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1 Examples of Real-World Applications

Here we give a few real world applications that can be modeled with MSSR.

Example 1: Cost in Cloud CDN Service. With the advent of cloud computing, the content service
provided by content distribution network (CDN) has been offered as managed platforms with a novel
pay-as-you-go model for cloud CDNs. For example, cloud providers such as Microsoft Azure and
Amazon AWS, now provide different price options to users based on their demand, which is usually
unknown in advance. Table 1 lists the price option provided by Microsoft Azure. Each price option
can be considered as a shop in the MSSR problem, and the hourly price is the renting price.

Options Hourly price ($)
Pay-as-you-go 0.0075
1 year reserved 0.0059
3 year reserved 0.0038

Table 1: Price option for Microsoft Azure basic service.

Example 2: Caching. A content can be replicated and stored in multiple base stations to serve
requests from users. Upon a user request, if the requested content is stored in base stations, the
service latency is short, otherwise, it incurs a longer latency to fetch the requested content from
remote servers. On the other hand, the content can be prefetched and stored in base stations at the
expense of wasting space if the content will not be requested by users. In this application, each base
station is considered as a shop, and renting corresponds to serve requests on-demand, and buying
refers to prefetch content in advance.

2 Proof of Lemma 1

It is obvious that OPT = min{x, bn}. Since the skier cannot change the shop once she chooses it
under our model, we can consider the competitive ratio of shop ∀i ∈ N . Let di be the buying day.
Then ALGi = xri if x < di, otherwise ALGi = (di − 1)ri + bi. It is easy to argue that the worst
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case happens when x = di. We have

CRi =
ALGi

OPT
=

(di − 1)ri + bi
min{x , bn}

=
(di − 1)ri + bi

min{di , bn}

=
(di + bn)ri + bi − ri − bnrn

min{di , bn}

=
(min{di , bn}+ max{di , bn})ri + bi − ri − bnrn

min{di , bn}

= ri +
max{di , bn}ri + bi − ri − bnrn

min{di , bn}
.

Hence, the competitive ratio is minimized when di = bn, i.e., the best competitive ratio satisfies
CRi = ri + (bi − ri)/bn. Thus, we have CR = mini CRi.

3 Proof of Lemma 2

Since there is only one break-even point b2, we consider four cases based on the relations of x and y
with b2.

(i) y ≥ b2 and x ≥ b2: ALG = b2, OPT = b2, i.e., CR = 1;

(ii) y ≥ b2 and x < b2: ALG = b2, OPT = x, i.e., CR = b2/x;

(iii) y < b2 and x ≥ b2: ALG = x, OPT = b2, i.e., CR = x/b2;

(iv) y < b2 and x < b2: ALG = x, OPT = x, i.e., CR = 1.

Combining (i)-(iv), CR = max{b2/x, x/b2}, which is unbounded.

Furthermore, we can rewrite (ii), ALG = b2 = x+ b2 − x ≤ OPT + y − x = OPT + ζ.

Similarly, by rewriting (iv), we also have ALG = x = b2 + x− b2 < OPT + x− y = OPT + ζ.

4 Proof of Theorem 1

We first prove the first bound. When y ≥ b2, we consider two cases.

First, if x < dλb2e, then OPT = x, i.e., rent at shop 1 since r1 = 1 < r2. Hence we have

ALG = r2x = r2OPT,

i.e., CR1 = r2.

Second, if x ≥ dλb2e, we have

ALG = r2(dλb2e − 1) + b2 ≤ (λr2 + 1)b2.

When x ≥ b2, we have OPT = b2, i.e., buy at shop 2 on day 1 as b2 < b1, then

ALG ≤ (λr2 + 1)b2 ≤ (λr2 + 1)(OPT + ζ).

When dλb2e ≤ x < b2, we have OPT = x, then b2 ≤ y = x+ ζ = OPT + ζ, thus,

ALG ≤ (λr2 + 1)b2 ≤ (λr2 + 1)(OPT + ζ).

Combining these two cases, we have CR2 ≤ (λr2 + 1)(1 + ζ
OPT ).

Similarly, when y < b2, we consider the following three cases.

First, if x < b2, we have ALG = x. It is clear that OPT = x, i.e., CR = 1.

Second, if x ∈
[
b2,
⌈
b1
λ

⌉)
, we have OPT = b2, i.e., buy at shop 2 on day 1, and

ALG
(a)
= x

(b)
= y + ζ < OPT + ζ,

where (a) is obtained by following Algorithm 2, i.e., rent at shop 1 with r1 = 1, and (b) holds true
due to the predictor error definition. Therefore, we have CR3 < 1 + ζ

OPT .
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Finally, if x ≥
⌈
b1
λ

⌉
, we have OPT = b2, and

ALG =

⌈
b1
λ

⌉
− 1 + b1 ≤

b1
λ

+ b1
(c)
< b1 +

b1
b2

1

1− λ
ζ,

where (c) follows ζ = x − y > b2
λ − b2, i.e., b2 < λ

1−λζ, then b1 < b1
b2

λ
1−λζ. Thus CR4 <

b1
b2

(1 + 1
1−λ

ζ
OPT ).

Combining CR1,CR2,CR3 and CR4, we get the first bound.

Now we prove the second bound. According to Algorithm 2, the skier rents the skis at shop 2 until
day dλb2e − 1 and then buys on day dλb2e at shop 2, when the predicted day satisfies y ≥ b2, we
have

ALG = r2(dλb2e − 1) + b2,

if x ≥ dλb2e. It is easy to see that the worst CR is obtained when x = dλb2e, for which OPT = dλb2e.
Therefore,

ALG ≤ (λr2 + 1)b2 ≤
λr2 + 1

λ
dλb2e =

(
r2 +

1

λ

)
OPT.

Similarly, the skier rents the skis at shop 1 until day d b1λ e − 1 and then buys on day d b1λ e at shop 1,
when y < b2, the worst CR is obtained when x = d b1λ e, for which OPT = b2, and

ALG =

⌈
b1
λ

⌉
− 1 + b1 ≤

b1
λ

+ b1 =
b1
b2

(
1 +

1

λ

)
OPT.

5 Proof of Theorem 2

We compute the competitive ratio of Algorithm 3 under four cases.

Case 1. y ≥ b2 and x ≥ k. It is clear that OPT = min{b2, x}. According to Algorithm 3, the
skier should rent at shop 2 until day j − 1 and buy on day j. This happens with probability pi, for
i = 1, · · · , k, and incurs a cost (b2 + (i− 1)r2). Therefore, we have Therefore, we have

E[ALG] =

k∑
i=1

(b2 + (i− 1)r2)pi

=

k∑
i=1

(b2 + (i− 1)r2)

(
b2 − r2
b2

)k−i
· r2

b2

(
1− (1− r2

b2
)k
)

=
r2k

1− (1− r2
b2

)k

(a)

≤ r2k/b2
1− e−r2k/b2

b2
(b)

≤ r2λ

1− e−r2λ
(OPT + ζ),

where (a) holds since (1 + x)k ≤ ekx, for 0 ≤ x < 1, and (b) follows that k = bλb2c ≤ λb2, i.e.,
k/b2 ≤ λ and x

1−e−x increases in x ≥ 0.

Case 2. y ≥ b2 and x < k. Since x < k = bλb2c < b2, we have OPT = x. If the skier buys the skis
on day i ≤ x, then it incurs a cost (b2 + (i− 1)r2), otherwise, the cost is xr2. Therefore, we obtain
the robustness through the following

E[ALG] =

x∑
i=1

(b2 + (i− 1)r2)pi +

k∑
i=x+1

xr2pi

=
r2

b2

(
1− (1− r2

b2
)k
)[ x∑

i=1

(b2 + (i− 1)r2)

(
b2 − r2
b2

)k−i
+

k∑
i=x+1

xr2

(
b2 − r2
b2

)k−i ]

=
r2x

1− (1− r2
b2

)k
≤ r2

1− e−r2k/b2
OPT

(c)

≤ b1
b2
· r2

1− e−r2(λ−1/b2)
OPT,
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where (c) holds true since λb2 − 1 ≤ k = bλb2c < b2, i.e., k/b2 ≥ λ− 1/b2, and b1/b2 > 1. To get
the consistency, we can rewrite the above inequality

E[ALG] ≤ r2
1− e−r2k/b2

OPT

(d)
=

r2 · k/b2
1− e−r2k/b2

OPT +
r2 · (b2 − k)/b2

1− e−r2k/b2
x

(e)

≤ r2 · k/b2
1− e−r2k/b2

OPT +
r2 · ζ/b2

1− e−r2k/b2
k

=
r2 · k/b2

1− e−r2k/b2
OPT +

r2 · k/b2
1− e−r2k/b2

ζ

(f)

≤ r2λ

1− e−r2λ
(OPT + ζ),

where (d) follows OPT = x, (e) holds true since x < k, y ≥ b2, and ζ = y − x ≥ b2 − k, and (f)
follows that k/b2 ≤ λ.
Case 3. y < b2 and x < l. It is clear that OPT = min{b2, x}. Similar to Case 2, we have

E[ALG] =

x∑
i=1

(b1 + (i− 1) · 1)pi +

l∑
i=x+1

x · 1 · pi =
x

1− (1− 1/b1)l

≤ x

1− e−l/b1
(g)

≤ x

1− e−1/λ

(h)

≤ λ

1− e−λ
(OPT + ζ)

(i)

≤ r2λ

1− e−r2λ
(OPT + ζ),

where (g) follows that l = db1/λe ≥ b1/λ, i.e., 1/λ ≤ l/b1, (h) follows from two cases i) when
x < b2, we have OPT = x ≥ x − ζ; and ii) when x ≥ b2, we have x < x + b2 − y = b2 + ζ as
y < b2, thus b2 > x− ζ. Hence, OPT = b2 ≥ x− ζ. (i) holds since r2 > 1 and x

1−e−x increases in
x ≥ 0 as mentioned earlier.

Case 4. y < b2 and x ≥ l. As x ≥ l, we have OPT = b2. Similar to Case 1, we have the robustness
as

E[ALG] =

l∑
i=1

(b1 + (i− 1) · 1)pi =
l

1− (1− 1/b1)l
≤ l

1− e−l/b1

=
db1/λe

1− e−l/b1
(j)

≤
b2 · b1b2 ( 1

λ + 1
b1

)

1− e−1/λ
=

b1
b2

( 1
λ + 1

b1
)

1− e−1/λ
OPT,

where (j) follows that db1/λe ≤ b1/λ + 1 = b1(1/λ + 1/b1), and l = db1/λe ≥ b1/λ, i.e.,
l/b1 ≥ 1/λ. Again, we rewrite the above inequality to get the consistency

E[ALG] ≤ l

1− e−l/b1
≤ l

1− e−1/λ
=
b2 + l − b2
1− e−1/λ

(k)

≤ 1

1− e−1/λ
(OPT + ζ)

≤ λ

1− e−λ
(OPT + ζ) ≤ r2λ

1− e−r2λ
(OPT + ζ),

where (k) follows that OPT = b2 and ζ = x− y > l − b2.

6 Proof of Theorem 3

We first prove the first bound. When z ≥ m/2, we consider two cases.

First, if x <
⌈

λb2
2z−m+1

⌉
, then OPT = x, i.e., rent at shop 1 since r1 = 1 < r2. Hence,

ALG = r2x = r2OPT,
i.e., CR1 = r2.

Second, if x ≥
⌈

λb2
2z−m+1

⌉
, then OPT = min{b2, x} and

ALG = r2

(⌈
λb2

2z −m+ 1

⌉
− 1

)
+ b2 ≤

(
λ

2z −m+ 1
r2 + 1

)
b2

(a)

≤ (λr2 + 1) (OPT + ζ),
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where (a) follows from two cases (i) when
⌈

λb2
2z−m+1

⌉
≤ x < b2, we have OPT = x, and ζ ≥

ym − x > b2 − x, i.e., b2 ≤ OPT + ζ; (ii) x ≥ b2, we have OPT = b2, then b2 ≤ OPT + ζ.
Furthermore, we have 2z −m+ 1 ≥ 1. Hence CR2 = (λr2 + 1) (1 + ζ

OPT ).

Similarly, when z < m/2, we consider the following three cases.

First, if x < b2, we have ALG = x. It is clear that OPT = x, i.e., rent at shop 1. Therefore, we have
CR = 1.

Second, if x ∈
[
b2,
⌈
(m−2z+1)b2

λ

⌉)
, we have OPT = b2, i.e., buy at shop 2 on day 1, and

ALG
(b)
= x

(c)

≤ b2 + η = OPT + ζ,

where (b) is obtained by following Algorithm 4, i.e., rent at shop 1 with r1 = 1, and (c) follows that
ζ ≥ x− y1, i.e., x ≤ ζ + y1 ≤ ζ + b2. Therefore, we have CR3 < 1 + ζ

OPT .

Finally, if x ≥
⌈
(m−2z+1)b2

λ

⌉
, we have OPT = b2, and

ALG =

⌈
(m− 2z + 1)b2

λ

⌉
− 1 + b1

≤ (m− 2z + 1)b2
λ

+ b1

(d)

≤ b1 +
m− 2z + 1

m− 2z + 1− λ
ζ

(e)

≤ b1 +
1

1− λ
ζ,

where (d) follows ζ ≥ x − y1 > (m−2z+1)b2
λ − b2, i.e., b2 ≤ ζ

(m−2z+1)/λ−1 , and (e) follows

m− 2z + 1 ≥ 1. Thus CR4 <
b1
b2

+ 1
1−λ

ζ
OPT .

Combining CR1,CR2,CR3 and CR4, we have the first bound.

Now we prove the second bound. According to Algorithm 4, the skier rents the skis at shop 2

until day
⌈

λb2
2z−m+1

⌉
− 1 and then buys on day

⌈
λb2

2z−m+1

⌉
at shop 2, when the predictions satisfy

z ≥ m/2. The corresponding cost is ALG = r2

(⌈
λb2

2z−m+1

⌉
− 1
)

+ b2 when x ≥
⌈

λb2
2z−m+1

⌉
. It

is easy to see that the worst competitive ratio is obtained when x =
⌈

λb2
2z−m+1

⌉
, for which we have

OPT =
⌈

λb2
2z−m+1

⌉
. Therefore, we have

ALG = r2

(⌈
λb2

2z −m+ 1

⌉
− 1

)
+ b2

≤
(

λr2
2z −m+ 1

+ 1

)
b2

≤
(

λr2
2z −m+ 1

+ 1

)
· 2z −m+ 1

λ
·
⌈

λb2
2z −m+ 1

⌉
=

(
r2 +

2z −m+ 1

λ

)
OPT ≤

(
r2 +

m+ 1

λ

)
OPT,

where the last inequality follows 2z −m ≤ m.

Similarly, the skier rents the skis at shop 1 until day
⌈
(m−2z+1)b2

λ

⌉
− 1 and then buys on day⌈

(m−2z+1)b2
λ

⌉
at shop 1, when z < m/2. The worst competitive ratio is obtained when x =⌈

(m−2z+1)b2
λ

⌉
for which we have OPT = b2, and

ALG =

⌈
(m− 2z + 1)b2

λ

⌉
− 1 + b1

≤ (m− 2z + 1)b2
λ

+ b1
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=

(
b1
b2

+
m− 2z + 1

λ

)
OPT ≤

(
b1
b2

+
m+ 1

λ

)
OPT,

where the last inequality holds since m− 2z ≤ m.

7 Proof of Theorem 4

Here we consider four different cases.

(1): z ≥ m/2 and x ≥ k. It is clear that OPT = min{b2, x}. According to Algorithm 5, the
skier should rent at shop 2 until day j − 1 and buy on day j. This happens with probability pi, for
i = 1, · · · , k, and incurs a the cost is (b2 + (i− 1)r2). We have

E[ALG] =

k∑
i=1

(b2 + (i− 1)r2)pi =
r2k

1− (1− r2
b2

)k
≤ r2k/b2

1− e−r2k/b2
b2

(a)

≤
r2

λ
2z−m+1

1− e−r2
λ

2z−m+1

b2≤
r2λ

1− e−r2
λ

m+1

b2 ≤
r2λ

1− e−r2
λ

m+1

(OPT + ζ).

where (a) follows that k ≤ λb2
2z−m+1 , i.e., k/b2 ≤ λ/(2z −m+ 1) and x

1−e−x increases in x ≥ 0.

(2): y ≥ m/2 and x ≤ k. We have OPT = x. If the skier buys the skis on day i ≤ x, then it incurs a
cost (b2 + (i − 1)r2), otherwise, the cost is xr2. Therefore, we obtain the robustness through the
following

E[ALG] =

x∑
i=1

(b2 + (i− 1)r2)pi +

k∑
i=x+1

xr2pi =
r2x

1− (1− r2
b2

)k

≤ r2
1− e−r2k/b2

OPT
(b)

≤ b1
b2
· r2

1− e−r2(
λ

m+1−
1
b2

)
OPT.

where (b) holds true since k =
⌊

λb2
2z−m+1

⌋
≥ λb2

2z−m+1 − 1, i.e., k/b2 ≥ λ/(m+ 1) − 1/b2, and
b1/b2 > 1. To get the consistency, we can rewrite the above inequality

E[ALG]≤ r2 · k/b2
1− e−r2k/b2

OPT +
r2 · ζ/b2

1− e−r2k/b2
k≤ r2λ

1− e−r2
λ

m+1

(OPT + ζ).

(3): z < m/2 and x < l. OPT = min{b2, x}. Similar to Case 2, we have

E[ALG] =

x∑
i=1

(b1 + (i− 1) · 1)pi +

l∑
i=x+1

x · 1 · pi =
x

1− (1− 1/b1)l
≤ x

1− e−l/b1

≤ x

1− e−(m−2z+1)/λ
≤ r2λ

1− e−r2λ
(OPT + ζ) ≤ r2λ

1 − e−r2λ/(m+1)
(OPT + ζ).

(4): z < m/2 and x ≥ l. OPT = b2. Similar to Case 1, we have the robustness as

E[ALG] =

l∑
i=1

(b1 + (i− 1) · 1)pi =
l

1− (1− 1/b1)l
≤ l

1− e−l/b1
=
d z−2m+1

λ b1e
1− e−l/b1

(i)

≤
z−2m+1

λ b1 + 1

1− e−(z−2m+1)/λ
≤

b1
b2
m+1
λ + 1

b2

1− e−1/λ
OPT,

where (i) follows that l = dm−2z+1
λ e ≥ m−2z+1

λ , i.e., l
b1
≥ z−2m+1

λ . Again, we rewrite the above
inequality to get the consistency

E[ALG] ≤ l

1− e−l/b1
≤ r2λ

1− e−r2λ/(m+1)
(OPT + ζ).
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8 Additional Experimental Results: Prediction from a Single ML Algorithm

We provide additional experimental results.

Unbiased prediction errors. We characterize the impact of Γ with the two possible values Γ = 3b1
and Γ = b1. The corresponding results are presented in Figures 1 and 2 in the main paper for
Algorithm 2 and Algorithm 3, respectively. Here we present the third option with Γ = 0.8b1, as
shown in Figure 1. We have the similar observations where small λ shows better performance with
low σ, while less trust should be put on the prediction when σ is large.
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Figure 1: Impact of unbiased prediction errors with Γ = 0.8b1 under (Left): Algorithm 2; (Right): Algorithm 3.

Biased prediction errors. We consider the impact of biases on prediction errors.

We consider three possible values of 10, 20, 50 for δ. The performance of Algorithm 2, and Algorithm
3 with Γ = 3b1 and λ = 0.5 are shown in Figure 5 in the main paper. Here, we also consider other
values of λ = 0.25, 0.75, 1, and Γ = b1. The corresponding results for Algorithm 2 and Algorithm 3
are shown in Figures 2, 3, 4 and 5. Similar observations can be drawn as given in the main paper: a
smaller bias benefits the CR when the variance is small; when the variance is large, the impact of bias
is significantly reduced.
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Figure 2: Impact of biased errors on Algorithm 2 with Γ = 3b1. (Left): λ = 0.25; (Middle): λ = 0.75; (Right):
λ = 1.
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Figure 3: Impact of biased errors on Algorithm 2 with Γ = b1. (a) λ = 0.25; (b) λ = 0.5; (c) λ = 0.75; (d)
λ = 1.

7



0 50 100 150 200 250 300
1.1

1.15

1.2

1.25

1.3

1.35

C
o

m
p

e
ti
ti
v
e

 r
a

ti
o

Randomized CR with bias =0.25

unbiased

 = 10

 = 20

 = 50

0 50 100 150 200 250 300
1.45

1.5

1.55

1.6

1.65

1.7

1.75

C
o

m
p

e
ti
ti
v
e

 r
a

ti
o

Randomized CR with bias =0.75

unbiased

 = 10

 = 20

 = 50

0 50 100 150 200 250 300
1.68

1.7

1.72

1.74

1.76

1.78

1.8

1.82

C
o

m
p

e
ti
ti
v
e

 r
a

ti
o

Randomized CR with bias =1

unbiased

 = 10

 = 20

 = 50

Figure 4: Impact of biased errors on Algorithm 3 with Γ = 3b1. (Left): λ = 0.25; (Middle): λ = 0.75; (Right):
λ = 1.
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Figure 5: Impact of biased errors on Algorithm 3 with Γ = b1. (a) λ = 0.25; (b) λ = 0.5; (c) λ = 0.75; (d)
λ = 1.

9 Additional Experimental Results: Prediction from Multiple ML
Algorithms

Similarly, we present additional experimental results for MSSR with multiple ML Algorithms. We
vary the number of ML predictions from 1 to 8, and set the associated predictions to x+ ε, where ε is
drawn from a normal distribution with mean δ and standard variation σ, and Γ = b1. We investigate
the impacts of m, λ and δ on the performance.

The impact of the number of predictions m. We fix λ and investigate the impact of the number
of predictions m on the performance. The results with λ = 0.5 is presented in Figure 7 (a) in the
main paper. Here we provide results for λ = 0.25, 0.75, 1, as shown in Figure 6. We have the
same conclusion: For unbiased prediction errors and fixed λ, if the prediction is accurate (small σ),
increasing m improves the competitive ratio, however, more predictions hurt the competitive ratio
when prediction error is large.
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Figure 6: CR of Algorithm 4 under unbiased errors with (Left): λ = 0.25; (Middle): λ = 0.75; (Right): λ = 1.

The impact of the hyperparameter λ. We fix m and investigate the impact of the hyperparameter
λ. on the performance. The results with m = 5 is presented in Figure 7 (b) in the main paper. Here
we provide results for m = 3, 8, as shown in Figure 7. We have the same conclusion: less trust
achieves better competitive ratio when the prediction error is large.

The impact of biased errors δ. We fix m and λ to investigate the impact of biased errors on the
performance. The results for m = 3 and m = 8 with λ = 0.25, 0.5, 0.75, 1 are presented in Figures 8
and 9. Same conclusions are observed: For fixed m and λ, a smaller bias benefits the competitive
ratio when the variance is small, while a larger bias achieves a smaller competitive ratio when the
variance is large.
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Figure 7: CR of Algorithm 4 under unbiased errors with (Left): m = 3; (Right): m = 8
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Figure 8: Impact of biased errors under Algorithm 4 with m = 3 and (a) λ = 0.25; (b) λ = 0.5; (c) λ = 0.75;
(d) λ = 1.
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Figure 9: Impact of biased errors under Algorithm 4 with m = 8 and (a) λ = 0.25; (b) λ = 0.5; (c) λ = 0.75;
(d) λ = 1.

We also numerically evaluate the performance of the randomized algorithm (Algorithm 5) with
predictions from multiple ML algorithms. As illustrated in Figure 10, with a fixed trust on the
prediction (e.g., λ = 0.5), increasing the number of predictions m can benefit the CR with small
prediction errors (small σ). However, it is not always beneficial when the prediction is non-accurate
(with large σ). It will be interesting but a daunting task to investigate the optimality in terms of m, λ
and σ for the randomized algorithm. Similarly, we characterize the impact of the hyperparameter
under a given number of predictions (e.g., m = 5) as shown in Figure 11. Again, we observe
that more trust (small λ) will benefit the algorithm when the prediction is accurate, while less trust
achieves better performance when the prediction error is large.

Real-world dataset. Finally, we evaluate the performance of Algorithm 4 using real-world data. We
assume there are 3 predictions in total. These three predictions are drawn from 4 ML algorithms, one
is from a prefect prediction, and the other three are predictions with errors as discussed in the main
paper. We present here for completeness. First, we generate a similar distribution on the number
of episodes watched by viewers for the season 11, and randomly draw the prediction y from that
distribution. We call this "Prediction 1". We then generate two other ("bad") predictions where
"Prediction 2" follows that y = 24 − x, and "Prediction 3" satisfies y = 1 if x ≥ b2 and y = 24
otherwise.

We consider four cases: (i) Case 1: All three predictions are perfect; (ii) Case 2: two predictions
are perfect with the third one from "Prediction 1"; (iii) Case 3: one perfect prediction, along with
two bad predictions from "Prediction 1" and "Prediction 2"; and (iv) Case 4: three bad predictions
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Figure 10: CR of Algorithm 5 for unbiased errors for
λ = 0.5 with different m.
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Figure 11: CR of Algorithm 5 for unbiased errors for
m = 5 with different λ.

from "Prediction 1", "Prediction 2" and "Prediction 3". From Figure 12, we observe that (1) if prefect
predictions are the majority, the performance will be significantly good; if not, increasing the number
of good predictions will benefit the result. (2) when we put more trust on the predictions (λ→ 0),
multiple bad predictions will do harm to the CR; when λ→ 1, the gap between multiple good and
bad predictions will be narrowed, all four curves will show better or close performance than best
deterministic algorithm without predictions.
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Figure 12: CR of Algorithm 4 with 3 predictions using real-world dataset.
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