiable at θ and

∇θΨ(θ) = ∇θh(q∗,θ).

If we let Q = P and h = J in Lemma 2, we can directly prove Theorem 1.

B.2 Proof of Eq. (11)

The variable δi has the following sampling process

δi = ε · tanh(ui), ui ∼ N (µi,diag(σ2
i)),

whose negative log density is
d∑
j=1

(1

2
(r(j))2 +

log 2π

2
+ logσ

(j)
i + log(1− tanh(µ

(j)
i + σ

(j)
i r(j))2) + log ε

)
,

where the superscript j denotes the j-th element of a vector.

Proof. Due to the usage of the diagonal covariance matrix, each dimension in the sampled perturba-
tion δi is independent. Thus we can simply calculate the negative log density in each dimension of
δi. For clarity, we also denote µ(j)

i , σ(j)
i , r(j), u(j)

i , and δ(j)i as µ, σ, r, u, and δ, respectively. Based
on the sampling procedure in Eq. (8), we have δ = ε · tanh(u) and u = µ+ σr.

Note that r has density: p(r) = 1√
2π

exp (− r
2

2). Apply the transformation of variable approach, we
have the density of u as

p(u) =
1√
2π

exp (−r
2

2
) ·
∣∣ d
du

(
u− µ
σ

)
∣∣ =

1√
2πσ

exp (−r
2

2
).

Let β = tanh(u), then the inverse transformation is u = tanh−1(β) = 1
2 log(1+β

1−β), whose derivative
w.r.t. β is 1

1−β2 .

Then, by applying the transformation of variable approach again, we have the density of β as

p(β) =
1√
2πσ

exp (−r
2

2
) · 1

1− β2
=

1√
2πσ

exp (−r
2

2
) · 1

1− tanh(µ+ σr)2
.

5

Therefore, the density of δ which equals to ε · β can be derived similarly, and eventually we obtain

p(δ) =
1√
2πσ

exp (−r
2

2
) · 1

1− tanh(µ+ σr)2
· 1

ε
.

Consequently, the negative log density of p(δ) is

− log p(δ) =
r2

2
+

log 2π

2
+ log σ + log(1− tanh(µ+ σr)2) + log ε.

Sum over all of the dimensions and we complete the proof of Eq. (11).

B.3 Proof of Eq. (A.2)

Given an example xi, we define an implicit adversarial distribution pφ(δi|xi) in the form of δi =
gφ(z;xi), z ∼ p(z), where gφ denotes a φ-parameterized generator network. Then we can maximize
the following variational lower bound to maximize the entropy of pφ(δi|xi), as

H(pφ(δi|xi)) ≥ U(q) = Ep(z) log q(z|gφ(z;xi)) + c

where c is a constant and q(·|·) is an introduced variational distribution.

Proof. We mainly follow [2] to provide the proof. Typically, we can view the Dirac generation
distribution pφ(δi|xi, z) as a peaked Gaussian with a fixed, diagonal covariance, then it will have
a constant entropy. Considering xi as a given condition, we can simply rewrite the generation
distribution as pφ,i(δi|z). Then we can define the joint distribution over δi and z as pφ,i(δi, z) =
pφ,i(δi|z)pφ,i(z). pφ,i(z) = p(z) is simply a predefined prior with a constant entropy. Then, we
can further define the marginal pφ,i(δi) whose entropy is of our interest and the posterior pφ,i(z|δi).
Consider the mutual information between δi and z

I(pφ,i(δi); pφ,i(z)) = H(pφ,i(δi))−H(pφ,i(δi|z)) = H(pφ,i(z))−H(pφ,i(z|δi)).
Thus, we can calculate the entropy of δi as

H(pφ,i(δi)) = H(pφ,i(z))−H(pφ,i(z|δi)) +H(pφ,i(δi|z)).

As stated, the first term and the last term are constant w.r.t. the parameter φ. Therefore, maximizing
H(pφ,i(δi)) corresponds to maximizing the negative conditional entropy

−H(pφ,i(z|δi)) = Eδi∼pφ,i(δi)

[
Ez∼pφ,i(z|δi)[log pφ,i(z|δi)]

]
.

We still cannot optimize this as we have no access to the posterior. As an alternative, we resort to the
variational inference technique to tackle this problem. We introduce a variational distribution q(z|δi)
to approximate the true posterior, and derive the following lower bound

−H(pφ,i(z|δi)) = Eδi∼pφ,i(δi)

[
Ez∼pφ,i(z|δi)[log q(z|δi)]

]
+DKL(pφ,i(z|δi)||q(z|δi))

≥ Eδi∼pφ,i(δi)

[
Ez∼pφ,i(z|δi)[log q(z|δi)]

]
= Ez,δi∼pφ,i(z,δi)[log q(z|δi)]
= Ez∼pφ,i(z)

[
Eδi∼pφ,i(δi|z)[log q(z|δi)]

]︸ ︷︷ ︸
U ′(q)

,

where DKL represents the Kullback–Leibler divergence between distributions. Note that pφ,i(z) =
p(z) is a prior and pφ,i(δi|z) = pφ(δi|xi, z) is Dirac distribution located at δi = gφ(z;xi). Thus,
we can write the lower bound of the entropy U(q) as

H(pφ(δi|xi)) ≥ U(q) = U ′(q) + c = Ez∼p(z) log q(z|gφ(z;xi)) + c,

which can be optimized effectively via Monte Carlo integration and standard back-propagation. Then
we finish the proof of Eq. (A.2).

C Detailed experimental settings

We provide the detailed experimental settings in this section. All of the experiments are conducted on
NVIDIA 2080 Ti GPUs. The source code of ADT is available at https://github.com/dongyp13/
Adversarial-Distributional-Training.

6

https://github.com/dongyp13/Adversarial-Distributional-Training
https://github.com/dongyp13/Adversarial-Distributional-Training

Table 7: The network architectures used for the generators.
In ADTEXP-AM In ADTIMP-AM

input z
256× 3× 3 conv 256-dim fc layer

Residual block, 512 filters 1024-dim fc layer
Residual block, 512 filters reshape to 1× 32× 32
Residual block, 512 filters concat with input

6× 3× 3 conv 256× 3× 3 conv
Residual block, 512 filters
Residual block, 512 filters
Residual block, 512 filters

3× 3× 3 conv

Table 8: The network architecture used for instantiating the variational distribution q in ADTIMP-AM.
Layers
input

32× 5× 5, stride 1
64× 4× 4, stride 2
128× 4× 4, stride 1
256× 4× 4, stride 2

Global average pooling
128× 1× 1, stride 1

C.1 Datasets

We choose the CIFAR-10 [10], CIFAR-100 [10], and SVHN [14] datasets to conduct the experiments.
CIFAR consists of a training set of 50, 000 and a test set of 10, 000 color images of resolution 32×32
with 10 classes in CIFAR-10 and 100 classes in CIFAR-100. SVHN is a 10-class house number
classification dataset with 73, 257 training images and 26, 032 test images. During training, we
perform standard data augmentation (i.e., horizontal flips and random crops from images with 4
pixels padded on each side) on CIFAR-10 and CIFAR-100, and use no data augmentation on SVHN.
We do not use any data augmentation during testing.

C.2 Network architectures

For the generator network in ADTEXP-AM and ADTIMP-AM, we adopt a popular image-to-image
architecture which has shown promise in neural style transfer and super-resolution [7, 18]. The
network contains 3 residual blocks [5], with two extra convolutions at the beginning and the end. All
convolutions in the generator have stride 1, and are immediately followed by batch normalization [6]
and ReLU activation.

As found by [1], taking only the natural images as inputs to the generator network can lead to poor
results. And they suggest to input the classifier’s gradients as well. Based on this finding, we calculate
the gradient of the loss function at the natural input g1

i = ∇xL(fθ(xi), yi), as well as the gradient
of the loss function at the FGSM adversarial example g2

i = ∇xL(fθ(xi + δFGSM
i), yi), where

δFGSM
i = ε · sign(∇xL(fθ(xi), yi)), and then input [xi,g

1
i ,g

2
i] to the generator network.

In ADTEXP-AM, the generator has 6 output channels to deliver the parameters (i.e., mean and standard
derivation) of the explicit adversarial distributions. In ADTIMP-AM, for each input we sample a 64-dim
i.i.d. z from a uniform distribution U(−1, 1), which is encoded with 2 fully connected (FC) layers
and then fed into the generator along with the input image and gradients.

We elaborate the architectures of the generator networks in Table 7, and the architecture of q in
ADTIMP-AM in Table 8. In these tables, “C×H×W” means a convolutional layer with C filters size
H×W, which is followed by batch normalization [6] and a ReLU nonlinearity (or LeakyReLU for
layers in Table 8), except the last layers in the architectures. We use the residual block design in [5],
which is composed of two 3× 3 convolutions and a residual connection.

7

Table 9: Classification accuracy of the three proposed methods and baselines on CIFAR-100 and
SVHN under white-box attacks. We mark the best results for each attack and the overall results that
outperform the baselines in bold, and the overall best result in blue.

Model Anat FGSM PGD-20 PGD-100 MIM C&W FeaAttack Arob

CIFAR-100, ε = 8/255
Standard 78.59% 8.73% 0.02% 0.01% 0.02% 0.00% 0.00% 0.00%
ATPGD 61.45% 30.78% 25.71% 25.40% 26.60% 25.80% 33.95% 24.49%

ADTEXP 62.70% 34.22% 28.96% 28.60% 29.83% 28.99% 35.07% 27.13%
ADTEXP-AM 62.84% 36.28% 29.01% 28.46% 29.68% 28.78% 34.91% 26.87%
ADTIMP-AM 64.07% 39.39% 29.40% 28.43% 29.64% 28.76% 35.00% 26.80%

SVHN, ε = 4/255
Standard 96.12% 39.05% 3.64% 2.95% 4.08% 3.91% 2.14% 2.14%
ATPGD 95.07% 82.19% 74.22% 73.79% 74.56% 74.77% 73.51% 73.38%

ADTEXP 95.70% 86.72% 77.01% 76.62% 77.18% 77.50% 75.64% 75.55%
ADTEXP-AM 95.67% 85.24% 76.12% 75.58% 76.63% 76.70% 75.20% 75.00%
ADTIMP-AM 95.62% 86.73% 75.61% 74.85% 75.91% 76.12% 74.24% 74.13%

C.3 Training details

The classifier is trained using SGD with momentum 0.9, weight decay 2× 10−4, and batch size 64.
The initial learning rate is 0.1, which is reduced to 0.01 in the 75-th epoch. We stop training after 76
epochs. For ADTEXP, we adopt Adam [9] for optimizing the distribution parameters φi. We set the
learning rate for φi as 0.3, the momentum as (0.0, 0.0), the number of optimization steps as T = 7,
and the number of MC samples to estimate the gradient in each step as k = 5. For ADTEXP-AM and
ADTIMP-AM, we use only one MC sample for gradient estimation and use Adam with momentum
(0.5, 0.999) and learning rate 2×10−4 to optimize the parameter φ of the generator network. We also
adopt Adam with learning rate 2× 10−4 to optimize the parameter ψ of the introduced variational in
ADTIMP-AM.

C.4 Baselines

Our primary baselines include: 1) standard training on the clean images (Standard); 2) adversarial
training on the PGD adversarial examples (ATPGD) [13]. Standard and ATPGD are trained with the
same configurations specified above. For training ATPGD, we perform PGD with T = 7 steps, and
step size α = ε/4, which are the same as in [13]. On CIFAR-10, we incorporate several additional
baselines, including: 1) the pretrained ATPGD model (ATPGD

†) released by [13]; 2) adversarial training
on the targeted FGSM adversarial examples (ATFGSM) [11]; 3) adversarial logit pairing (ALP) [8];
and 4) feature scattering-based adversarial training (FeaScatter) [16]. We implement ATFGSM and
ALP by ourselves using the same training configuration specified above and use the pretrained model
of FeaScatter. Note that all of these models have the same network architecture for a fair comparison.

C.5 A feature attack for white-box evaluation

We incorporate a feature attack (FeaAttack) [12] for white-box robustness evaluation in this paper.
The algorithm of FeaAttack is introduced below. Given a natural input x, FeaAttack first finds a
target image x′ belonging to a different class. It minimizes the cosine similarity between the feature
representations of the adversarial example and x′ as

δ∗ = arg min
δ∈S

Lcos(f ′θ(x + δ), f ′θ(x′)),

where f ′θ(·) returns the feature representation before the global average pooling layer for an input,
and Lcos is the cosine similarity between two features. FeaAttack solves this objective function by

δt+1 = ΠS
(
δt − α · sign(∇xLcos(f ′θ(x + δt), f ′θ(x′)))

)
.

δ0 is initialized uniformly in S. In our experiments, we set α = ε/8 and the number of optimization
steps as 50. For each natural input, we randomly select 200 target images to conduct 200 attacks, and
report a successful attack when one of them can cause misclassification of the model.

8

Table 10: Classification accuracy of TRADES and the three ADT-based methods trained with the
TRADES loss on CIFAR-10 under white-box attacks with ε = 8/255. We mark the best results for
each attack and the overall results that outperform the baselines in bold, and the overall best result in
blue.

Model β Anat FGSM PGD-20 PGD-100 MIM C&W FeaAttack Arob

TRADES 1.0 87.99% 57.67% 51.08% 48.41% 53.32% 49.29% 51.07% 47.75%
ADTEXP 1.0 89.74% 59.47% 52.39% 49.88% 54.74% 50.75% 51.29% 49.05%

ADTEXP-AM 1.0 88.86% 62.89% 54.44% 51.66% 56.09% 52.33% 54.61% 50.78%
ADTIMP-AM 1.0 88.80% 68.35% 54.22% 51.09% 54.95% 51.84% 54.19% 50.14%
TRADES 6.0 84.02% 60.08% 56.06% 54.49% 57.27% 53.62% 55.18% 52.64%
ADTEXP 6.0 84.66% 61.72% 57.71% 56.17% 58.74% 55.16% 56.65% 54.21%

ADTEXP-AM 6.0 84.85% 66.09% 57.67% 55.73% 58.38% 54.79% 58.94% 54.09%
ADTIMP-AM 6.0 84.96% 68.34% 57.82% 55.45% 58.58% 54.36% 59.01% 53.66%

D Supplementary experimental results

We provide more experimental results in this section.

D.1 Full results on CIFAR-100 and SVHN

We provide the full experimental results of Standard, ATPGD, ADTEXP, ADTEXP-AM, and ADTIMP-AM
under all adopted white-box attacks on CIFAR-100 and SVHN in Table 9.

D.2 Full results on TRADES

In TRADES [17], the minimax optimization problem is formulated as

min
θ

1

n

n∑
i=1

{
L(fθ(xi), yi) + β ·max

δi∈S
DKL(fθ(xi + δi), fθ(xi))

}
,

where β is a hyperparameter balancing the trade-off between natural and robust accuracy. The full
experimental results of TRADES and the three variants of ADT when integrated with the TRADES
loss are shown in Table 10. We evaluate their performance by all adopted white-box attacks and
report the worst-case robustness as in Eq. (12).

D.3 Convergence of learning the explicit adversarial distributions

We study the convergence of the explicit adversarial distributions introduced in Sec. 3.1 by attacking
ATPGD and ADTEXP with varying iterations. We set the learning rate of φi as 0.3, the momentum as
(0.0, 0.0), the number of MC samples to estimate the gradient in each step as k = 10, and vary the
attack iterations from 0 to 100. We show the classification loss and accuracy in Fig. 6. Learning the
explicit adversarial distributions can converge soon within a few iterations.

Iterations
0 20 40 60 80 100

Cl
as

sif
ic

at
io

n
Lo

ss

0

0.5

1

1.5

ATPGD
ADTEXP

Iterations
0 20 40 60 80 100

Cl
as

sif
ic

at
io

n
A

cc
ur

ac
y

(%
)

40

60

80

100 ATPGD
ADTEXP

Figure 6: Classification loss (i.e., cross-entropy loss) and accuracy (%) of ATPGD and ADTEXP under
the explicit adversarial distributions attack with different attack iterations.

9

D.4 Training time

We provide the one-epoch training time of Standard, ATPGD, ADTEXP, ADTEXP-AM, and ADTIMP-AM
on CIFAR-10 in Fig. 7. As can be seen, ADTEXP is nearly 5× slower than ATPGD since we use k = 5
MC samples to estimate the gradient w.r.t. the distribution parameters in each step. Nevertheless, by
amortizing the adversarial distributions, ADTEXP-AM and ADTIMP-AM are much faster than ADTEXP,
and nearly 2× faster than ATPGD.

Standard ATPGD
0

500

1000

1500

2000

2500

3000

ADTEXP ADTEXP-AM ADTIMP-AM

Tr
ai
ni
ng
Ti
m
e
(s
)

Figure 7: The training time (s) for one epoch of Standard, ATPGD, ADTEXP, ADTEXP-AM, and
ADTIMP-AM on CIFAR-10.

D.5 Comparison with Chen et al. [1]

We further compare ADT with the L2L framework in [1]. Their method is similar to ours in the sense
that they also adopt a generator network to produce adversarial examples, and perform adversarial
training on those generated adversarial examples. The essential different between our methods and
theirs is that we propose an adversarial distributional training framework to learn the distributions of
adversarial perturbations, while their method is a variant of the vanilla adversarial training with a
different approach to solving the inner maximization.

Since the source code is not provided by Chen et al. [1], we tried to reproduce their reported results
with the same training configuration specified in their paper, but we failed. Therefore, we adopt
the same configuration as in ADT for training the L2L model. Table 11 shows the results of L2L,
ADTEXP-AM, and ADTIMP-AM, which use the same classifier architecture and generator network.
Our ADT-based methods outperform L2L in most cases, showing the advantages of learning the
distributions of adversarial perturbations upon finding a single adversarial example.

Table 11: Classification Accuracy of L2L [1], ADTEXP-AM, and ADTIMP-AM on CIFAR-10 under
white-box attacks with ε = 8/255.

Model L2L ADTEXP-AM ADTIMP-AM

Anat 88.15% 87.82% 88.00%
FGSM 65.50% 62.42% 64.89%

PGD-20 48.55% 51.95% 52.28%
PGD-100 47.14% 51.26% 51.23%

MIM 49.03% 52.99% 52.64%
C&W 49.22% 51.75% 52.65%

References
[1] Zhehui Chen, Haoming Jiang, Yuyang Shi, Bo Dai, and Tuo Zhao. Learning to defense by learning to

attack. arXiv preprint arXiv:1811.01213, 2018.

[2] Zihang Dai, Amjad Almahairi, Philip Bachman, Eduard Hovy, and Aaron Courville. Calibrating energy-
based generative adversarial networks. In International Conference on Learning Representations (ICLR),
2017.

[3] Zihang Dai, Zhilin Yang, Fan Yang, William W Cohen, and Russ R Salakhutdinov. Good semi-supervised
learning that requires a bad gan. In Advances in Neural Information Processing Systems (NeurIPS), 2017.

10

[4] John M Danskin. The theory of max-min and its application to weapons allocation problems, volume 5.
Springer Science & Business Media, 2012.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[6] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning (ICML), 2015.

[7] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
super-resolution. In European Conference on Computer Vision (ECCV), 2016.

[8] Harini Kannan, Alexey Kurakin, and Ian Goodfellow. Adversarial logit pairing. arXiv preprint
arXiv:1803.06373, 2018.

[9] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations (ICLR), 2015.

[10] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Technical
report, University of Toronto, 2009.

[11] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. In International
Conference on Learning Representations (ICLR), 2017.

[12] Daquan Lin. https://github.com/Line290/FeatureAttack.

[13] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. To-
wards deep learning models resistant to adversarial attacks. In International Conference on Learning
Representations (ICLR), 2018.

[14] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading digits in
natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning and Unsupervised
Feature Learning, 2011.

[15] Jiaxin Shi, Shengyang Sun, and Jun Zhu. A spectral approach to gradient estimation for implicit distribu-
tions. In International Conference on Machine Learning (ICML), 2018.

[16] Haichao Zhang and Jianyu Wang. Defense against adversarial attacks using feature scattering-based
adversarial training. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

[17] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing, Laurent El Ghaoui, and Michael I Jordan.
Theoretically principled trade-off between robustness and accuracy. In International Conference on
Machine Learning (ICML), 2019.

[18] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation using
cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV), 2017.

11

https://github.com/Line290/FeatureAttack

