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A Background information

For ease of reference, in this Section we recap the three key theoretical ingredients used to build
the Variational Bayesian Monte Carlo (VBMC) framework, that is variational inference, Gaussian
processes and adaptive Bayesian quadrature. The material presented here is largely based and expands
on the “theoretical background” section of [1].

A.1 Variational inference

Let θ ∈ X ⊆ RD be a parameter vector of a model of interest, and D a dataset. Variational inference
is an approximate inference framework in which an intractable posterior p(θ|D) is approximated
by a simpler distribution q(θ) ≡ qφ(θ) that belongs to a parametric family indexed by parameter
vector φ, such as a multivariate normal or a mixture of Gaussians [2, 3]. Thus, the goal of variational
inference is to find φ for which the variational posterior qφ is “closest” in approximation to the true
posterior, according to some measure of discrepancy.

In variational Bayes, the discrepancy between approximate and true posterior is quantified by the
Kullback-Leibler (KL) divergence,

DKL [qφ(θ)||p(θ|D)] = Eφ
[
log

qφ(θ)

p(θ|D)

]
, (S1)

where we adopted the compact notation Eφ ≡ Eqφ . Crucially, DKL(q||p) ≥ 0 and the equality is
achieved if and only if q ≡ p. DKL is not symmetric, and the specific choice of using DKL [q||p]
(reverse DKL) as opposed to DKL [p||q] (forward DKL) is a key feature of the variational framework.

The variational approach casts Bayesian inference as an optimization problem, which consists of
finding the variational parameter vector φ that minimizes Eq. S1. We can rewrite Eq. S1 as

log p(D) = DKL [qφ(θ)||p(θ|D)] + F [qφ], (S2)

where on the left-hand side we have the model evidence, and on the right-hand side the KL divergence
plus the negative free energy, defined as

F [qφ] = Eφ
[
log

p(D|θ)p(θ)

qφ(θ)

]
= Eφ [f(θ)] +H[qφ(θ)], (S3)

with f(θ) ≡ log p(D|θ)p(θ) = log p(D,θ) the log joint probability, and H[q] the entropy of q.
Now, since as mentioned above the KL divergence is a non-negative quantity, from Eq. S2 we have
F [q] ≤ log p(D), with equality holding if q(θ) ≡ p(θ|D). For this reason, Eq. S3 is known as the
evidence lower bound (ELBO), so called because it is a lower bound to the log marginal likelihood
or model evidence. Importantly, maximization of the variational objective, Eq. S3, is equivalent to
minimization of the KL divergence, and produces both an approximation of the posterior qφ and the
ELBO, which can be used as a metric for model selection.

Classically, q is chosen to belong to a family (e.g., a factorized posterior, or mean field) such that both
the expected log joint in Eq. S3 and the entropy afford analytical solutions, which are then used to
yield closed-form equations for a coordinate ascent algorithm. In the VBMC framework, instead, f(θ)
is assumed to be a potentially expensive black-box function, which prevents a direct computation of
Eq. S3 analytically or via simple numerical integration.

A.2 Gaussian processes

Gaussian processes (GPs) are a flexible class of statistical models for specifying prior distributions
over unknown functions f : X ⊆ RD → R [4]. GPs are defined by a mean function m : X → R and
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a positive definite covariance, or kernel function κ : X × X → R. VBMC uses the common squared
exponential (rescaled Gaussian) kernel,

κ(θ,θ′) = σ2
fΛN (θ;θ′,Σ`) with Σ` = diag

[
`(1)

2
, . . . , `(D)2

]
, (S4)

where σf is the output length scale, ` is the vector of input length scales, and Λ ≡ (2π)
D
2
∏D
i=1 `

(i)

is equal to the normalization factor of the Gaussian (this notation makes it easy to apply Gaussian
identities used in Bayesian quadrature). As a mean function, VBMC uses a negative quadratic function
to ensure well-posedness of the variational formulation, and defined as [1, 5]

m(θ) ≡ m0 −
1

2

D∑
i=1

(
θ(i) − θ(i)m

)2
ω(i)2

, (S5)

where m0 denotes the maximum, θm is the location, and ω is a vector of length scales. Finally,
GPs are also characterized by a likelihood or observation noise model, which is assumed here to be
Gaussian with known variance σ2

obs(θ) for each point in the training set (in the original formulation
of VBMC, observation noise is assumed to be a small positive constant).

Conditioned on training inputs Θ = {θ1, . . . ,θN}, observed function values y = f(Θ) and
observation noise σ2

obs(Θ), the posterior GP mean and covariance are available in closed form [4],

fΞ(θ) ≡ E [f(θ)|Ξ,ψ] =κ(θ,Θ) [κ(Θ,Θ) + Σobs(Θ)]
−1

(y −m(Θ)) +m(θ)

CΞ(θ,θ′) ≡ Cov [f(θ), f(θ′)|Ξ,ψ] = κ(θ,θ′)− κ(θ,Θ) [κ(Θ,Θ) + Σobs(Θ)]
−1
κ(Θ,θ′),

(S6)

where Ξ = {Θ,y,σobs} is the set of training function data for the GP; ψ is a hyperparameter vector
for the GP mean, covariance, and likelihood; and Σobs(Θ) ≡ diag

[
σ2

obs(θ1), . . . , σ2
obs(θN )

]
is the

observation noise (diagonal) matrix.

A.3 Adaptive Bayesian quadrature

Bayesian quadrature, also known as cubature when dealing with multi-dimensional integrals, is a
technique to obtain Bayesian estimates of intractable integrals of the form [6, 7]

Z =

∫
X
f(θ)π(θ)dθ, (S7)

where f is a function of interest and π a known probability distribution. For the purpose of VBMC,
we consider the domain of integration X = RD. When a GP prior is specified for f , since integration
is a linear operator, the integral Z is also a Gaussian random variable whose posterior mean and
variance are [7]

Ef |Ξ[Z] =

∫
fΞ(θ)π(θ)dθ, Vf |Ξ[Z] =

∫ ∫
CΞ(θ,θ′)π(θ)π(θ′)dθdθ′. (S8)

Importantly, if f has a Gaussian kernel and π is a Gaussian or mixture of Gaussians (among other
functional forms), the integrals in Eq. S8 have closed-form solutions.

Active sampling The point θ? ∈ X to evaluate next to improve our estimate of the integral
(Eq. S7) is chosen via a proxy optimization of a given acquisition function a : X → R, that is
θ? = argmaxθa(θ). Previously introduced acquisition functions for Bayesian quadrature include
the expected entropy, which minimizes the expected entropy of the integral after adding θ? to the
training set [8], and a family of strategies under the name of uncertainty sampling, whose goal is
generally to find the point with maximal (pointwise) variance of the integrand at θ? [9]. The standard
acquisition function for VBMC is prospective uncertainty sampling (see main text and [1, 5]). Recent
work proved convergence guarantees for active-sampling Bayesian quadrature under a broad class of
acquisition functions which includes various forms of uncertainty sampling [10].

B Algorithmic details

We report here implementation details of new or improved features of the VBMC algorithm omitted
from the main text.
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B.1 Modified VBMC features

In this section, we describe minor changes to the basic VBMC framework. For implementation details
of the algorithm which have remained unchanged, we refer the reader to the main text and Supplement
of the original VBMC paper [1].

Reliability index In VBMC, the reliability index r(t) is a metric computed at the end of each
iteration t and determines, among other things, the termination condition [1]. We recall that r(t) is
computed as the arithmetic mean of three reliability features:

1. The absolute change in mean ELBO from the previous iteration: r1(t) =
|E [ELBO(t)]− E [ELBO(t− 1)]| /∆SD.

2. The uncertainty of the current ELBO: r2(t) =
√

V [ELBO(t)]/∆SD.
3. The change in ‘Gaussianized’ symmetrized KL divergence (see Eq. S21) between the current

and previous-iteration variational posterior qt ≡ qφt(θ): r(t) = gsKL(qt||qt−1)/∆KL.

The parameters ∆SD and ∆KL are tolerance hyperparameters, chosen such that rj . 1, with j =

1, 2, 3, for features that are deemed indicative of a good solution. We set ∆KL = 0.01 ·
√
D as in the

original VBMC paper. To account for noisy observations, we set ∆SD in the current iteration equal to
the geometric mean between the baseline ∆base

SD = 0.1 (from the original VBMC paper) and the GP
noise in the high-posterior density region, σhpd

obs , and constrain it to be in the [0.1, 1] range. That is,

∆SD = min

[
1,max

[
0.1,

√
∆base

SD · σ
hpd
obs

]]
, (S9)

where σhpd
obs is computed as the median observation noise at the top 20% points in terms of log-posterior

value in the GP training set.

Regularization of acquisition functions In VBMC, active sampling is performed by maximizing a
chosen acquisition function a : X ⊆ RD → [0,∞), where X is the support of the target density (see
Section C). In practice, in VBMC we maximize a regularized acquisition function

areg(θ; a) ≡ a(θ)bvar(θ)bbnd(x) (S10)

where bvar(θ) is a GP variance regularization term introduced in [1],

bvar(θ) = exp

{
−
(
V reg

VΞ(θ)
− 1

)
|[VΞ(θ) < V reg]|

}
(S11)

where VΞ(θ) is the posterior latent variance of the GP, V reg a regularization parameter (we use
V reg = 10−4), and we denote with |[·]| Iverson’s bracket [11], which takes value 1 if the expression
inside the bracket is true, 0 otherwise. Eq. S11 penalizes the selection of points too close to an
existing input, which might produce numerical issues.

The bbnd term is a new term that we added in this work to discard points too close to the parameter
bounds, which would map to very large positive or negative values in the unbounded inference space,

bbnd(θ) =

{
1 if θ̃(i) ≥ LB

(i)
ε ∧ θ̃(i) ≤ UB

(i)
ε , for all 1 ≤ i ≤ D

0 otherwise
(S12)

where θ̃(θ) is the parameter vector remapped to the original space, and LB
(i)
ε ≡ LB(i) + ε(UB(i) −

LB(i)), UB(i)ε ≡ UB(i) − ε(UB(i) − LB(i)), with ε = 10−5.

GP hyperparameters and priors The GP model in VBMC has 3D + 3 hyperparameters, ψ =
(`, σf , σobs,m0,θm,ω). All scale hyperparameters, that is {`, σf , σobs,ω}, are defined in log space.
Each hyperparameter has an independent prior, either bounded uniform or a truncated Student’s t
distribution with mean µ, scale σ, and ν = 3 degrees of freedom. GP hyperparameters and their
priors are reported in Table S1.

In Table S1, L denotes the vector of plausible ranges along each coordinate dimension, with L(i) ≡
PUB(i)−PLB(i). The base observation noise σ2

obs is a constant added to the input-dependent observation
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Hyperparameter Description Prior mean µ Prior scale σ

log `(i) Input length scale log
[√

D
6 L

(i)
]

log
√

103

log σf Output scale Uniform —
log σobs Base observation noise log

√
10−5 0.5

m0 Mean function maximum Uniform —
x
(i)
m Mean function location Uniform —

logω(i) Mean function scale Uniform —

Table S1: GP hyperparameters and their priors. See text for more information.

noise σ2
obs(θ). Note that we have modified the GP hyperparameter priors with respect to the original

VBMC paper, and these are now the default settings for both noisy and noiseless inference. In
particular, we removed dependence of the priors from the GP training set (the ‘empirical Bayes’
approach previously used), as it was found to occasionally generate unstable behavior.

Frequent retrain In the original VBMC algorithm, the GP model and variational posterior are re-
trained only at the end of each iteration, corresponding to nactive = 5 likelihood evaluations. However,
in the presence of observation noise, approximation of both the GP and the variational posterior may
benefit from a more frequent update. Thus, for noisy likelihoods we introduced a frequent retrain,
that is fast re-training of both the GP and of the variational posterior within the active sampling loop,
after each new function evaluation. This frequent update sets VBMC on par with other algorithms,
such as GP-IMIQR and WSABI, which similarly retrain the GP representation after each likelihood
evaluation. In VBMC, frequent retrain is active throughout the warm-up stage. After warm-up, we
activate frequent retrain only when the previous iteration’s reliability index r(t− 1) > 3, indicating
that the solution has not stabilized yet.

B.2 Variational whitening

We start performing variational whitening τvw iterations after the end of warm-up, and then sub-
sequently at increasing intervals of kτvw iterations, where k is the count of previously performed
whitenings (τvw = 5 in this work). Moreover, variational whitening is postponed until the reliability
index r(t) of the current iteration is below 3, indicating a degree of stability of the current variational
posterior (see Section B.1). Variational whitening consists of a linear transformation W of the
inference space (a rotation and rescaling) such that the variational posterior qφ obtains unit diagonal
covariance matrix. We compute the covariance matrix Cφ of qφ analytically, and we set the entries
whose correlation is less than 0.05 in absolute value to zero, yielding a corrected covariance matrix
C̃φ. We then calculate the whitening transform W by performing a singular value decomposition
(SVD) of C̃φ.

C Acquisition functions

In this Section, we report derivations and additional implementation details for the acquisition
functions introduced in the main text.

C.1 Observation noise

All acquisition functions in the main text require knowledge of the log-likelihood observation noise
σobs(θ) at an arbitrary point θ ∈ X . However, we only assumed availability of an estimate (σ̂obs)n
of σobs(θn) for all parameter values evaluated so far, 1 ≤ n ≤ N . We estimate values of σobs(θ)
outside the training set via a simple nearest-neighbor approximation, that is

σobs(θ?) = σobs(θn) for n = arg min
1≤n≤N

d`(θ?,θn), (S13)

where d` is the rescaled Euclidean distance between two points in inference space, where each
coordinate dimension i has been rescaled by the GP input length `i, with 1 ≤ i ≤ D. When multiple
GP hyperparameter samples are available, we use the geometric mean of each input length across
samples. Eq. S13 may seem like a coarse approximation, but we found it effective in practice.
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C.2 Expected information gain (EIG)

The expected information gain (EIG) acquisition function aEIG is based on a mutual information
maximizing acquisition function for Bayesian quadrature introduced in [12].

First, note that the information gain is defined as the KL-divergence between posterior and prior;
in our case, between the posterior of the log joint G after observing value y? at θ?, and the current
posterior over G given the observed points in the training set, Ξ = {Θ,y,σobs}. Since y? is yet to be
observed, we consider then the expected information gain of performing a measurement at θ?, that is

EIG(θ?;Ξt) = Ey?|θ? [DKL (p(G|Ξ ∪ {(θ?, y?, σobs?)}) || p(G|Ξ))] . (S14)

It can be shown that Eq. S14 is identical to the mutual information between G and y? [13]

I [G; y?] = H[G] +H[y?]−H[G, y?] (S15)

where H(·) denotes the (marginal) differential entropy and H(·, ·) the joint entropy. By the definition
of GP, y? is normally distributed, and so is each component Gk of the log-joint, due to Bayesian
quadrature (see Section A). As a weighted sum of normally distributed random variables, G is also
normally distributed, and so is the joint distribution of y? and G. We recall that the differential entropy
of a bivariate normal distribution with covariance matrix A ∈ R2×2 is H = log(2πe) + 1

2 log |A|.
Thus we have (see Eq. 7 in the main text)

aEIG(θ?) ≡ I [G; y?] = −1

2
log
(
1− ρ2(θ?)

)
, with ρ(θ?) ≡

Eφ [CΞ(f(·), f(θ?))]√
vΞ(θ?)Vf |Ξ[G]

, (S16)

where we used the scalar correlation ρ(·) [12]; and CΞ(·, ·) is the GP posterior covariance, vΞ(·) the
GP posterior predictive variance (including observation noise), and Vf |Ξ[G] the posterior variance of
the expected log joint – all given the current training set Ξ.

The expected value at the numerator of ρ(θ?) is

Eφ [CΞ(f(·), f(θ?))] =

∫
q(θ)CΞ (f(θ), f(θ?)) dθ

=

K∑
k=1

wk

∫
N
(
θ;µk, σ

2
kΣ
)
CΞ (f(θ), f(θ?)) dθ

=

K∑
k=1

wkKk(θ?),

(S17)

where we recall that wk, µk, and σk are, respectively, the mixture weight, mean, and scale of the k-th
component of the variational posterior q, for 1 ≤ k ≤ K; Σ is a common diagonal covariance matrix
Σ ≡ diag[λ(1)

2
, . . . , λ(D)2]; and CΞ is the GP posterior covariance as per Eq. S6. Finally, each term

in Eq. S17 can be written as

Kk(θ?) =

∫
N
(
θ;µk, σ

2
kΣ
) [
σ2
fΛN (θ;θ?,Σ`) . . .

. . .− σ2
fΛN (θ;Θ,Σ`) [κ(Θ,Θ) + Σobs(Θ)]

−1
σ2
fΛN (Θ;θ?,Σ`)

]
dθ

=σ2
fΛN

(
θ?;µk,Σ` + σ2

kΣ
)
− σ2

fΛz>k [κ(Θ,Θ) + Σobs(Θ)]
−1N (Θ;θ?,Σ`) ,

(S18)

where zk is aN -dimensional vector with entries z(n)k = σ2
fΛN

(
µk;θn, σ

2
kΣ + Σ`

)
for 1 ≤ n ≤ N .

C.3 Integrated median / variational interquantile range (IMIQR/ VIQR)

The integrated median interquantile range (IMIQR) acquisition function has been recently proposed
in [14] as a robust, principled metric for posterior estimation with noisy evaluations (see also Eq. 8 in
the main text),

aIMIQR(θ?) = −2

∫
X

exp
(
fΞ(θ)

)
sinh (usΞ∪θ?(θ)) dθ. (S19)

It combines two ideas: (a) using the interquantile range (IQR) as a robust measure of uncertainty,
as opposed to the variance; and (b) approximating the median integrated IQR loss, which follows
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from decision-theoretic principles but is intractable, with the integrated median IQR, which can be
computed somewhat more easily [14]. Note that Eq. S19 differs slightly from Eq. 30 in [14] in that
in our definition the prior term is subsumed into the joint distribution, with no loss of generality.

A major issue with Eq. S19 is that the integral is still intractable. By noting that exp
(
fΞ(θ)

)
is

the joint distribution, in VBMC we can replace it with the variational posterior, obtaining thus the
variational (integrated median) interquantile range acquisition function aVIQR (see main text).

D Benchmark details

We report here details about the benchmark setup, in particular parameter bounds and dataset
information for all problems in the benchmark (Section D.1); how we adapted the WSABI and
GP-IMIQR algorithms for the purpose of our noisy benchmark (Section D.2); and the computing
infrastructure (Section D.3).

D.1 Problem specification

Parameter bounds We report in Table S2 the parameter bounds used in the problems of the noisy-
inference benchmark. We denote with LB and UB the hard lower and upper bounds, respectively;
whereas with PLB and PUB we denote the ‘plausible’ lower and upper bounds, respectively [1, 15].
Plausible ranges should identify a region of high posterior probability mass in parameter space given
our knowledge of the model and of the data; lacking other information, these are recommended
to be set to e.g. the ∼ 68% high-density interval according to the marginal prior probability in
each dimension [1]. Plausible values are used to initialize and set hyperparameters of some of
the algorithms. For example, the initial design for VBMC and GP-IMIQR is drawn from a uniform
distribution over the plausible box in inference space.

Dataset information

• Ricker: We generated a synthetic dataset of T = 50 observations using the “true” parameter
vector θtrue = (3.8, 10, 0.3) with T = 50, as in [14].

• Attentional drift-diffusion model (aDDM): We used fixation and choice data from two
participants (subject #13 and subject #16 from [16]) who completed all N = 100 trials in
the experiment without technical issues (reported as ‘missing trials’ in the data).

• Bayesian timing: We analyzed reproduced time intervals of one representative subject from
Experiment 3 (uniform distribution; subject #2) in [17], with N = 1512 trials.

• Multisensory causal inference: We examined datasets of subject #1 and #2 from the
explicit causal inference task (‘unity judgment’) in [18]; with respectively N = 1069 and
N = 857 trials, across three different visual coherence conditions.

• Neuronal selectivity: We analyzed two neurons (one from area V1, one from area V2 of
primate visual cortex) from [19], both with N = 1760 trials. The same datasets have been
used in previous optimization and inference benchmarks [1, 5, 15].

• Rodent 2AFC: We took a representative rat subject from [20], already used for demonstra-
tion purposes by [21], limiting our analysis of choice behavior to the last N = 104 trials in
the data set.

D.2 Algorithm specification

WSABI Warped sequential active Bayesian integration (WSABI) is a technique to compute the log
marginal likelihood via GP surrogate models and Bayesian quadrature [9]. In this work, we use
WSABI as an example of a surrogate-based method for model evidence approximation different from
VBMC. The key idea of WSABI is to model directly the square root of the likelihood function L (as
opposed to the log-likelihood) via a GP,

L̃(θ) ≡
√

2 (L(θ)− α) =⇒ L(θ) = α+
1

2
L̃(θ)2, (S20)
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Table S2: Parameters and bounds of all models (before remapping to inference space).

Model Parameter Description LB UB PLB PUB

Ricker log(r) Growth factor (log) 3 5 3.2 4.8
φ Observed fraction 4 20 5.6 18.4
σε Growth noise 0 0.8 0.08 0.72

aDDM d Drift rate 0 5 0.1 2
β Attentional bias factor 0 1 0.1 0.9
σε Diffusion noise 0.1 2 0.2 1
λ Lapse rate 0.01 0.2 0.03 0.1

Bayesian ws Sensory noise (Weber’s fraction) 0.01 0.5 0.05 0.25
timing wm Motor noise (Weber’s fraction) 0.01 0.5 0.05 0.25

µp Prior mean (seconds) 0.3 1.95 0.6 0.975
σp Prior standard deviation (seconds) 0.0375 0.75 0.075 0.375
λ Lapse rate 0.01 0.2 0.02 0.05

Multisensory σvest Vestibular noise (deg) 0.5 80 1 40
causal σvis(clow) Visual noise, low coherence (deg) 0.5 80 1 40
inference (CI) σvis(cmed) Visual noise, medium coherence (deg) 0.5 80 1 40

σvis(chigh) Visual noise, high coherence (deg) 0.5 80 1 40
κ ‘Sameness’ threshold (deg) 0.25 180 1 45
λ Lapse rate 0.005 0.5 0.01 0.2

Neuronal θ1 Preferred direction of motion (deg) 0 360 90 270
selectivity θ2 Preferred spatial freq. (cycles/deg) 0.05 15 0.5 10

θ3 Aspect ratio of 2-D Gaussian 0.1 3.5 0.3 3.2
θ4 Derivative order in space 0.1 3.5 0.3 3.2
θ5 Gain inhibitory channel -1 1 -0.3 0.3
θ6 Response exponent 1 6.5 1.01 5
θ7 Variance of response gain 0.001 10 0.015 1

Rodent w0 Bias -3 3 -1 1
2AFC wc Weight on ‘previous correct side’ -3 3 -1 1

ws Weight on long-term history -3 3 -1 1
w

(0)
L Weight on left stimulus (t = 0) -3 3 -1 1

w
(−1)
L Weight on left stimulus (t = −1) -3 3 -1 1

w
(−2)
L Weight on left stimulus (t = −2) -3 3 -1 1
w

(0)
R Weight on right stimulus (t = 0) -3 3 -1 1

w
(−1)
R Weight on right stimulus (t = −1) -3 3 -1 1

w
(−2)
R Weight on right stimulus (t = −2) -3 3 -1 1

where α is a small positive scalar. If L̃ is modeled as a GP, L is not itself a GP (right-hand side of Eq.
S20), but it can be approximated as a GP via a linearization procedure (WSABI-L in [9]), which is the
approach we follow throughout our work.

The WSABI algorithm requires an unlimited inference space X ≡ RD and a multivariate normal
prior [9]. In our benchmark, all parameters have bound constraints, so we first map the original space
to an unbounded inference space via a rescaled logit transform, with an appropriate log-Jacobian
correction to the log posterior (see e.g., [1, 22]). Also, in our benchmark all priors are assumed to be
uniform. Thus, we pass to WSABI a ‘pseudo-prior’ consisting of a multivariate normal centered on
the middle of the plausible box, and with standard deviations equal to half the plausible range in each
coordinate direction in inference space (see Section D.1). We then correct for this added pseudo-prior
by subtracting the log-pseudo-prior value from each log-joint evaluation.

WSABI with noisy likelihoods The original WSABI algorithm does not explicitly support observa-
tion noise in the (log-)likelihood. Thus, we modified WSABI to include noisy likelihood evaluations,
by mapping noise on the log-likelihood to noise in the square-root likelihood via an unscented trans-
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form, and by modifying WSABI’s uncertainty-sampling acquisition function to account for observation
noise (similarly to what we did for anpro, see main text). However, we found the noise-adjusted WSABI
to perform abysmally, even worse than the original WSABI on our noisy benchmark. This failure is
likely due to the particular representation used by WSABI (Eq. S20). Crucially, even moderate noise
on the log-likelihood translates to extremely large noise on the (square-root) likelihood. Due to this
large observation noise, the latent GP will revert to the GP mean function, which corresponds to the
constant α (Eq. S20). In the presence of modeled log-likelihood noise, thus, the GP representation of
WSABI becomes near-constant and practically useless. For this reason, here and in the main text we
report the results of WSABI without explicitly added support for observation noise. More work is
needed to find an alternative representation of WSABI which would not suffer from observation noise,
but it is beyond the scope of our paper.

GP-IMIQR For the GP-IMIQR algorithm described in [14], we used the latest implementation (V3)
publicly available at: https://github.com/mjarvenpaa/parallel-GP-SL. We considered
the IMIQR acquisition function with sequential sampling strategy; the best-performing acquisition
function in the empirical analyses in [14]. We used the code essentially ‘as is’, with minimal changes
to interface the algorithm to our noisy benchmark. We ran the algorithm with the recommended
default hyperparameters. Given the particularly poor performance of GP-IMIQR on some problems
(e.g., Timing, Neuronal), which we potentially attributed to convergence failures of the default MCMC
sampling algorithm (DRAM; [23]), we also reran the method with an alternative and robust sampling
method (parallel slice sampling; [18, 24]). However, performance of GP-IMIQR with slice sampling
was virtually identical, and similarly poor, to its performance with DRAM (data not shown). We note
that the same grave issues with the Neuronal model emerged even when we forced initialization of
the algorithm in close vicinity of the mode of the posterior (data not shown). We attribute the inability
of GP-IMIQR to make significant progress on some problems to excessive exploration, which may
lead to GP instabilities; although further investigation is needed to identify the exact causes, beyond
the scope of this work.

D.3 Computing infrastructure

All benchmark runs were performed on MATLAB 2017a (Mathworks, Inc.) using a High Performance
Computing cluster whose details can be found at the following link: https://wikis.nyu.edu/
display/NYUHPC/Clusters+-+Prince. Since different runs may have been assigned to compute
nodes with vastly different loads or hardware, we regularly assessed execution speed by performing
a set of basic speed benchmark operations (bench in MATLAB; considering only numerical tasks).
Running times were then converted to the estimated running time on a reference machine, a laptop
computer with 16.0 GB RAM and Intel(R) Core(TM) i7-6700HQ CPU @ 2.60 GHz, forced to run
single-core during the speed test.

E Additional results

We include here a series of additional experimental results and plots omitted from the main text for
reasons of space. First, we report the results of the posterior inference benchmark with a different
metric (Section E.1). Then, we present results of a robustness analysis of solutions across runs
(Section E.2) and of an ablation study (Section E.3). In Section E.4, we show a comparison of
true and approximate posteriors for all problems in the benchmark. Then, we study sensitivity of
VBMC-VIQR to imprecision in the log-likelihood noise estimates (Section E.5). Finally, we report
results for an additional synthetic problem, the g-and-k model (Section E.6).

E.1 Gaussianized symmetrized KL divergence (gsKL) metric

In the main text, we measured the quality of the posterior approximation via the mean marginal
total variation distance (MMTV) between true and appoximate posteriors, which quantifies the
distance between posterior marginals. Here we consider an alternative loss metric, the “Gaussianized”
symmetrized Kullback-Leibler divergence (gsKL), which is sensitive instead to differences in means
and covariances [1]. Specifically, the gsKL between two pdfs p and q is defined as

gsKL(p, q) =
1

2
[DKL (N [p]||N [q]) +DKL(N [q]||N [p])] , (S21)
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where N [p] is a multivariate normal distribution with mean equal to the mean of p and covariance
matrix equal to the covariance of p (and same for q). Eq. S21 can be expressed in closed form in
terms of the means and covariance matrices of p and q.

Fig. S1 shows the gsKL between approximate posterior and ground truth, for all algorithms and
inference problems considered in the main text. For reference, two Gaussians with unit variance
and whose means differ by

√
2 (resp., 1

2 ) have a gsKL of 1 (resp., 1
8 ). For this reason, we consider a

desirable target to be (much) less than 1. Results are qualitatively similar to what we observed for the
MMTV metric (Fig. 3 in the main text), in that the ranking and convergence properties of different
methods is the same for MMTV and gsKL. In particular, previous state-of-the art method GP-IMIQR
fails to converge in several challenging problems (Timing, Neuronal and Rodent); among the variants
of VBMC, VBMC-VIQR and VBMC-IMIQR are the only ones that perform consistently well.

Figure S1: Posterior estimation loss (gsKL). Median Gaussianized symmetrized KL divergence
(gsKL) between the algorithm’s posterior and ground truth, as a function of number of likelihood
evaluations. A desirable target (dashed line) is less than 1. Shaded areas are 95% CI of the median
across 100 runs.

E.2 Worse-case analysis (90% quantile)

In the main text and other parts of this Supplement, we showed for each performance metric the
median performance across multiple runs, to convey the ‘average-case’ performance of an algorithm;
in that we expect performance to be at least as good as the median for about half of the runs. To
assess the robustness of an algorithm, we are also interested in a ‘worse-case’ analysis that looks at
higher quantiles of the distribution of performance, which are informative of how bad performance
can reasonably get (e.g., we expect only about one run out of ten to be worse than the 90% quantile).

We show in Figure S2 the 90% quantile of the MMTV metric, to be compared with Fig. 3 in the main
text (results for other metrics are analogous). These results show that the best-performing algorithms,
VBMC-VIQR and VBMC-IMIQR, are also the most robust, as both methods manage to achieve good
solutions most of the time (with one method working slightly better than the other on some problems,
and vice versa). By contrast, other methods such as GP-IMIQR show more variability, in that on some
problems (e.g., aDDM) they may have reasonably good median performance, but much higher error
when looking at the 90% quantile.

E.3 Ablation study

We show here the performance of the VBMC algorithm after removing some of the features considered
in the main paper. As a baseline algorithm we take VBMC-VIQR. First, we show VBMC-NOWV,
obtained by removing from the baseline the ‘variational whitening’ feature (see main text and Section
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Figure S2: Worse-case posterior estimation loss (MMTV). 90% quantile of the mean marginal
total variation distance (MMTV) between the algorithm’s posterior and ground truth, as a function of
number of likelihood evaluations. A desirable target (dashed line) is less than 0.2, corresponding to
more than 80% overlap between true and approximate posterior marginals (on average across model
parameters). Shaded areas are 95% CI of the 90% quantile across 100 runs.

B.2). Second, we consider a variant of VBMC-VIQR in which we do not sample GP hyperparameters
from the hyperparameter posterior, but simply obtain a point estimate through maximum-a-posteriori
estimation (VBMC-MAP). Optimizing GP hyperperameters, as opposed to a Bayesian treatment of
hyperparameters, is a common choice for many surrogate-based methods (e.g., WSABI, GP-IMIQR,
although the latter integrates analytically over the GP mean function), so we investigate whether
it is needed for VBMC. Finally, we plot the performance of VBMC in its original implementation
(VBMC-OLD), as per the VBMC paper [1]. For reference, we also plot both the VBMC-VIQR and
GP-IMIQR algorithms, as per Fig. 3 in the main text.

We show in Fig. S3 the results for the MMTV metric, although results are similar for other inference
metrics. We can see that all ‘lesioned’ versions of VBMC perform generally worse than VBMC-VIQR,
to different degree, and more visibly in more difficult inference problems. However, for example,
VBMC-MAP still performs substantially better than GP-IMIQR, suggesting that the difference in
performance between VBMC and GP-IMIQR is not simply because VBMC marginalizes over GP
hyperparameters. It is also evident that the previous version of VBMC (VBMC-OLD) is extremely
ineffective in the presence of noisy log-likelihoods.

E.4 Comparison of true and approximate posteriors

We plot in Fig. S4 a comparison between the ‘true’ marginal posteriors, obtained for all problems
via extensive MCMC sampling, and example approximate posteriors recovered by VBMC-VIQR after
50× (D + 2) likelihood evaluations, the budget allocated for the benchmark. As already quantified
by the MMTV metric, we note that VBMC is generally able to obtain good approximations of the
true posterior marginals. The effect of noise becomes more prominent when the posteriors are nearly
flat, in which case we see greater variability in the VBMC solutions for some parameters (e.g., in
the challenging Rodent problem). Note that this is also a consequence of choosing non-informative
uniform priors over bounded parameter ranges in our benchmark, which is not necessarily best
practice on real problems; (weakly) informative priors should be preferred in most cases [25].

To illustrate the ability of VBMC-VIQR to recover complex interactions in the posterior distribution
(and not only univariate marginals) in the presence of noise, we plot in Fig. S5 the full pairwise
posterior for one of the problems in the benchmark (Timing model). We can see that the approximate
posterior matches the true posterior quite well, with some underestimation of the distribution tails.
Underestimation of posterior variance is a common problem for variational approximations [26]
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Figure S3: Lesion study; posterior estimation loss (MMTV). Median mean marginal total variation
distance (MMTV) between the algorithm’s posterior and ground truth, as a function of number of
likelihood evaluations. Shaded areas are 95% CI of the median across 100 runs.

Figure S4: True and approximate marginal posteriors. Each panel shows the ground-truth
marginal posterior distribution (red line) for each parameter of problems in the noisy benchmark
(rows). For each problem, black lines are marginal distributions of five randomly-chosen approximate
posteriors returned by VBMC-VIQR.

and magnified here by the presence of noisy log-likelihood evaluations, and it represents a potential
direction of improvement for future work.
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Figure S5: True and approximate posterior of Timing model. A. Triangle plot of the ‘true’
posterior (obtained via MCMC) for the Timing model. Each panel below the diagonal is the contour
plot of the 2-D marginal posterior distribution for a given parameter pair. Panels on the diagonal are
histograms of the 1-D marginal posterior distribution for each parameter (as per Fig. S4). B. Triangle
plot of a typical variational solution returned by VBMC-VIQR.

E.5 Sensitivity to imprecise noise estimates

In this paragraph, we look at how robust VBMC-VIQR is to different degrees of imprecision in the
estimation of log-likelihood noise. We consider the same setup with three example problems as in the
noise sensitivity analysis reported in main text (Fig. 4 in the main text). For this analysis, we fixed the
emulated noise to σobs(θ) = 2 for all problems. We then assumed that the estimated noise σ̂obs(θ),
instead of being known (nearly) exactly, is drawn randomly as σ̂obs ∼ Lognormal

(
lnσobs, σ

2
σ

)
, where

σσ ≥ 0 represents the jitter of the noise estimates on a logarithmic scale.

We tested the performance of VBMC-VIQR for different values of noise-of-estimating-noise, σσ ≥ 0
(see Fig. S6). We found that up to σσ ≈ 0.4 (that is, σ̂obs varying roughly between 0.5− 2.2 times
the true value) the quality of the inference degrades only slightly. For example, at worst the MMTV
metric rises from 0.13 to 0.16 on the Timing problem (less than ∼ 25% increase), and in the other
problems it is barely affected. These results show that VBMC-VIQR is quite robust to imprecise noise
estimates. Combined with the fact that we expect estimates of the noise obtained from methods such
as IBS to be very precise [27], imprecision in the noise estimates should not be an issue in practice.

Figure S6: Sensitivity to imprecise noise estimates. Performance metrics of VBMC-VIQR with
respect to ground truth, as a function of noise-of-estimating-noise σσ. For all metrics, we plot the
median and shaded areas are 95 % CI of the median across 50 runs. A. Absolute error of the log
marginal likelihood (LML) estimate. B. Mean marginal total variation distance (MMTV).

E.6 g-and-k model

We report here results of another synthetic test model omitted from the main text. The g-and-k model
is a common benchmark simulation model represented by a flexible probability distribution defined
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via its quantile function,

Q
(
Φ−1(p);θ

)
= a+ b

(
1 + c

1− exp
(
−gΦ−1(p)

)
1 + exp (−gΦ−1(p))

)[
1 +

(
Φ−1(p)

)2]k
Φ−1(p), (S22)

where a, b, c, g and k are parameters and p ∈ [0, 1] is a quantile. As in previous studies, we fix c = 0.8
and infer the parameters θ = (a, b, g, k) using the synthetic likelihood (SL) approach [14,28,29]. We
use the same dataset as [14, 29], generated with “true” parameter vector θtrue = (3, 1, 2, 0.5), and for
the log-SL estimation the same four summary statistics obtained by fitting a skew t-distribution to a set
of samples generated from Eq. S22. We use Nsim = 100, which produces fairly precise observations,
with σobs(θMAP) ≈ 0.14. In terms of parameter bounds, we set LB = (2.5, 0.5, 1.5, 0.3) and
UB = (3.5, 1.5, 2.5, 0.7) as in [14]; and PLB = (2.6, 0.6, 1.6, 0.34) and PUB = (3.4, 1.4, 2.4, 0.66).

Figure S7: Performance on g-and-k model. Performance metrics of various algorithms with respect
to ground truth, as a function of number of likelihood evaluations, on the g-and-k model problem.
For all metrics, we plot the median and shaded areas are 95% CI of the median across 100 runs.
A. Absolute error of the log marginal likelihood (LML) estimate. B. Mean marginal total variation
distance (MMTV). C. “Gaussianized” symmetrized Kullback-Leibler divergence (gsKL).

We show in Fig. S7 the performance of all methods introduced in the main text for three different
inference metric: the log marginal likelihood (LML) loss, and both the mean marginal total variation
distance (MMTV) and the “Gaussianized” symmetrized Kullback-Leibler divergence (gsKL) between
approximate posterior and ground-truth posterior. For algorithms other than VBMC, we only report
metrics they were designed for (posterior estimation for GP-IMIQR, model evidence for WSABI). The
plots show that almost all algorithms (except WSABI) eventually converge to a very good performance
across metrics, with only some differences in the speed of convergence. These results suggest that
the g-and-k problem as used, e.g., in [14] might be a relatively easy test case for surrogate-based
Bayesian inference; as opposed to the challenging real scenarios of our main benchmark, in which
we find striking differences in performance between algorithms. Since we already present a simple
synthetic scenario in the main text (the Ricker model), we did not include the g-and-k model as part
of our main noisy-benchmark.

Finally, we note that when performing simulation-based inference based on summary statistics (such
as here with the g-and-k model, and the Ricker model discussed in the main text), computing the
marginal likelihood may not be a reliable approach for model comparison [30]. However, this is not a
concern when performing simulation-based inference with methods that compute the log-likelihood
with the entire data, such as IBS [27], as per all the other example problems in the main text.
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