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Abstract

Stochastic Approximation (SA) is a popular approach for solving fixed-point
equations where the information is corrupted by noise. In this paper, we consider
an SA involving a contraction mapping with respect to an arbitrary norm, and
show its finite-sample error bounds while using different stepsizes. The idea is
to construct a smooth Lyapunov function using the generalized Moreau envelope,
and show that the iterates of SA have negative drift with respect to that Lyapunov
function. Our result is applicable in Reinforcement Learning (RL). In particular,
we use it to establish the first-known convergence rate of the V-trace algorithm
for off-policy TD-learning [18]. Importantly, our construction results in only a
logarithmic dependence of the convergence bound on the size of the state-space.

1 Introduction

Reinforcement Learning (RL) captures an important facet of machine learning going beyond predic-
tion and regression: sequential decision making, and has had great impact in various problems of
practical interest [37, 29, 35]. At the heart of RL is the problem of iteratively solving the Bellman’s
equation using noisy samples, i.e. solving a fixed-point equation of the formH(x) = x. Here,H is a
contractive operator with respect to a suitable norm, where we only have access to samples from noisy
versions of the operator. Such fixed-point equations, more broadly, are solved through the framework
of Stochastic Approximation (SA) algorithms [33], with several RL algorithms such as Q-learning
and TD-learning being examples there-of. This paper focuses on understanding the evolution of such
a noisy fixed-point iteration through the lens of SA, and providing finite-sample convergence results.

More formally, the SA algorithm for solving the fixed-point equation H(x) = x is of the form
xk+1 = xk + εk (H(xk)− xk + wk), where {εk} is the stepsize sequence, and {wk} is the noise
sequence. To derive finite-sample bounds, three conditions are pertinent: (a) The norm in which the
operatorH contracts, (b) The mean zero noise when conditioned on the past, and (c) The nature of
the bound on the conditional second moment of the noise.

In prior literature, if the conditional second moment of the noise {wk} is uniformly bounded by a
constant, then the norm with respect to which H being a contraction becomes irrelevant, and it is
possible to derive finite-sample convergence guarantees [3, 4, 19, 17]. When the second moment
of the noise is not uniformly bounded, then finite-sample bounds can be derived in the case where
the norm for contraction of H is the Euclidean norm [5, 11]. However, in many RL problems, the
contraction ofH occurs with respect to a different norm (e.g. the `∞-norm [47] or a weighted variant
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[44]). Further, conditioned on the past, the second moment of the norm of the noise scales affinely
with the current iterate (again w.r.t. an arbitrary norm), and in general, no uniform bound exists.

An important practical application of this setting with `∞-norm contraction and unbounded noise
is the well-known V-trace algorithm for solving the policy evaluation problem using off-policy
TD-learning [39]. Its variants form the basis of today’s distributed RL platforms like IMPALA [18]
and TorchBeast [25] for multi-agent training. It has been used at scale in the recent Deepmind City
Navigation Project “Street Learn” [29]. Therefore, deriving finite-sample convergence results for
SA under contraction of H with respect to general norms, and handling unbounded noise are of
fundamental interest. In this paper, we answer the following general question in the affirmative:

Can we provide finite-sample convergence guarantees for the SA algorithm when the norm of
contraction of H is arbitrary, and the second moment of the noise conditioned on the past scales
affinely with respect to the squared-norm of the current iterate?

To the best of our knowledge, except under special conditions on the norm for contraction of H
and/or strong assumptions on the noise, such finite-sample error bounds have not been established.
The following table summarizes the results for related works. In Table 1, d-dependence refers to
the dependence on the dimension d of the iterate xk. To clarify, in the corresponding d-dependence
of this work for general contractive SA, we write log(d) (‖ · ‖∞) to indicate that the dimension
dependence is log(d) when the norm of contraction is the `∞-norm ‖ · ‖∞.

Table 1: Comparison to existing bounds

Topic Contraction Noise Step size Rate d dependence

Q-learning [3, 4] ‖ · ‖∞ Bounded Constant Geometric d2

Q-learning [46] ‖ · ‖∞ Bounded 1
1+(1−γ)k O(1/k) log(d)

Q-learning [46] ‖ · ‖∞ Bounded 1
kξ

O(1/kξ) log(d)

SGD [11] ‖ · ‖2 Affine Constant Geometric Independent

SGD [11] ‖ · ‖2 Affine β
γ+k O(1/k) Independent

Q-learning
[this work] ‖ · ‖∞ Bounded Constant Geometric log(d)

V-Trace
[this work] ‖ · ‖∞ Affine ε

k+K O(1/k) log(d)

Contractive SA
[this work]

Arbitrary
norm Affine

Constant &
Diminishing

Corollary 2.1
Corollary 2.2 log(d) (‖ · ‖∞)

The main contributions of this paper are as follows.

1. Finite-Sample Convergence Guarantees for SA. We present a novel approach for deriving
finite-sample error bounds of the SA algorithm under a general norm contraction. The key idea is to
study the drift of a carefully constructed potential/Lyapunov function. We obtain such a potential
function by smoothing the norm-squared function using a generalized Moreau envelope. We then
study the error bound under either constant or diminishing stepsizes. Specifically, we show that the
iterates converge to a ball with radius proportional to the stepsize when using constant stepsize, and
converge with rate roughly O(1/k) when using properly chosen diminishing stepsizes.

2. Performance of the V-trace Algorithm. To demonstrate the effectiveness of the theoretical result
in an entirely novel setting in RL, we consider the V-trace algorithm for solving the policy evaluation
problem using off-policy sampling [18]. Interestingly in this case, it is not clear if the iterates of
the V-trace algorithm are uniformly bounded by a constant (e.g. as in Q-learning [21]). Therefore,
existing techniques are not applicable. Using our approach, we establish the first known finite-sample
error bounds, and show that the convergence rate is logarithmic in the state-space dimension. In our
result, the logarithmic dimension dependence relies on the general form of the Moreau envelope
obtained by the infimal convolution with a suitable smooth squared-norm. The freedom in selecting
such norm allows us to obtain the logarithmic dependence. Moreover, our approach also recovers
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the existing state-of-the-art error bounds [46] for Q-learning including logarithmic dependence on
dimension (Appendix C), which may be of independent interest.

1.1 Summary of our techniques

We now give a more detailed description of the techniques we used. To provide intuition, assume for
now that the norm ‖ · ‖c with respect to whichH being a contraction is the `p-norm for p ∈ [2,∞),
i.e., ‖H(x) − H(y)‖p ≤ γ‖x − y‖p for all x, y ∈ Rd, where γ ∈ (0, 1) is the contraction factor.
Denote the fixed-point ofH by x∗. Consider the Ordinary Differential Equation (ODE) associated
with this SA: ẋ(t) = H(x(t)) − x(t). It is shown in [9] (Chapter 10) that W (x) = ‖x − x∗‖p
satisfies d

dtW (x(t)) ≤ −αW (x(t)) for some α > 0, which implies the solution x(t) of the ODE
converges to its equilibrium point x∗ geometrically fast. The term α corresponds to a negative drift.

In order to obtain finite-sample bounds, in this paper we study the SA directly, and not the ODE.
Then, the Lyapunov function W (x) cannot be directly used to analyze the SA algorithm due to the
discretization error and stochastic error. However, suppose we can find a function M(x) that gives
negative drift, and in addition: (a) M(x) is L – smooth w.r.t. some norm ‖ · ‖s [1], (b) the noise {wk}
is zero mean conditioned on the past, and (c) the conditional second moment of ‖wk‖n (where ‖ · ‖n
is again some arbitrary norm) can be bounded affinely by the current iterate ‖xk‖2n. Then, we have a
handle to deal with the discretization error and error caused by the noise to obtain:

E[M(xk+1 − x∗)] ≤ (1−O(εk) +O(ε2k))E[M(xk − x∗)] +O(ε2k), (1)

which implies a contraction in E[M(xk+1 − x∗)]. Therefore, a finite-sample error bound can be
obtained by recursively applying the previous inequality. The key point is that M(x)’s smoothness
and its negative drift with respect to the ODE produces a contraction (1−O(εk) +O(ε2k)) for {xk}.
Based on the above analysis, we see that the Lyapunov function for the SA in the case of `p-norm
contraction should be M(x) = 1

2‖x− x
∗‖2p, which is known to be (p− 1) – smooth [1].

However, in the case where ‖ · ‖c is some arbitrary norm, since the function f(x) = 1
2‖x− x

∗‖2c is
not necessarily smooth, the key difficulty is to construct a smooth Lyapunov function. An important
special case is when ‖ · ‖c = ‖ · ‖∞, which is applicable to many RL algorithms. We provide
a solution to this where we construct a smoothed convex envelope M(x) called the Generalized
Moreau Envelope that is smooth w.r.t. some norm ‖ · ‖s, and it is a tight approximation to f(x), i.e.
aM(x) ≤ f(x) ≤ bM(x) for some constants a, b > 0. Further, it is a Lyapunov function for the
ODE with a negative drift. This essentially lets us prove a convergence result akin to the case when
f(x) is smooth.

1.2 Related work

Due to the popularity of the SA algorithm (and its variant Stochastic Gradient Descent (SGD) in
optimization [31, 26]), it has been studied extensively in the literature. Specifically, suppose that
{wk} is a martingale difference sequence with some mild conditions on its variance, and the stepsize
decays to zero at an appropriate rate. Then, almost sure convergence of the sequence {xk} has
been established in [44, 23] using a supermartingale convergence approach, and in [10, 9] using
an ODE approach. Further, when the iterates are uniformly bounded by an absolute constant (with
probability 1), or that the operatorH is contractive with respect to the Euclidean norm, convergence
rates and finite-sample bounds can be derived using the decomposition methods [44] or Lyapunov
techniques [5]. In particular, the decomposition technique has been used for Q-learning in [3, 4, 46]
to derive finite-sample convergence bounds, using the fact the iterates of Q-learning are uniformly
bounded by a constant [21]. Concentration results forQ-learning were also derived in [32, 28]. As for
TD-learning andQ-learning with linear function approximation, finite-sample guarantees were shown
in [13, 7, 38, 12] for a single-agent problem, and in [16] for a multi-agent problem. Concentration
results for SA algorithm when starting near an attractor of the underlying ODE were derived in
[8, 43]. Variations of temporal difference (TD) methods (such as gradient TD, least squares TD) have
been studied and their convergence has been analyzed in some cases in [48, 41, 40].

Moreau envelopes are popular tools for non-smooth optimization [30], where the proximal operator
is used to develop algorithms to work with non-smooth parts of the objective [2]. Moreau envelopes
have been used as potential functions to analyze convergence rate of subgradient methods to first order
stationary points for non-smooth and non-convex stochastic optimization problems in [14]. They use
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the Moreau envelope defined with respect to the Euclidean norm, and use this to show convergence by
bounding a measure on first order stationarity with the gradient of the Moreau envelope. In contrast,
our interest is in understanding contraction with arbitrary norms – this requires us to use a generalized
Moreau envelope obtained by infimal convolution with a general smooth function, and show that its a
smooth Lyapunov function with respect to the underlying ODE. The flexibility in the selection of this
smooth function in our infimal convolution plays a crucial role in improving the dependence on the
state-space dimension to logarithmic factors for our applications.

2 Stochastic approximation under a contraction operator

2.1 Problem setting: stochastic approximation

LetH : Rd 7→ Rd be a nonlinear mapping. We are interested in solving for x∗ ∈ Rd in the equation
H(x) = x. Suppose we have access to the mapping H only through a noisy oracle which for any
x returnsH(x) + w (w is the noise). Note that w might depend on x. In this setting, the following
stochastic iterative algorithm is proposed to estimate x∗:

xk+1 = xk + εk (H(xk)− xk + wk) , (2)

where {εk} is the stepsize sequence [5]. We next state our main assumptions in studying this SA. Let
Fk = {x0, w0, ..., xk−1, wk−1, xk}, and let ‖ · ‖c and ‖ · ‖n be two arbitrary norms in Rd.

Assumption 2.1. The functionH is a pseudo-contraction mapping w.r.t. norm ‖ · ‖c, i.e., there exists
x∗ ∈ Rd and γ ∈ (0, 1) such that ‖H(x)− x∗‖c ≤ γ‖x− x∗‖c for all x ∈ Rd.

Remark 2.1. By letting x = x∗, we see that Assumption 2.1 impliesH(x∗) = x∗. Moreover, it can
be easily shown using proof by contradiction that x∗ is the unique fixed-point ofH. Note that ifH is
indeed a contraction mapping, i.e., ‖H(x)−H(y)‖c ≤ γ‖x− y‖c for all x, y ∈ Rd, then by Banach
fixed-point theorem [15],H admits a unique fixed-point x̄, and Assumption 2.1 holds with x∗ = x̄.
Hence a contraction is automatically a pseudo-contraction [5].

Assumption 2.2. The noise sequence {wk} satisfies for all k ≥ 0: (a) E[wk | Fk] = 0, and (b)
E[‖wk‖2n | Fk] ≤ A(1 + ‖xk‖2n) for some constant A > 0.

Suppose the noise ‖wk‖n have bounded second moment, or the second moment grows linearly
in terms of the current iterate ‖xk‖2n with a small enough scaling parameter, then finite-sample
convergence guarantees were derived in the literature [3, 11]. In this work, our noise assumption
is more general in that we allow the conditional variance of ‖wk‖n to grow affinely in terms of
the current iterate ‖xk‖2n, and the scaling parameter A can be arbitrary [5]. This generalization is
important when applying our results to Reinforcement Learning.

Assumption 2.3. The stepsize sequence {εk} is positive and non-increasing.

The asymptotic convergence of xk under similar assumptions has been established in the literature. In
particular, an approach based on studying the ODE ẋ(t) = H(x(t))−x(t) was used in [10, 9], where
it was shown that xk converges to x∗ almost surely under some stability assumptions of the ODE.
The focus of this paper is to establish the finite-sample mean square error bounds for SA algorithm
(2). We do this by studying the drift of a smooth potential/Lyapunov function [38, 12]. While we
do not explicitly use the ODE approach, the potential function we are going to contruct in the next
subsection is inspired by the Lyapunov function used to study the ODE.

2.2 The generalized Moreau envelope as a smooth Lyapunov function

Recall from Eq. (1) that with respect to the iterates {xk} of the SA , an ideal Lyapunov functionM(x)
acts as a potential function that contracts. In this subsection, we first construct a Lyapunov function
that is smooth through the generalized Moreau envelope. Smoothness and an approximation property
of the Lyapunov function we specify here are used in the next subsection to show the contraction
property we desire.

To construct such a Lyapunov function, the following definitions are needed. In this paper, 〈x, y〉 =
x>y represents the standard dot product, while the norm ‖ · ‖ in the following definition can be any
arbitrary norm instead of just being the Euclidean norm ‖x‖2 = 〈x, x〉1/2.
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Definition 2.1. Let g : Rd → R be a convex, differentiable function. Then g is said to be L – smooth
w.r.t. the norm ‖ · ‖ if and only if g(y) ≤ g(x) + 〈∇g(x), y − x〉+ L

2 ‖x− y‖
2 for all x, y ∈ Rd.

Definition 2.2 (Generalized Moreau Envelope [22, 2]). Let h1 : Rd 7→ R be a closed and convex
function, and let h2 : Rd 7→ R be a convex and L – smooth function. For any µ > 0, the generalized
Moreau envelope of h1 w.r.t. h2 is defined by Mµ,h2

h1
(x) = infu∈Rd{h1(u) + 1

µh2(x− u)}.

As an aside, we note that for any two functions h1, h2 : Rd 7→ R, the function defined by
(h1�h2)(x) := infu∈Rd{h1(u)+h2(x−u)} is called the infimal convolution of h1 and h2. Therefore,
the generalized Moreau envelope in Definition 2.2 can be written as Mµ,h2

h1
(x) = (h1�

h2

µ )(x).

Let f(x) := 1
2‖x‖

2
c , where ‖ · ‖c is given in Assumption 2.1. Let ‖ · ‖s be an arbitrary norm in Rd

such that g(x) := 1
2‖x‖

2
s is L – smooth w.r.t. the same norm ‖ · ‖s in its definition. For example,

‖ · ‖s can be the `p-norm for any p ∈ [2,∞) (Example 5.11 [1]). Due to the norm equivalence in
Rd [27], there exist `cs, `ns ∈ (0, 1] and ucs, uns ∈ [1,∞) that depend only on the dimenson d and
universal constants, such that `cs‖ · ‖c ≤ ‖ · ‖s ≤ ucs‖ · ‖c and `ns‖ · ‖n ≤ ‖ · ‖s ≤ uns‖ · ‖n.

Intuition: With a suitable choice of µ, we will use the Moreau envelope of f(x) with respect to g(x),
i.e., Mµ,g

f (x) = minu∈Rd{f(u) + g(x− u)/µ} as our Lyapunov function to analyze the behavior
of Algorithm (2), where the attainment of the minimum can be justified by Theorem 2.14 of [1].
Intuitively, note that the contraction of H is w.r.t. ‖ · ‖c, hence the Lyapunov function should be
defined in terms of f(x). However, since the function f(x) itself may not be well-behaved (e.g.
smooth), we use g(x) as a smoothing function to modify f(x) to obtain Mµ,g

f (x). In order for
Mµ,g
f (x) to be a valid Lyapunov function, we need to establish the following two properties: (a)

Mµ,g
f (x) should be a smooth function for us to handle the discretization error and the stochastic

error in Algorithm (2), and (b) Mµ,g
f (x) should be close to the original function f(x) so that we can

use the contraction of H w.r.t. ‖ · ‖c to establish the overall contraction of the iterates {xk} w.r.t.
Mµ,g
f (x). The following Lemma provides us the desired properties. See Appendix A.1 for its proof.

Lemma 2.1 (Smoothness and Approximation of the Envelope). The generalized Moreau envelope
Mµ,g
f (x) has the following properties: (a) Mµ,g

f is convex and L/µ – smooth w.r.t. ‖ · ‖s, (b) we
have (1 + µ/u2

cs)M
µ,g
f (x) ≤ f(x) ≤ (1 + µ/`2cs)M

µ,g
f (x) for all x ∈ Rd, and (c) there exists a

norm, denoted by ‖ · ‖M , such that Mµ,g
f (x) = 1

2‖x‖
2
M for all x ∈ Rd.

Lemma 2.1 (a) is restated from [1], and we include it here for completeness. This, together with
Lemma 2.1 (b) implies that Mµ,g

f (x) is a smooth approximation of the function f(x). Lemma 2.1 (c)
indicates that Mµ,g

f (x) is in fact a scaled squared norm, and we see from Lemma 2.1 (b) that ‖ · ‖M
gets closer to ‖ · ‖c when µ is small.

2.3 Recursive contractive bounds for the generalized Moreau envelope

In this subsection, using smoothness of Mµ,g
f (x) and the fact that Mµ,g

f (x) is an approximation to
the function f(x) (both properties derived in Lemma 2.1), we derive in the following proposition
the desired recursive contraction of Mµ,g

f (xk − x∗), whose proof is presented in Appendix A.2. To
present the coming proposition, we need to define a few more constants. Let

α1 =
1 + µ/`2cs
1 + µ/u2

cs

, α2 = 1− γα1/2
1 , α3 =

4u2
csu

2
ns(A+ 2)L(`2cs + µ)

µ`2cs`
2
ns

, and α4 =
α3A

2(A+ 2)
.

The constant µ is chosen such that α2 > 0, which is always possible since γ ∈ (0, 1).

Proposition 2.1. The following inequality holds for all k ≥ 0:

E[Mµ,g
f (xk+1 − x∗) | Fk] ≤ (1− 2α2εk + α3ε

2
k)Mµ,g

f (xk − x∗) +
α4(1 + 2‖x∗‖2c)

2(1 + µ/`2cs)
ε2k. (3)

From Eq. (3), we see that α2 represents the real contraction effect of the algorithm, and it should
be positive, which leads to our feasible range of µ. On the r.h.s. of Eq. (3), the first term represents
the overall contraction property that results from a combination of the contraction in the drift term
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that counteracts an expansion resulting from the discretization error and the noise second moment
that scales affinely in ‖xk‖2n. The second term is a consequence of discretization and the noise {wk}.
This is the key step in our proof compared to [3, 4, 32] as we do not decompose the analysis into one
for the contraction terms and another for the noise terms.

2.4 Putting together: finite-sample bounds for SA

From Proposition 2.1, the finite-sample error bound of Algorithm (2) can be established by repeatedly
using Eq. (3), which leads to our main result in the following. See Appendix A.3 for its proof.
Theorem 2.1. Consider iterates {xk} of Algorithm (2). Suppose Assumptions 2.1 – 2.3 are satisfied,
and ε0 ≤ α2/α3. Then we have for all k ≥ 0:

E
[
‖xk − x∗‖2c

]
≤ α1‖x0 − x∗‖2c

k−1∏
j=0

(1− α2εj) + α4(1 + 2‖x∗‖2c)
k−1∑
i=0

ε2i

k−1∏
j=i+1

(1− α2εj). (4)

In Eq. (4), the first term represents how fast the initial condition is forgotten, hence it is proportional
to the error in our initial guess ‖x0 − x∗‖2c . The second term represents the impact of the variance in
our estimate. Note that the condition ε0 ≤ α2/α3 is made only for ease of exposition. If it is not true,
as long as limk→∞ εk < α2/α3, we can let k′ := min{k ≥ 0 : εk ≤ α2/α3}, and then recursively
apply Eq. (3) starting from the k′-th iteration. For k = 0, 1, ..., k′, it can be easily shown using Eq.
(3) that E[‖xk − x∗‖2c ] is bounded.

Theorem 2.1 is our key contribution in that it holds in the case when: (a) the contraction ofH can be
w.r.t. any general norms, and (b) the conditional second moment of the noise is not bounded by a
constant but in fact scales affinely in the current iterates (see Assumption 2.2). As far as we are aware,
Theorem 2.1 establishes the first-known finite-sample convergence bounds in these general settings.

2.5 Results with various stepsize regimes and dimension dependence

Upon obtaining a finite-sample error bound in its general form in Theorem 2.1, we next consider two
common choices of stepsizes, and see what does Eq. (4) give us. We first consider using constant
stepsize (i.e., εk ≡ ε ≤ α2/α3) in the following result, whose proof is presented in Appendix A.4.
Corollary 2.1. E

[
‖xk − x∗‖2c

]
≤ α1‖x0 − x∗‖2c(1− α2ε)

k + (1 + 2‖x∗‖2c)α4ε
α2

for all k ≥ 0.

From Corollary 2.1, we see that in expectation, the iterates converge exponentially fast in the mean
square sense, to a ball with radius proportional to the stepsize ε, centered at the fixed-point x∗. With
smaller stepsize, at the end the estimate xk of x∗ is more accurate, but the rate of convergence is
slower since the geometric ratio (1− α2ε) is larger.

We next consider using diminishing stepsizes of the form εk = ε/(k + K)ξ, where ε > 0, ξ ∈
(0, 1], K = max(1, εα3/α2) when ξ = 1, and K = max(1, (εα3/α2)1/ξ, [2ξ/(α2ε)]

1/(1−ξ)) when
ξ ∈ (0, 1). The main reason for introducing K here is to make sure that ε0 ≤ α2/α3. We have the
following result, whose proof is presented in Appendix A.5.
Corollary 2.2. Suppose εk is of the form given above, then we have

(a) E[‖xk − x∗‖2c ] ≤ α1‖x0 − x∗‖2c
(

K
k+K

)α2ε

+ 4ε2α4

1−α2ε
1+2‖x∗‖2c
(k+K)α2ε

when ξ = 1, and ε < 1/α2.

(b) E[‖xk − x∗‖2c ] ≤ α1‖x0 − x∗‖2c K
k+K + 4α4

α2
2

(1+2‖x∗‖2c) log(k+K)
k+K when ξ = 1, and ε = 1/α2.

(c) E[‖xk − x∗‖2c ] ≤ α1‖x0 − x∗‖2c
(

K
k+K

)α2ε

+ 4eε2α4

α2ε−1
1+2‖x∗‖2c
k+K when ξ = 1, and ε > 1/α2.

(d) E[‖xk − x∗‖2c ] ≤ α1‖x0 − x∗‖2c exp
{
− α2ε

1−ξ
[
(k +K)1−ξ −K1−ξ]} + 2εα4

α2

1+2‖x∗‖2c
(k+K)ξ

when

ξ ∈ (0, 1), and ε > 0.

According to Corollary 2.2, when the stepsizes are chosen as εk = ε/(k + K), the constant ε is
important in determining the convergence rate, and the best convergence rate of O(1/k) is attained
when ε > 1/α2. This is because the constant α2 (see Eq. (4)) represents the real contraction effect of
the algorithm. When α2 is small, we choose large ε to compensate for the slow contraction.

If ξ ∈ (0, 1), the convergence rate is roughly O(1/kξ), which is sub-optimal but more robust, since
the rate does not depend on the choice of ε. This suggests the following rule of thumb in tuning the
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stepsizes. If we know the contraction factor γ, we know α2 given in Proposition 2.1 (since we pick
g(x) and µ ). Thus by choosing εk = ε/(k+K) with ε > 1/α2, we achieve the optimal convergence
rate. When our estimate of γ is poor, to avoid being in case (a) of Corollary 2.2, it is better to use
εk = ε/(k +K)ξ as the stepsize, thereby trading-off between convergence rate and robustness.

Connection to SGD: Although Theorem 2.1 (and Corollaries 2.1, 2.2) are derived for SA algorithms
involving a contraction operator, they also recover finite-sample bounds for SGD with a smooth
and strongly convex objective, whose convergence rate is O(1/k). To see this, let F (x) be a
differentiable objective function which is smooth and strongly convex with parameters C and c.
Define the operator H by H(x) = −η∇F (x) + x, where η > 0. Then Algorithm (2) becomes
xk+1 = xk + εk(−η∇F (xk) + wk), which is the SGD algorithm for minimizing F (x) [26, 31].
Further, it is known thatH is a Lipschitz operator w.r.t. the Euclidean norm, with Lipschitz constant
LSGD = max(|1 − ηc|, |1 − ηC|) [34]. When η ∈ (0, 2/C), we have LSGD < 1, and hence the
operatorH is a contraction with respect to the Euclidean norm.

Logarithmic Dependence on Dimension: Switching focus, we next show in the following Corollary
that with suitable choices of g(x) (i.e. ‖ · ‖s) and µ, our approach naturally results in only logarithmic
dependence on the dimension d in the case where both ‖ · ‖c and ‖ · ‖n are the `∞-norm. The case
of `∞-norm contraction is of special interest due to its applications in RL. We will use this result
in Section 3, to analyze the V-trace algorithm for off-policy TD-learning and in Appendix C for the
Q-learning algorithm.
Corollary 2.3. Consider the case where ‖·‖c = ‖·‖n = ‖·‖∞. Let g(x) = 1

2‖x‖
2
p with p = 4 log(d)

and let µ = (1/2 + 1/(2γ))2 − 1. Then we have α1 ≤ 3
2 , α2 ≥ 1

2 (1− γ), α3 ≤ 32e(A+2) log(d)
1−γ , and

α4 ≤ 16eA log(d)
1−γ . (See Appendix A.6 for the proof)

Order-Wise Tightness: In general, we cannot hope to improve the convergence rate beyond O(1/k)
or the dimension dependence beyond log(d). To see this, consider the trivial case where H(x) is
identically zero, and {wk} is an i.i.d. sequence of standard normal random vectors. Algorithm (2)
becomes xk+1 = xk + εk(−xk + wk), which can be viewed as an SA algorithm for solving the
trivial equation x = 0, or an SGD algorithm for minimizing a quadratic objective F (x) = 1

2‖x‖
2
2.

When εk = 1
k+1 , the iterates xk are just the running averages of {wk}, i.e., xk = 1

k

∑k−1
i=0 wi for all

k ≥ 1, which implies
√
kxk ∼ N (0, I). Since it is well-known that E[‖X‖2∞] ∼ O(log(d)) for a

standard normal random vector X [45], we have E[‖xk‖2∞] = O( log(d)
k ). Thus in this setting, our

resulting finite-sample bounds under `∞-norm contraction are order-wise tight both in terms of the
convergence rate and the dimensional dependence.

In summary, we have (a) stated and proved a finite-sample error bound for Algorithm (2) in its
general form (Theorem 2.1), (b) studied its behavior under different choices of stepsizes (Corollaries
2.1 and 2.2), and (c) elaborated how to choose the function g(x) and the parameter µ used in the
generalized Moreau envelope to optimize the constants in the bound (4) (Corollary 2.3). In the next
section, we present how the convergence results in this section apply in the context of RL.

3 Applications in Reinforcement Learning

3.1 Overview and notation

We study the infinite-horizon discounted (with discount factor β ∈ (0, 1)) Markov Decision Process
(MDP)M = {S,A,P,R}. Here, S is the finite state-space (|S| = n), A is the finite action-space
(|A| = m), P = {Pa ∈ Rn×n | a ∈ A} is the set of unknown action dependent transition probability
matrices, andR : S ×A 7→ R is the reward function. Since we work with finite state-action spaces,
we can without loss of generality assumeR(s, a) ∈ [0, 1] for all (s, a). See [39] for more details about
MDP. The goal in RL is to find a policy π∗ (aka the optimal policy) that maximizes the expected total
reward. Specifically, the value of a policy π at state s is defined by Vπ(s) = E[

∑∞
k=0 β

krk | S0 = s],
where rk := R(Sk, Ak), and Ak is executed according the policy π. We want to find π∗ so that
Vπ∗(s) ≥ Vπ(s) for all π and s.

The convergence of many classical algorithms for solving the RL problem such as TD-learning (e.g.
TD(0), TD(n), and TD(λ)) and Q-learning relies on the stochastic approximation under contraction
assumption [5]. Therefore, our result is a broad tool to establish the finite-sample error bounds of
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various RL algorithms. We next present a case study on the V-trace algorithm [18] for solving the
policy evaluation problem using off-policy sampling. Our result can also be used to recover the
existing state-of-the-art finite-sample bounds of Q-learning [3, 46] (See Appendix C).

3.2 The V-trace algorithm for off-policy Reinforcement Learning

One popular approach for finding π∗ is through the following iteration: with some initialization policy
π0, for any k ≥ 0, first estimate the value function Vπk , then update the policy to πk+1 with some
strategy (e.g. policy gradient), and repeat this process until πk closely represents π∗. An important
intermediate step here is to estimate Vπ for a given policy π, which is called the policy evaluation
problem [39]. Since we do not have access to the system parameters P , a popular method for solving
the policy evaluation problem is the TD-learning method [42], where one tries to estimate Vπ using
the samples collected from the system.

In off-policy TD-learning algorithms [39], one uses trajectories generated by a behavior policy
π′ 6= π to learn the value function of the target policy π. Off-policy methods are used for three
important reasons in the TD-setting: (a) It is typically necessary to have an exploration component in
the behavior policy π′ which makes it different from the target policy π. (b) It is used in multi-agent
training where various agents collect rewards using a behavior policy that is lagging with respect to
the target policy in an actor-critic framework [18]. (c) One set of samples can be used more than once
to evaluate different target policies, which can leverage acquired data in the past.

Off-policy TD-learning is implemented through importance sampling to obtain an unbiased estimate
of Vπ. However, the variance in the estimate can blow up since the importance sampling ratio can
be very large [20]. Thus, a well-known and fundamental difficulty in off-policy TD-learning with
importance sampling is that of balancing the bias-variance trade-off.

Recently, [18] proposed an off-policy TD-learning algorithm called the V-trace, where they introduced
two truncation levels in the importance sampling weights. Their construction (through two separate
clippers) crucially allows the algorithm to control the bias in the limit (through one clipper), while
the other clipper mainly controls the variance in the estimate. The V-trace algorithm has had a huge
practical impact: it has been implemented in distributed RL architectures and platforms like IMPALA
(a Tensorflow implementation) [18] and TorchBeast (a PyTorch implementation) [25] for multi-agent
training besides being used at scale in a recent Deepmind City Navigation Project “Street Learn” [29].
Given its impact, a theoretical understanding of the effects of the truncation levels on convergence
rate is important for determining how to tune them to improve the performance of V-trace.

In this paper we consider a synchronous version of the V-trace algorithm. Let π′ be a behavior policy
used to collect samples, and let π be the target policy whose value function is to be estimated. We
first initialize V0 ∈ Rn. Given a fixed horizon T > 0, in each iteration k ≥ 0, for each state s ∈ S , a
trajectory {S0, A0, ..., ST , AT } with initial state S0 = s is generated using the behavior policy π′.
Then, the corresponding entry of the estimate Vk is updated according to

Vk+1(s) = Vk(s) + εk

T∑
t=0

βt

t−1∏
j=0

cj

 ρt (rt + βVk(St+1)− Vk(St)) , (5)

where ct = min
(
c̄, π(At|St)
π′(At|St)

)
and ρt = min

(
ρ̄, π(At|St)

π′(At|St)

)
are truncated importance sampling

weights with truncation levels ρ̄ ≥ c̄. Here we use the convention that ct = ρt = 1, and rt = 0
whenever t < 0. In the special case where the behavior policy π′ and the target policy π coincide, and
c̄ ≥ 1, Algorithm (5) boils down to the on-policy multi-step TD-learning update [39]. To simplify the
notation, we denote ca,b =

∏b
t=a ct in the following.

The asymptotic convergence of Algorithm (5) when T =∞ has been established in [18] using the
convergence results of stochastic approximation under contraction assumptions [5, 24]. The quality
of the V-trace limit as a function of ρ̄ and c̄ has also been discussed in [18]. Specifically, ρ̄ alone
determines the limiting value function, and c̄ mainly controls the variance in the estimates {Vk}.
Properties of the V-Trace Algorithm: Our goal is to understand the convergence rate of Algorithm
(5) for any choices of ρ̄ and c̄, which will determine the bias-vs-convergence-rate trade-off. First of
all, when T <∞, similarly as in [18], Algorithm (5) admits the following properties (See Appendix
B.1 for the proof):
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(a) Algorithm (5) can be rewritten (in the vector form) as Vk+1 = Vk + εk(H(Vk)− Vk + wk).
(b) Suppose the behavior policy π′ satisfies the coverage assumption, i.e., {a | π(a|s) > 0} ⊆ {a |

π′(a|s) > 0} for all s ∈ S . Then the mappingH is a contraction w.r.t. ‖ ·‖∞, and the contraction
factor is γ := 1− (1− β) mins∈S

∑T
t=0 β

tEπ′ [c0,t−1ρt | S0 = s] ≤ 1− (1− β)ζ < 1, where
ζ > 0 is a constant.

(c) H has a unique fixed-point Vπρ̄ , where πρ̄(a|s) = min(ρ̄π′(a|s),π(a|s))∑
b∈Amin(ρ̄π′(b|s),π(b|s)) for all (s, a). Note

that when ρ̄ ≥ ρmax := max(s,a)
π(a|s)
π′(s|a) , we have πρ̄ = π. Otherwise the policy πρ̄ is in some

sense between the behavior policy π′ and the target policy π. The difference between Vπρ̄ and
Vπ due to the truncation can be controlled as: ‖Vπρ̄ − Vπ‖∞ ≤ 2

(1−γ)2 ‖πρ̄ − π‖∞.

(d) The noise sequence {wk} satisfies Assumption 2.2 with ‖ · ‖n = ‖ · ‖∞ and A = 32ρ̄2

(1−βc̄)2 when

βc̄ < 1, A = 32ρ̄2(T + 1)2 when βc̄ = 1, and A = 32ρ̄2(βc̄)2T+2

(βc̄−1)2 when βc̄ > 1.

3.3 Finite-sample analysis of the V-trace algorithm

The properties of the V-trace algorithm indicate that Assumptions 2.1 and 2.2 are satisfied for
Algorithm (5). Let us now use our results in Section 2 to establish a finite-sample error bound of
{Vk} and study its dependence on the two truncation levels c̄, ρ̄, and the horizon T . Observe that
‖ · ‖c = ‖ · ‖n = ‖ · ‖∞ in this problem, Corollary 2.3 is applicable. For ease of exposition, here
we only consider the O(1/k) stepsizes, and pick the parameters to ensure that we fall in case (c) of
Corollary 2.2, which has the best convergence rate. The finite-sample error bound for other cases can
be derived similarly. The proof of the followng theorem is presented in Appendix B.2.
Theorem 3.1. Consider {Vk} of Algorithm (5). Suppose that εk = ε

k+K with ε = 4
1−γ and

K = 64(A+2) log |S|
(1−γ)3 . Then we have for all k ≥ 0:

E
[
‖Vk − Vπρ̄‖2∞

]
≤ 1024e2(‖V0 − Vπρ̄‖2∞ + 2‖Vπρ̄‖2∞ + 1)

(A+ 2) log |S|
(1− γ)3

1

k +K
. (6)

To better understand the how the parameters c̄, ρ̄, and T impact the convergence rate. Suppose
we want to find the required number of iterations so that in expectation the distance between xk
and x∗ is less than δ, i.e., kδ = min

{
k ≥ 0 : E[‖xk − x∗‖2∞] ≤ δ

}
. Using Eq. (6) and we have

kδ ≥ 1024e2(‖V0−Vπρ̄‖2∞+2‖Vπρ̄‖2∞+1) (A+2) log |S|
δ(1−γ)3 . We first note that the dimension dependence

of kδ is only log |S|. The parameters c̄, ρ̄, and T impact the convergence rate through A and γ.
Though γ is a decreasing function of c̄, ρ̄, and T , it can be upper bounded by 1 − (1 − β)ζ (see
property (b) of the V-trace algorithm). It follows that the term 1/(1− γ)3 can be bounded above by
1/[(1− β)3ζ3] . Therefore, the main impact comes through the constant A = A(c̄, ρ̄, T ).

From property (d) of the V-trace algorithm, we see that A is a piecewise function of c̄, ρ̄, and T . In all
its cases, ρ̄ appears quadratically in A(c̄, ρ̄, T ). The impact of c̄ and T is more subtle. When βc̄ < 1,
A(c̄, ρ̄, T ) is independent of the horizon T . However, when βc̄ = 1 or βc̄ > 1, A(c̄, ρ̄, T ) increases
either linearly or exponentially in terms of T , which suggests that c̄ < 1/β is a better choice. Such a
small c̄ can lead to the contraction factor γ being close to unity (See property (b)), which increases
the error in Eq. (6). However, since A does not depend on T when c̄ < 1/β, this drawback can be
avoided by increasing the horizon T , which decreases the contraction parameter γ, albeit at the cost
of more samples in each iterate. For a given application, based on the above idea, we can numerically
optimize the parameters (c̄, ρ̄, and T ) to trade-off between contraction factor and variance.

Though we have analyzed the convergence rate of Vk, the limiting value function Vπρ̄ is not the value
function of the target policy π. Note that this bias can be eliminated by choosing ρ̄ ≥ ρmax, provided
that ρmax is finite. However, when the number of state-action pairs is infinite, and when we use
V-trace algorithm along with function approximation, ρmax can be infinity. Studying such a scenario
is one of our future directions.

In summary, we have established the first-known finite-sample error bound of the V-trace algorithm
using our general results on SA in Section 2. Moreover, from the resulting bound (6), we analyzed
how the parameters of the problem (i.e., the two truncation levels c̄, ρ̄, and the horizon T ) impact the
convergence rate, and provided a rule of thumb in tuning them.
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Broader Impact

This work focuses on theoretical results for stochastic approximation, which are then applied for
understanding the properties of Reinforcement Learning algorithms. While RL algorithms have
important societal implications (e.g. in autonomous driving, RL algorithms for network control, etc.),
and thus understanding their performance is important, we believe that the direct ethical consequences
of our work is somewhat limited.
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Appendices
A Proofs of All Technical Results in Section 2

A.1 Proof of Lemma 2.1

(a) The convexity of Mµ,g
f (x) follows from Theorem 2.19 of [1]. Since f(x) is proper, closed,

and convex, g(x) is L – smooth with respect to ‖ · ‖s, we have by [1] Theorem 5.30 (a) that
Mµ,g
f (x) = (f� g

µ )(x) is L
µ – smooth with respect to ‖ · ‖s.

(b) We first derive the upper bound of f(x). By definition of Mµ,g
f (x), we have

Mµ,g
f (x) = min

u∈Rd

{
1

2
‖u‖2c +

1

2µ
‖x− u‖2s

}
≥ min
u∈Rd

{
1

2
‖u‖2c +

`2cs
2µ
‖x− u‖2c

}
(`cs‖ · ‖c ≤ ‖ · ‖s)

≥ min
u∈Rd

{
1

2
‖u‖2c +

`2cs
2µ

(‖x‖c − ‖u‖c)2

}
(Triangle inequality)

= min
y∈R

{
1

2
y2 +

`2cs
2µ

(‖x‖c − y)2

}
(change of variable: y = ‖u‖2c)

= min
y∈R

{(
1

2
+
`2cs
2µ

)
y2 − `2cs

µ
‖x‖cy +

`2cs
2µ
‖x‖2c

}
=

1

2
‖x‖2c

`2cs
µ+ `2cs

(minimum of a quadratic function)

=
`2cs

µ+ `2cs
f(x).

It follows that f(x) ≤
(
1 + µ/`2cs

)
Mµ,g
f (x) for all x. Next we show the lower bound. Similarly,

by definition we have

Mµ,g
f (x) = min

u∈Rd

{
1

2
‖u‖2c +

1

2µ
‖x− u‖2s

}
≤ min
α∈(0,1)

{
1

2
‖αx‖2c +

1

2µ
‖x− αx‖2s

}
(restrict u = αx for α ∈ (0, 1))

≤ 1

2
‖x‖2c min

α∈(0,1)

{
α2 +

(1− α)2u2
cs

µ

}
(‖ · ‖s ≤ ucs‖ · ‖c)

=
u2
cs

u2
cs + µ

1

2
‖x‖2c (minimum of the quadratic function)

=
u2
cs

u2
cs + µ

f(x).

It follows that f(x) ≥
(
1 + µ/u2

cs

)
Mµ,g
f (x) for all x.

(c) It is clear from the definition of Mµ,g
f (x) that it is non-negative and is equal to zero if and only if

x = 0. Now for any α ∈ R, we have

Mµ,g
f (αx) = min

u

{
1

2
‖u‖2c +

1

2µ
‖αx− u‖2s

}
= min

v

{
1

2
‖αv‖2c +

1

2µ
‖αx− αv‖2s

}
(change of variable u = αv)

= |α|2Mµ,g
f (x).
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Thus,
√
Mµ,g
f (αx) = |α|

√
Mµ,g
f (x). It remains to show the Triangle inequality. For any

x1, x1 ∈ Rd, let u1 ∈ arg minu∈Rd{ 1
2‖u‖

2
c + 1

2µ‖x1 − u‖2s} and u2 ∈ arg minu∈Rd{ 1
2‖u‖

2
c +

1
2µ‖x2 − u‖2s}. Then we have

Mµ,g
f (x1 + x2)

= min
u

{
1

2
‖u‖2c +

1

2µ
‖x1 + x2 − u‖2s

}
≤ 1

2
‖u1 + u2‖2c +

1

2µ
‖x1 + x2 − u1 − u2‖2s (choose u = u1 + u2)

≤ 1

2
(‖u1‖c + ‖u2‖c)2 +

1

2µ
(‖x1 − u1‖s + ‖x2 − u2‖s)2

= Mµ,g
f (x1) +Mµ,g

f (x2) + ‖u1‖c‖u2‖c +
1

µ
‖x1 − u1‖s‖x2 − u2‖s

≤Mµ,g
f (x1) +Mµ,g

f (x2) + 2

√
1

2
‖u1‖2c +

1

2µ
‖x1 − u1‖2s

√
1

2
‖u2‖2c +

1

2µ
‖x2 − u2‖2s

= Mµ,g
f (x1) +Mµ,g

f (x2) + 2
√
Mµ,g
f (x1)Mµ,g

f (x2).

It follows that
√
Mµ,g
f (x1 + x2) ≤

√
Mµ,g
f (x1)+

√
Mµ,g
f (x2) for any x1, x2 ∈ Rd. Therefore,

we can write Mµ,g
f (x) as 1

2‖x‖
2
M for some norm ‖ · ‖M .

A.2 Proof of Proposition 2.1

Using Lemma 2.1 (a) and Algorithm (2), we have

Mµ,g
f (xk+1 − x∗) ≤Mµ,g

f (xk − x∗) + 〈∇Mµ,g
f (xk − x∗), xk+1 − xk〉+

L

2µ
‖xk+1 − xk‖2s

= Mµ,g
f (xk − x∗) + εk〈∇Mµ,g

f (xk − x∗),H(xk)− xk〉

+ εk〈∇Mµ,g
f (xk − x∗), wk〉+

Lε2k
2µ
‖H(xk)− xk + wk‖2s.

Taking expectation conditioned on Fk on both side of the previous inequality then using Assumption
2.2 (a), we have

E[Mµ,g
f (xk+1 − x∗) | Fk] ≤Mµ,g

f (xk − x∗) + εk 〈∇Mµ,g
f (xk − x∗),H(xk)− xk〉︸ ︷︷ ︸

E1

+
Lε2k
2µ

E[‖H(xk)− xk + wk‖2s | Fk]︸ ︷︷ ︸
E2

. (7)

We first control the term E1 in the following. Using the fact thatH(x∗) = x∗, we have

E1 = 〈∇Mµ,g
f (xk − x∗),H(xk)−H(x∗)〉︸ ︷︷ ︸

E1,1

−〈∇Mµ,g
f (xk − x∗), xk − x∗〉︸ ︷︷ ︸

E1,2

. (8)

For the gradient of Mµ,g
f (x), since Mµ,g

f (x) = 1
2‖x‖

2
M , we have by the chain rule of subdifferential

calculus (Theorem 3.47 of [1]) that∇Mµ,g
f (x) = ‖x‖Mvx, where vx ∈ ∂‖x‖M is a subgradient of

the function ‖x‖M at x. In fact, from the equation∇Mµ,g
f (x) = ‖x‖Mvx, we see that vx is unique

(i.e., vx = ∇‖x‖M ) for all x 6= 0.

Now consider the term E1,1. Using Hölder’s inequality, we have

E1,1 = ‖xk − x∗‖M 〈vxk−x∗ ,H(xk)−H(x∗)〉
≤ ‖xk − x∗‖M‖vxk−x∗‖∗M‖H(xk)−H(x∗)‖M , (9)

where ‖ · ‖∗M is the dual norm of ‖ · ‖M . To further control E1,1, the following result is needed.
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Lemma A.1 (Lemma 2.6 of [36]). Let h : D → R be a convex function. Then h is L – Lipschitz
over D with respect to norm ‖ · ‖ if and only if for all w ∈ D and z ∈ ∂h(w) we have that ‖z‖∗ ≤ L,
where ‖ · ‖∗ is the dual norm of ‖ · ‖.

Since ‖x‖M as a function of x is 1 – Lipschitz w.r.t. ‖·‖M , we have by Lemma A.1 that ‖vxk−x∗‖∗M ≤
1. For the term ‖H(xk)−H(x∗)‖M in Eq. (9), using Lemma 2.1 (b) and the contraction ofH with
respect to ‖ · ‖c, we have

1

2
‖H(xk)−H(x∗)‖2M = Mµ,g

f (H(xk)−H(x∗))

≤ 1

1 + µ/u2
cs

f(H(xk)−H(x∗)) (Lemma 2.1 (b))

≤ γ2

1 + µ/u2
cs

f(xk − x∗) (Assumption 2.1)

≤ γ2 1 + µ/`2cs
1 + µ/u2

cs

Mµ,g
f (xk − x∗) (Lemma 2.1 (b))

=
γ2

2

1 + µ/`2cs
1 + µ/u2

cs

‖xk − x∗‖2M ,

which implies

‖H(xk)−H(x∗)‖M ≤ γ
(

1 + µ/`2cs
1 + µ/u2

cs

)1/2

‖xk − x∗‖M .

Substituting the upper bounds we obtained for ‖vxk−x∗‖∗M and ‖H(xk) −H(x∗)‖M into Eq. (9),
we have

E1,1 ≤ ‖xk − x∗‖M‖vxk−x∗‖∗M‖H(xk)−H(x∗)‖M

≤ γ
(

1 + µ/`2cs
1 + µ/u2

cs

)1/2

‖xk − x∗‖2M

= 2γ

(
1 + µ/`2cs
1 + µ/u2

cs

)1/2

Mµ,g
f (xk − x∗).

Now consider the term E1,2 in Eq. (8). Since the norm ‖ · ‖M is a convex function of x, we have by
definition of convexity that ‖0‖M − ‖xk − x∗‖M ≥ 〈vxk−x∗ ,−(xk − x∗)〉. Therefore, we have

E1,2 = ‖xk − x∗‖M 〈vxk−x∗ , xk − x∗〉 ≥ ‖xk − x∗‖2M = 2Mµ,g
f (xk − x∗).

Combining the bounds on E1,1 and E1,2, we obtain

E1 = E1,1 − E1,2 ≤ −2

[
1− γ

(
1 + µ/`2cs
1 + µ/u2

cs

)1/2
]
Mµ,g
f (xk − x∗).

We next analyze the term E2 in Eq. (7) in the following:

E2 = E
[
‖H(xk)− xk + wk‖2s | Fk

]
= E

[
‖H(xk)−H(x∗) + x∗ − xk + wk‖2s | Fk

]
(H(x∗) = x∗)

≤ E
[
(‖H(xk)−H(x∗)‖s + ‖xk − x∗‖s + ‖wk‖s)2 | Fk

]
≤ E

[
(ucs‖H(xk)−H(x∗)‖c + ucs‖xk − x∗‖c + uns‖wk‖n)

2 | Fk
]

≤ E
[
(2ucs‖xk − x∗‖c + uns‖wk‖n)

2 | Fk
]

(Assumption 2.1)

≤ 8u2
cs‖xk − x∗‖2c + 2u2

nsE
[
‖wk‖2n | Fk

]
((a+ b)2 ≤ 2(a2 + b2))

≤ 8u2
cs‖xk − x∗‖2c + 2Au2

ns(1 + ‖xk‖2n) (Assumption 2.2 (b))

≤ 8u2
cs‖xk − x∗‖2c +

2Au2
nsu

2
cs

`2ns
(1 + ‖xk‖2c) (ucs ≥ 1 and `ns ≤ 1)
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≤ 8u2
cs‖xk − x∗‖2c +

2Au2
nsu

2
cs

`2ns
(1 + 2‖xk − x∗‖2c + 2‖x∗‖2c)

≤ 4u2
cs

(
2 +

Au2
ns

`2ns

)
‖xk − x∗‖2c +

2Au2
nsu

2
cs

`2ns
(1 + 2‖x∗‖2c)

≤ 8u2
csu

2
ns(A+ 2)

`2ns
f(xk − x∗) +

2Au2
nsu

2
cs

`2ns
(1 + 2‖x∗‖2c)

≤ 8u2
csu

2
ns(A+ 2)(`2cs + µ)

`2cs`
2
ns

Mµ,g
f (xk − x∗) +

2Au2
nsu

2
cs

`2ns
(1 + 2‖x∗‖2c). (Lemma 2.1 (b))

Substituting the upper bounds we obtained for the terms E1 and E2 into Eq. (7), we finally have for
all k ≥ 0:

E[Mµ,g
f (xk+1 − x∗) | Fk]

≤

{
1− 2

[
1− γ

(
1 + µ/`2cs
1 + µ/u2

cs

)1/2
]
εk +

4u2
csu

2
ns(A+ 2)L(`2cs + µ)

µ`2cs`
2
ns

ε2k

}
Mµ,g
f (xk − x∗)

+
ALu2

nsu
2
csε

2
k

µ`2ns
(1 + 2‖x∗‖2c)

= (1− 2α2εk + α3ε
2
k)Mµ,g

f (xk − x∗) +
α4(1 + 2‖x∗‖2c)

2(1 + µ/`2cs)
ε2k.

A.3 Proof of Theorem 2.1

We begin with Eq. (3) of Proposition 2.1. When ε0 ≤ α2/α3, we have by monotonicity of {εk} that:

E[Mµ,g
f (xk+1 − x∗) | Fk] ≤ (1− α2εk)Mµ,g

f (xk − x∗) +
α4(1 + 2‖x∗‖2c)

2(1 + µ/`2cs)
ε2k

for all k ≥ 0. Taking the total expectation on both side of the previous inequality and then recursively
using it, we obtain

E[Mµ,g
f (xk − x∗)] ≤

k−1∏
j=0

(1− α2εj)M
µ,g
f (x0 − x∗) +

α4(1 + 2‖x∗‖2c)
2(1 + µ/`2cs)

k−1∑
i=0

ε2i

k−1∏
j=i+1

(1− α2εj).

The above inequality is the finite-sample bounds of Mµ,g
f (xk − x∗). To write it in terms of the

original norm square ‖xk − x∗‖2c , using Lemma 2.1 (b) one more time and we finally obtain

E
[
‖xk − x∗‖2c

]
≤ α1‖x0 − x∗‖2c

k−1∏
j=0

(1− α2εj) + α4(1 + 2‖x∗‖2c)
k−1∑
i=0

ε2i

k−1∏
j=i+1

(1− α2εj)

for all k ≥ 0.

A.4 Proof of Corollary 2.1

We begin with Eq. (4) of Theorem 2.1. When εk = ε ≤ α2/α3 for all k ≥ 0, we have

E
[
‖xk − x∗‖2c

]
≤ α1‖x0 − x∗‖2c

k−1∏
j=0

(1− α2εj) + α4(1 + 2‖x∗‖2c)
k−1∑
i=0

ε2i

k−1∏
j=i+1

(1− α2εj)

= α1‖x0 − x∗‖2c(1− α2ε)
k + α4(1 + 2‖x∗‖2c)ε2

k−1∑
i=0

(1− α2ε)
k−i−1

≤ α1‖x0 − x∗‖2c(1− α2ε)
k + (1 + 2‖x∗‖2c)

α4ε

α2
.

16



A.5 Proof of Corollary 2.2

We begin with Eq. (4)

E
[
‖xk − x∗‖2c

]
≤ α1‖x0 − x∗‖2c

k−1∏
j=0

(1− α2εj)︸ ︷︷ ︸
T1

+α4(1 + 2‖x∗‖2c)
k−1∑
i=0

ε2i

k−1∏
j=i+1

(1− α2εj)︸ ︷︷ ︸
T2

.

We next evaluate the terms T1 and T2 for different values of ξ and ε.

A.5.1 The term T1

Using the expression for εk and the relation that ex ≥ 1 + x for all x ∈ R, we have

T1 =

k−1∏
j=0

(1− α2εj) =

k−1∏
j=0

(
1− α2ε

(j +K)ξ

)
≤ exp

(
−α2ε

k−1∑
i=0

1

(j +K)ξ

)
.

Since the inequality
∫ b+1

a
h(x)dx ≤

∑b
n=a h(n) ≤

∫ b
a−1

h(x)dx holds for any non-increasing
function h(x), we have

T1 ≤ exp

(
−α2ε

∫ k

0

1

(x+K)ξ
dx

)
≤



(
K

k +K

)α2ε

, ξ = 1,

exp

[
− α2ε

1− ξ
(
(k +K)1−ξ −K1−ξ)] , ξ ∈ (0, 1).

A.5.2 The term T2

When ξ = 1, using the expression of εk, we have

T2 =

k−1∑
i=0

ε2i

k−1∏
j=i+1

(1− α2εj)

= ε2
k−1∑
i=0

1

(i+K)2

k−1∏
j=i+1

(
1− α2ε

j +K

)

= ε2
k−1∑
i=0

1

(i+K)2
exp

−α2ε

k−1∑
j=i+1

1

j +K


≤ ε2

k−1∑
i=0

1

(i+K)2
exp

(
−α2ε

∫ k

i+1

1

x+K
dx

)

≤ ε2
k−1∑
i=0

1

(i+K)2

(
i+ 1 +K

k +K

)α2ε

≤ 4ε2

(k +K)α2ε

k−1∑
i=0

1

(i+ 1 +K)2−α2ε
,

where the last line follows from(
i+ 1 +K

i+K

)2

≤
(
K + 1

K

)2

≤ 4.

We next consider the quantity
k−1∑
i=0

1

(i+ 1 +K)2−α2ε
,

whose upper bounds depend on the relation between α2ε and 2. Using the same technique as before,
i.e., bounding the summation by its corresponding integral, we have the following results.
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(1) When ε ∈ (0, 1/α2), we have
∑k−1
i=0

1
(i+1+K)2−α2ε

≤ 1
1−α2ε

.

(2) When ε = 1/α2, we have
∑k−1
i=0

1
i+1+K ≤ log(k +K).

(3) When ε ∈ (1/α2, 2/α2), we have
∑k−1
i=0

1
(i+1+K)2−α2ε

≤ 1
α2ε−1 (k +K)α2ε−1.

(4) When ε = 2/α2, we have
∑k−1
i=0

1
(i+1+K)0 = k.

(5) when ε > 2/α2, we have
∑k−1
i=0

1
(i+1+K)2−α2ε

≤ e
α2ε−1 (k +K)α2ε−1.

Combine the above five cases together and we have when ξ = 1:

T2 ≤
4ε2

(k +K)α2ε

k−1∑
i=0

1

(i+ 1 +K)2−α2ε
≤



4ε2

1− α2ε

1

(k +K)α2ε
, ε ∈ (0, 1/α2),

4ε2
log(k +K)

k +K
, ε = 1/α2,

4eε2

α2ε− 1

1

k +K
, ε ∈ (1/α2,∞).

When ξ ∈ (0, 1), the approach we used earlier does not work because the integral we used to bound
the sum does not admit a clean analytical expression. Here we present one way to evaluate T2 based
on induction. Consider the sequence {uk}k≥0 defined by

u0 = 0, uk+1 = (1− α2εk)uk + ε2k, ∀ k ≥ 0.

It can be easily verified that uk =
∑k−1
i=0 ε

2
i

∏k−1
j=i+1(1 − α2εj) = T2. We next use induction

on uk to show that when k ≥ max(0, [2ξ/(α2ε)]
1/(1−ξ) − K), we have uk ≤ 2ε

α2

1
(k+K)ξ

. Since
u0 = 0 ≤ 2ε

α2

1
Kξ , we have the base case. Now suppose uk ≤ 2ε

α2

1
(k+K)ξ

for some k > 0. Consider
uk+1. We have

2ε

α2

1

(k + 1 +K)ξ
− uk+1

=
2ε

α2

1

(k + 1 +K)ξ
− (1− α2εk)uk − ε2k

≥ 2ε

α2

1

(k + 1 +K)ξ
−
(

1− α2ε

(k +K)ξ

)
2ε

α2

1

(k +K)ξ
− ε2

(k +K)2ξ

=
2ε

α2

[
1

(k + 1 +K)ξ
− 1

(k +K)ξ
+
α2ε

2

1

(k +K)2ξ

]
=

2ε

α2

1

(k +K)2ξ

[
α2ε

2
− (k +K)ξ

(
1−

(
k +K

k + 1 +K

)ξ)]
.

Note that(
k +K

k + 1 +K

)ξ
=

[(
1 +

1

k +K

)k+K
]− ξ

k+K

≥ exp

(
− ξ

k +K

)
≥ 1− ξ

k +K
,

where we used (1 + 1
x )x < e for all x > 0 and ex ≥ 1 + x for all x ∈ R. Therefore, we obtain

2ε

α2

1

(k + 1 +K)ξ
− uk+1 =

2ε

α2

1

(k +K)2ξ

[
α2ε

2
− (k +K)ξ

(
1−

(
k +K

k + 1 +K

)ξ)]

≥ 2ε

α2

1

(k +K)2ξ

[
α2ε

2
− ξ

(k +K)1−ξ

]
≥ 0,

where the last line follows from K ≥ [2ξ/(α2ε)]
1/(1−ξ). The induction is now complete, and we

have T2 ≤ 2ε
α2

1
(k+K)ξ

for all k ≥ 0.

Finally, combine the results in Subsections A.5.1 and A.5.2, we have the finite-sample error bounds
given in Corollary 2.2.
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A.6 Proof of Corollary 2.3

When ‖ · ‖c = ‖ · ‖n = ‖ · ‖∞, we choose the smoothing function as g(x) = 1
2‖x‖

2
p with p ≥ 2. It is

known that g(x) is (p− 1) – smooth w.r.t. ‖ · ‖p (Example 5.11 [1]). Moreover, we have in this case
`cs = `ns = 1 and ucs = uns = d1/p. It follows that

α1 =
1 + µ

1 + µ/d2/p
, α2 = 1− γ

(
1 + µ

1 + µ/d2/p

)1/2

,

α3 = 4d4/p(p− 1)(1 + 1/µ)(A+ 2), α4 = 2d4/p(p− 1)(1 + 1/µ)A. (10)

Note that α3 and α4 are both proportional to d4/p(p− 1). Let h(p) = d4/p(p− 1). Assume without
loss of generality that d ≥ 2, then we have minp≥2 h(p) ≤ h(4 log(d)) ≤ 4e log(d). Hence, with
p = 4 log(d), the dimension dependence of α3 and α4 is log(d).

Now for the choice of µ, observe that α1 and α2 are in favor of small µ, while α3 and α3 are in favor
of large µ. To balance the effect, we choose µ = (1/2 + 1/2γ)2 − 1. Note that this choice of µ gives

1 +
1

µ
=

(1 + γ)2

(γ + 1)2 − 4γ2
=

(1 + γ)2

(1− γ)(1 + 3γ)
≤ 1 + γ

1− γ
≤ 2

1− γ
.

Substituting p = 4 log(d) and µ = (1/2 + 1/2γ)2 − 1 into Eq. (10), we obtain

α1 =
1 + µ

1 + µ/d2/p
=
√
e

1 + µ√
e+ µ

≤
√
e ≤ 3

2
,

α2 = 1− γ(
1 + µ

1 + µ/d2/p
)1/2 ≥ 1− γ(1 + µ)1/2 =

1− γ
2

,

α3 = 4(1 + 1/µ)(A+ 2)d4/p(p− 1) ≤ 32e(A+ 2) log(d)

1− γ
,

α4 = 2(1 + 1/µ)Ad4/p(p− 1) ≤ 16eA log(d)

1− γ
.

B Proofs of All Technical Results in Section 3

B.1 Properties of the V-trace algorithm

The ideas for the proofs in (a) - (d) (and Lemma B.1) are essentially the same as in [18], we include
them here for completeness.

(a) Algorithm (5) can be rewritten in the following way:

Vk+1(s) = Vk(s) + εk

T∑
t=0

βtc0,t−1ρt (rt + βVk(St+1)− Vk(St))

= Vk(s) + εk

{
T∑
t=0

βtc0,t−1ρt (rt + βVk(St+1)− Vk(St)) + Vk(s)− Vk(s)

}
= Vk(s) + εk ([H(Vk)](s)− Vk(s) + wk(s)) ,

where

[H(V )](s) = Eπ′
[
T∑
t=0

βtc0,t−1ρt (rt + βV (St+1)− V (St))

∣∣∣∣∣ S0 = s

]
+ V (s),

and

wk(s) =

T∑
t=0

βtc0,t−1ρt(rt + βVk(St+1)− Vk(St)) + Vk(s)− [H(Vk)](s).

Hence we have Vk+1 = Vk + εk (H(Vk)− Vk + wk).
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(b) We begin by rewriting the operatorH in the following way:

[H(V )](s) = Eπ′
[ T+1∑
t=0

βt−1c0,t−2(ρt−1rt−1 + β(ρt−1 − ct−1ρt)V (St))

+ βT+1c0,T ρT+1V (ST+1)

∣∣∣∣ S0 = s

]
.

For any V1, V2 : Rn 7→ R and s ∈ S, we have

[HV1](s)− [HV2](s)

= Eπ′
[
T+1∑
t=0

βtc0,t−2(ρt−1 − ct−1ρt)(V1(St)− V2(St))

∣∣∣∣ S0 = s

]

+ Eπ′
[
βT+1c0,T ρT+1(V1(ST+1)− V2(ST+1))

∣∣∣∣ S0 = s

]
≤

T+1∑
t=0

βtEπ′
[
c0,t−2(ρt−1 − ct−1ρt)(V1(St)− V2(St))

∣∣∣∣ S0 = s

]
(11)

+ βT+1Eπ′ [c0,T ρT+1 | S0 = s] ‖V1 − V2‖∞.

Since ρ̄ ≥ c̄, we have ρt ≥ ct for all t. Therefore, using the Markov property and we have

Eπ′ [ρt−1 − ct−1ρt | Ft] ≥ ct−1 (1− Eπ′ [ρt | Ft])

≥ ct−1

(
1−

∑
b∈A

π′(b|St)
π(b|St)
π′(b|St)

)
= 0, (12)

where Ft denotes the σ-algebra generated by {S0, A0, ..., St−1, At−1, St}. It follows that

T+1∑
t=0

βtEπ′
[
c0,t−2(ρt−1 − ct−1ρt)(V1(St)− V2(St))

∣∣∣∣ S0 = s

]

=

T+1∑
t=0

βtEπ′
[
Eπ′

[
c0,t−2(ρt−1 − ct−1ρt)(V1(St)− V2(St))

∣∣∣∣Ft] ∣∣∣∣ S0 = s

]

=

T+1∑
t=0

Eπ′
[
Eπ′

[
c0,t−2(ρt−1 − ct−1ρt)

∣∣∣∣Ft] (V1(St)− V2(St))

∣∣∣∣ S0 = s

]

≤
T+1∑
t=0

βtEπ′
[
Eπ′

[
c0,t−2(ρt−1 − ct−1ρt)

∣∣∣∣Ft] ∣∣∣∣ S0 = s

]
‖V1 − V2‖∞

=

T+1∑
t=0

βtEπ′
[
c0,t−2(ρt−1 − ct−1ρt)

∣∣∣∣S0 = s

]
‖V1 − V2‖∞.

Using the previous result in Eq. (11) and we have

[HV1](s)− [HV2](s)

≤
T+1∑
t=0

βtEπ′
[
c0,t−2(ρt−1 − ct−1ρt)(V1(St)− V2(St))

∣∣∣∣ S0 = s

]
+ βT+1Eπ′ [c0,T ρT+1 | S0 = s] ‖V1 − V2‖∞

≤
{ T+1∑
t=0

βtEπ′
[
c0,t−2(ρt−1 − ct−1ρt)

∣∣∣∣S0 = s

]
+ βT+1Eπ′ [c0,T ρT+1 | S0 = s]

}
‖V1 − V2‖∞.
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Switching the role between V1 and V2, then we have by symmetry that
|[HV1](s)− [HV2](s)|

≤

{
T+1∑
t=0

βtEπ′ [c0,t−2(ρt−1 − ct−1ρt) | S0 = s] + βT+1Eπ′ [c0,T ρT+1 | S0 = s]

}
︸ ︷︷ ︸

γ(s)

× ‖V1 − V2‖∞.
To show thatH is a contraction w.r.t. ‖ · ‖∞, it remains to show that γ(s) < 1 for all s ∈ S . Note
that

γ(s) =

T+1∑
t=0

βtEπ′ [c0,t−2 (ρt−1 − ct−1ρt) | S0 = s] + βT+1Eπ′ [c0,T ρT+1 | S0 = s]

=

T+1∑
t=0

βtEπ′ [c0,t−2ρt−1 | S0 = s]−
T+1∑
t=0

βtEπ′ [c0,t−1ρt | S0 = s]

+ Eπ′
[
βT+1c0,T ρT+1 | S0 = s

]
= 1 +

T∑
t=0

βt+1Eπ′ [c0,t−1ρt | S0 = s]−
T∑
t=0

βtEπ′ [c0,t−1ρt | S0 = s]

= 1− (1− β)

T∑
t=0

βtEπ′ [c0,t−1ρt | S0 = s]

≤ 1− (1− β) min
s∈S

T∑
t=0

βtEπ′ [c0,t−1ρt | S0 = s]

= γ.

Let ζ := mins∈S
∑T
t=0 β

tEπ′ [c0,t−1ρt | S0 = s], we next show ζ > 0. Using the coverage
assumption (i.e., {a | π(a|s) > 0} ⊆ {a | π′(a|s) > 0} for all s ∈ S), we have

ζ ≥ min
s∈S

Eπ′ [ρ0 | S0 = s]

= min
s∈S

∑
a:π′(a|s)>0

min (ρ̄π′(a|s), π(a|s))

≥ min
s∈S

∑
a:π(a|s)>0

min (ρ̄π′(a|s), π(a|s))

> 0.

It follows that γ = 1− (1− β)ζ < 1.
(c) It is enough to show that Vπρ̄ is a fixed-point ofH, the uniqueness part follows from the Banach

fixed-point theorem [15]. For any t ∈ [0, T ], we have
Eπ′

[
ρt
(
rt + βVπρ̄(St+1)− Vπρ̄(St)

)
| St
]

=
∑
a∈A

π′(a|St) min

(
ρ̄,
π(a|St)
π′(a|St)

)(
R(St, a) + β

∑
i′∈S

Pa(St, s
′)Vπρ̄(s

′)− Vπρ̄(St)

)

=
∑
a∈A

πρ̄(a|St)

[
R(St, a)+β

∑
i′∈S

Pa(St, s
′)Vπρ̄(s

′)−Vπρ̄(St)

]∑
b∈A

min(ρ̄π′(b|St), π(b|St))

=0,

where the last line follows from the Bellman’s equation for Vπρ̄ . Therefore, using the tower
property of the conditional expectation and the Markov property, we haveH(Vπρ̄) = Vπρ̄ , hence
Vπρ̄ is a fixed-point ofH.
We next analyze the difference between Vπρ̄ and Vπ in terms of πρ̄ and π. We first show in the
following lemma that the value function as a function of its corresponding policy is Lipschitz
continuous.
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Lemma B.1. For any two policies π1 and π2, their corresponding value functions Vπ1 and Vπ2

satisfy ‖Vπ1 − Vπ2‖∞ ≤ 2
(1−γ)2 ‖π1 − π2‖∞.

Proof of Lemma B.1. Note that for any policy π, its corresponding value function Vπ satisfies
the following Bellman’s equation:

Vπ = Rπ + γPπVπ, (13)

where Rπ(s) =
∑
a∈A π(a|s)R(s, a) for all s ∈ S , and Pπ(s, s′) =

∑
a∈A π(a|s)Pa(s, s′) for

any s, s′ ∈ S. Using Eq. (13) for Vπ1 and Vπ2 , and we have

Rπ1
−Rπ2

= (I − γPπ1
)Vπ1

− (I − γPπ2
)Vπ2

= (I − γPπ1
)Vπ1

− (I − γPπ1
)Vπ2

+ (I − γPπ1
)Vπ2

− (I − γPπ2
)Vπ2

= (I − γPπ1
)(Vπ1

− Vπ2
)− γ(Pπ1

− Pπ2
)Vπ2

.

Since the matrix I − γPπ is invertible for any policy π [6], we have

‖Vπ1
− Vπ2

‖∞ = ‖(I − γPπ1
)−1[(Rπ1

−Rπ2
) + γ(Pπ1

− Pπ2
)Vπ2

]‖∞
≤ ‖(I − γPπ1)−1‖∞ [‖Rπ1 −Rπ2‖∞ + γ‖Pπ1 − Pπ2‖∞‖Vπ2‖∞] . (14)

We next control all the terms on the r.h.s. of the preceding inequality. For the term ‖(I −
γPπ1)−1‖∞, we have by definition of the matrix sup-norm that

‖(I − γPπ1
)−1‖−1

∞ = inf
‖x‖∞=1

‖(I − γPπ1
)x‖∞

≥ inf
‖x‖∞=1

‖x‖∞ − γ‖Pπ1
x‖∞

= 1− γ sup
‖x‖∞=1

‖Pπ1
x‖∞

= 1− γ.

It follows that ‖(I − γPπ1
)−1‖∞ ≤ 1

1−γ . Next, for the term ‖Rπ1
−Rπ2

‖∞, we have

‖Rπ1
−Rπ2

‖∞ = max
s∈S
|Rπ1

(s)−Rπ2
(s)|

= max
s∈S
|
∑
a∈A

(π1(a|s)− π2(a|s)R(s, a)|

≤ max
s∈S

∑
a∈A
|π1(a|s)− π2(a|s)| (R(s, a) ∈ [0, 1])

= ‖π1 − π2‖∞.

Finally we consider the term ‖Pπ1−Pπ2‖∞‖Vπ2‖∞. It is clear that ‖Vπ2‖∞ ≤
∑∞
k=0 γ

k = 1
1−γ .

For ‖Pπ1 − Pπ2‖∞, we have

‖Pπ1
− Pπ2

‖∞ = max
s∈S

∑
s′∈S
|Pπ1

(s, s′)− Pπ2
(s, s′)|

= max
s∈S

∑
s′∈S
|
∑
a∈A

(π1(a|s)− π2(a|s))Pa(s, s′)|

≤ max
s∈S

∑
s′∈S

∑
a∈A
|(π1(a|s)− π2(a|s))Pa(s, s′)|

= max
s∈S

∑
a∈A

∑
s′∈S
|(π1(a|s)− π2(a|s))Pa(s, s′)|

= max
s∈S

∑
a∈A
|π1(a|s)− π2(a|s)|

= ‖π1 − π2‖∞.

Using the upper bounds we obtained for the terms on the r.h.s. of Eq. (14), we have

‖Vπ1
− Vπ2

‖∞ ≤ ‖(I − γPπ1
)−1‖∞ [‖Rπ1

−Rπ2
‖∞ + γ‖Pπ1

− Pπ2
‖∞‖Vπ2

‖∞]
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≤ 1

1− γ

[
‖π1 − π2‖∞ +

1

1− γ
‖π1 − π2‖∞

]
≤ 2

(1− γ)2
‖π1 − π2‖∞.

Using Lemma B.1 on Vπρ̄ and Vπ , we have

‖Vπρ̄ − Vπ‖∞ ≤
2

(1− γ)2
‖πρ̄ − π‖∞.

As a remark, combining the previous inequality with Theorem 3.1 gives

E
[
‖Vk − Vπ‖2∞

]
≤ 2E

[
‖Vk − Vπρ̄‖2∞

]
+ 2‖Vπ − Vπρ̄‖2∞

≤ 2048e2(‖V0 − Vπρ̄‖2∞ + 2‖Vπρ̄‖2∞ + 1)
(A+ 2) log |S|

(1− γ)3

1

k +K
+

8

(1− γ)4
‖πρ̄ − π‖2∞.

(d) In the setting of Algorithm (5), Fk contains all the information in the first (k − 1) sets of
trajectories. Since the k-th set of trajectories are generated independent of the previous ones,
conditioning on Fk simply means that Vk is given. Therefore, by definition of {wk}, we have
E[wk | Fk] = H(Vk)−H(Vk) = 0. Moreover, we have for all s ∈ S:

|wk(s)| =

∣∣∣∣∣
T∑
t=0

βtc0,t−1ρt (rt + βVk(St+1)− Vk(St)) + Vk(s)− [H(Vk)](s)

∣∣∣∣∣
≤ 2

T∑
t=0

(βc̄)tρ̄ (1 + (β + 1)‖Vk‖∞)

≤ 4ρ̄(1 + ‖Vk‖∞)

T∑
t=0

(βc̄)t

≤


4ρ̄(1 + ‖Vk‖∞)

1

1− βc̄
, when βc̄ < 1,

4ρ̄(1 + ‖Vk‖∞)(T + 1), when βc̄ = 1,

4ρ̄(1 + ‖Vk‖∞)
(βc̄)T+1

βc̄− 1
, when βc̄ > 1.

Therefore, we have Eπ′
[
‖wk‖2∞ | Fk

]
≤ A(1 + ‖Vk‖2∞), where

A =



32ρ̄2

(1− βc̄)2
, when βc̄ < 1,

32ρ̄2(T + 1)2, when βc̄ = 1,

32ρ̄2(βc̄)2T+2

(βc̄− 1)2
, when βc̄ > 1.

B.2 Proof of Theorem 3.1

Since we have in this case ‖ · ‖c = ‖ · ‖n = ‖ · ‖∞, Corollary 2.3 is applicable. Let g(x) = 1
2‖x‖

2
p

with p = 4 log |S|, and let µ = (1/2 + 1/(2γ))2 − 1. Then we have

α1 ≤
3

2
:= ᾱ1, α2 ≥

1− γ
2

:= ᾱ2

α3 ≤
32e(A+ 2) log |S|

1− γ
:= ᾱ3, α4 ≤

16eA log |S|
1− γ

:= ᾱ4.

Using Theorem 2.1, with εk = ε/(k +K), we have that

E
[
‖Vk − Vπρ̄‖2∞

]
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≤ α1‖V0 − Vπρ̄‖2∞
k−1∏
j=0

(1− α2εj) + α4(1 + 2‖Vπρ̄‖2∞)

k−1∑
i=0

ε2i

k−1∏
j=i+1

(1− α2εj)

≤ ᾱ1‖V0 − Vπρ̄‖2∞
k−1∏
j=0

(1− ᾱ2εj) + ᾱ4(1 + 2‖Vπρ̄‖2∞)

k−1∑
i=0

ε2i

k−1∏
j=i+1

(1− ᾱ2εj).

Now, using the same proof that leads us from Theorem 2.1 to Corollary 2.2 with α1 to α4 replaced
by ᾱ1 to ᾱ4, we have when ξ = 1, ε = 2/ᾱ2, and K = ᾱ3/ᾱ2 (the third case of Corollary 2.2):

E
[
‖Vk − Vπρ̄‖2∞

]
≤ ᾱ1‖V0 − Vπρ̄‖2∞

(
K

k +K

)εᾱ2

+
4eε2ᾱ4

ᾱ2ε− 1

(1 + 2‖Vπρ̄‖2∞)

k +K

≤
(

2ᾱ1ᾱ3‖V0 − Vπρ̄‖2∞ + 16eᾱ4(1 + 2‖Vπρ̄‖2∞)

ᾱ2
2

)
1

k +K
.

Since

2ᾱ1ᾱ3‖V0 − Vπρ̄‖2∞ + 16eᾱ4(1 + 2‖Vπρ̄‖2∞)

ᾱ2
2

=
4

(1− γ)2

[
96e(A+ 2) log |S|‖V0 − Vπρ̄‖2∞

(1− γ)
+

256e2A log |S|(1 + 2‖Vπρ̄‖2∞)

(1− γ)

]
≤

1024e2(A+ 2) log |S|(‖V0 − Vπρ̄‖2∞ + 2‖Vπρ̄‖2∞ + 1)

(1− γ)3
,

we have for all k ≥ 0:

E
[
‖Vk − Vπρ̄‖2∞

]
≤ 1024e2(‖V0 − Vπρ̄‖2∞ + 2‖Vπρ̄‖2∞ + 1)

(A+ 2) log |S|
(1− γ)3

1

k +K
.

C Finite-sample analysis of Q-learning

We begin by introducing the Q-function and the Q-learning algorithm [47]. Define the optimal
state-action value function Q∗ : S ×A 7→ R by

Q∗(s, a) = Eπ∗
[ ∞∑
k=0

βkrk

∣∣∣∣ S0 = s,A0 = a

]
for all state-action pairs (s, a), where Ak is sampled from the optimal policy π∗(·|Sk) for all k ≥ 1.
It was shown that Q∗ uniquely verifies the following Bellman’s equation [6, 5]:

Q∗(s, a) = R(s, a) + βE
[
max
a′∈A

Q∗(s′, a′)

∣∣∣∣ s, a] , ∀ (s, a).

Moreover, we have π∗(s) ∈ arg maxa∈AQ
∗(s, a). Since the optimal policy π∗ can be directly

computed based the optimal Q-function, it is enough to estimate Q∗, which is done by the Q-learning
algorithm.

Consider the following Q-learning algorithm (in the synchronous setting) of [47]: first initialize
Q0 ∈ R|S||A|, then at each time step, sample from each state-action pair (s, a) its successor state s′,
and update the estimate Qk of Q∗ according to

Qk+1(s, a) = Qk(s, a) + εk

(
rk + βmax

a′∈A
Qk(s′, a′)−Qk(s, a)

)
, ∀ (s, a). (15)

Let H : R|S||A| 7→ R|S||A| be defined by: [H(Q)](s, a) = R(s, a) + βE[maxa′∈AQ(s′, a′) | s, a]
for any function Q : R|S||A| 7→ R. We can rewrite Algorithm (15) in the vector form as

Qk+1 = Qk + εk (H(Qk)−Qk + wk) ,
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wherewk(s, a) = R(Sk, Ak)+βmaxa′∈AQk(s′, a′)−[H(Qk)](s, a). We next show the contraction
property ofH. For any Q1, Q2 : R|S||A| 7→ R, we have for any state-action pairs (s, a):

|[H(Q1)](s, a)− [H(Q2)](s, a)| ≤ βE
[ ∣∣∣∣max

a′∈A
Q1(s′, a′)−max

a′∈A
Q2(s′, a′)

∣∣∣∣ ∣∣∣∣ s, a]
≤ βE

[
max
a′∈A

|Q1(s′, a′)−Q2(s′, a′)|
∣∣∣∣ s, a]

≤ β‖Q1 −Q2‖∞.

Hence H is a β-contraction w.r.t. ‖ · ‖∞. The fact that Q∗ is the unique fixed-point of H follows
from the Bellman’s equation for Q∗. For the noise {wk}, due to the Markov property we have
E [wk | Fk] = 0, where Fk contains all the information up to the k-th iteration. Moreover, since
|wk(s, a)| ≤ 2β‖Qk‖∞ ≤ 2(1 + ‖Qk‖∞), we have E

[
‖wk‖2∞ | Fk

]
≤ 8(1 + ‖Qk‖2∞). To

summarize, the Q-learning algorithm has the following properties:

(a) Algorithm (15) can be rewritten (in vector form) as Qk+1 = Qk + εk (H(Qk)−Qk + wk).

(b) The mappingH is a β-contraction w.r.t. ‖ · ‖∞ with unique fixed-point Q∗.

(c) {wk} satisfies Assumption 2.2 with ‖ · ‖n = ‖ · ‖∞ and A = 8.

Therefore, Assumptions 2.1 and 2.2 are satisfied and Theorem 2.1 is applicable. To compare our
result with existing literature [3, 46], we will apply Corollary 2.1 and Corollary 2.2 case (c) (which
gives the optimal asymptotic rate) to obtain the finite-sample error bounds for Q-learning.

Theorem C.1. Consider {Qk} of Algorithm (15). Suppose that εk = ε ≤ (1−β)2

640e log(|S||A|) for all
k ≥ 0. Then we have for all k ≥ 0:

E
[
‖Qk −Q∗‖2∞

]
≤ 3

2
‖Q0 −Q∗‖2∞

[
1− (1− β)ε

2

]k
+ (1 + 2‖Q∗‖2∞)

256e log(|S||A|)ε
(1− β)2

.

Proof of Theorem C.1. Using Corollary 2.3, letting g(x) = 1
2‖x‖

2
p with p = 4 log(|S||A|) and

µ = (1/2 + 1/(2β))2 − 1, we have in this problem

α1 ≤
3

2
:= ᾱ1, α2 ≥

1− β
2

:= ᾱ2

α3 ≤
320e log(|S||A|)

1− β
:= ᾱ3, α4 ≤

128e log(|S||A|)
1− β

:= ᾱ4.

Applying Corollary 2.1 with ε ≤ ᾱ2/ᾱ3 ≤ α2/α3, we have

E
[
‖Qk −Q∗‖2∞

]
≤ α1‖Q0 −Q∗‖2∞(1− α2ε)

k + α4ε(1 + 2‖Q∗‖2∞)/α2

≤ ᾱ1‖Q0 −Q∗‖2∞(1− ᾱ2ε)
k + ᾱ4ε(1 + 2‖Q∗‖2∞)/ᾱ2

=
3

2
‖Q0 −Q∗‖2∞

[
1− 1

2
(1− β) ε

]k
+

256e log(|S||A|)(1 + 2‖Q∗‖2∞)

(1− β)2
ε.

Theorem C.1 agrees with [3] (Theorem 2.1) in that the iterates {Qk} converge exponentially fast to a
ball centered at Q∗ with radius proportional to the stepsize ε. However, with our approach, we get the
dimensional dependence that scales as log(|S||A|) as compared to (|S||A|)2 in [3].

We next consider using diminishing stepsizes.

Theorem C.2. Consider {Qk} of Algorithm (15). Suppose that εk = ε/(k +K) with ε = 4
1−β and

K = 640e log(|S||A|)
(1−β)3 . Then we have for all k ≥ 0:

E
[
‖Qk −Q∗‖2∞

]
≤ 8192e2(1 + 2‖Q∗‖2∞ + ‖Q0 −Q∗‖2∞)

log(|S||A|)
(1− β)3

1

k +K
.
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Proof of Theorem C.2. With the same choices of the function g(x) and µ given in the proof of
Theorem C.1, we have

α1 ≤
3

2
:= ᾱ1, α2 ≥

1− β
2

:= ᾱ2

α3 ≤
320e log(|S||A|)

1− β
:= ᾱ3, α4 ≤

128e log(|S||A|)
1− β

:= ᾱ4.

Therefore, when εk = ε/(k + K) with ε = 2
ᾱ2

= 4
1−β and K = ᾱ3

ᾱ2
= 640e log |S||A|

(1−β)3 , we have by
Corollary 2.2 (c) that

E
[
‖Qk −Q∗‖2∞

]
≤ α1‖Q0 −Q∗‖2∞

(
K

k +K

)α2ε

+
4eε2α4(1 + 2‖Q∗‖2∞)

α2ε− 1

1

k +K

≤ ᾱ1‖Q0 −Q∗‖2∞
(

K

k +K

)ᾱ2ε

+
4eε2ᾱ4(1 + 2‖Q∗‖2∞)

ᾱ2ε− 1

1

k +K

≤ 8192e2(1 + 2‖Q∗‖2∞ + ‖Q0 −Q∗‖2∞)
log(|S||A|)
(1− β)3

1

k +K
.

The error bound in Theorem C.2 is similar to Corollary 3 of [46] where the dimension dependence
appears as log(|S||A|) in the bound and the rate of convergence is O(1/k). However, to derive such
result, besides a similar contraction property ofH, [46] also used the monotonicity property ofH,
and the fact that the iterates of Q-learning are uniformly bounded. Therefore, our approach is more
general in that we need only the contraction property, and weaker noise assumptions.
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