
A Using ω to gauge model accuracy
The hyperparameter ω can be used to estimate the accuracy of our transition loss, hence of our
novelty estimates. In order to gauge when our representation is accurate enough to use our nov-
elty heuristic, we use a function of this hyperparameter and transition loss to set a cutoff point for
accuracy to know when to take the next environment step. If ω is the minimum distance between
successive states, then when Lτ ≤

(
ω
δ

)2
, the transitions are on average within a ball of radius ω

δ of
the target state. Here δ > 1 is a hyperparameter that we call the slack ratio. Before taking a new
step in the environment, we keep training all the parameters with all these losses until this threshold
is reached and our novelty heuristic becomes useful. The abstract representation dimensionality is
also another hyperparameter that requires tuning, depending on the complexity of the environment.
Details on the slack ratios, abstract representation dimensionality and other hyperparameters are
given in Appendix J.

B Discussion on the distance between successive encoded states
As for our soft constraints on representation magnitude, we use a local constraint instead of a global
constraint on magnitude such that it is more suited for our novelty metric. If we are to calculate some
form of intrinsic reward based on distance between neighboring states, then this distance needs to
be non-zero and ideally consistent as the number of unique states in our history increases. In the
global constraint case, if the intrinsic rewards decrease with an increase in number of states in the
agent’s history, then the agent will fail to be motivated to explore further. Even though the entropy
maximization losses ensures the maximization of distances between random states, if we have |B|
number of states in the history of the agent, then a global constraint on representation magnitude
might lead to

lim
|B|→∞

E(s,s′)∼(B,B)[‖s− s′‖2] = 0. (9)

We also test the necessity of this loss in Appendix F.1 and see that without this loss, we incur a high
variance in exploration performance.

C Motivation for `2 distance
We consider the consecutive distance loss Lcsc. Minimization of this loss ensures that the distance
between two consecutive states is≤ ω. This along with our alignment and uniformity losses, Lτ̂ and
Ld1 ensures that temporally close states are close in representational space and states are uniformly
spread throughout this space. This implies that the minima of Lcsc between two consecutive states
s and s′ will occur when:

L∗consec = min
θê

Lcsc(θê)

= min
θê

max(‖ê(s; θe)− ê(s′; θe)‖2 − ω, 0)

= min
θê

[‖ê(s; θe)− ê(s′; θe)‖2 − ω]

The minimum of this loss is obtained when the `2 distance between s and s′ is ω. When this
loss is minimized, `2 distance is well-defined in our representation space, which implies that our
novelty heuristic will also be well-defined. These losses shape abstract state space so that `2 norm
as a distance measure encodes a notion of closeness in state space that we leverage in our novelty
heuristic.

D Novelty heuristic as an inverse recoding probability score
Consider P (Xn+1 = x | X1:n = x1:n), the recoding probability of state x at timestep n + 1. We
try to show that our novelty heuristic of a state is inversely proportional to its recoding probability,
or that:

ρX (x) =
c

P (Xn+1 = x | X1:n = x1:n)

where c is some constant. If we were to try and estimate our recoding probability first using a
non-parametric method then using its inverse, we might consider the K-nearest neighbor approach

14

(Loftsgaarden and Quesenberry, 1965):

P (Xn+1 = x | X1:n = x1:n) ≈ k

nVx,xk

where k < n is an integer and Vx,xk
is the volume around x of radius d(x, xk), where xk ∈ X is the

kth nearest neighbor to x. The issue with this approach is that our score is only dependent on it’s kth
nearest neighbor (as this score only depends on Vx,xk

), and doesn’t take into account the other k−1
nearest neighbors. In practice, we instead try to find something proportional to the inverse directly:
we average each of the 1-nearest neighbor density inverses over the k-nearest neighbors:

ρX (x) =
c

P (Xn+1 = x | X1:n = x1:n)

≈ nVx,x1

≈ n

k

k∑
i=1

Vx,xi

Since we’re only worried about proportionality, we can remove the constant n and replace our vol-
ume of radius between two points with a distance metric d:

ρX (x) ∝ ρ̂X (x) =
1

k

k∑
i=1

d(x, xi).

Which is our novelty heuristic.

E Limiting behavior for novelty heuristic
Proof (Theorem 1). Let ns be the visitation count for a state s ∈ S. We assume that our agent’s
policy will tend towards states with higher rewards. Given the episodic nature of MDPs, we have
that over multiple episodes all states communicate. Since our state space is finite, we have that

lim
n→∞

ns =∞, ∀s ∈ S.

which means that ∃n such that k < ns as n→∞, and implies that the k nearest neighbors of s are
indiscernible from s. Since f is a deterministic function, xi = x for all i. We also assume that our
agent’s policy will tend towards states with higher rewards. As x and xi are indiscernible and dist
is a properly defined metric, dist(x, xi) = 0 for all i, and we have

lim
n→∞

ρ̂(x) =
1

k

k∑
i=1

dist(x, xi) (10)

= 0. (11)

F Ablation study
Here we perform ablation studies to test the affects of our losses and hyperparameters.

F.1 Consecutive distance loss
To further justify our use of the Lcsc loss, we observe the results of running the same trials in the
simple maze environment (with no walls) with no Lcsc loss in Figure 4. As we increase the number
of forward prediction steps the exploration is less effective and variance of our results increases.
Without the relative distance constraints of our representation, we observe an increase of forward
prediction errors, which is the likely cause of the decrease in performance. These forward prediction
errors are further compounded as we increase the number of forward prediction steps (as can be seen
when comparing the standard error between d = 0, 1, 5).

15

Figure 4: Simple maze (with no walls) experiment with no Lcsc loss.

Ablation Avg (µ) StdErr p-value

MF 758.60 169.08 0.25
MB 584.10 64.52 0.57
Full 524.60 73.24 -

Table 2: A further ablation study on the multi-step maze environment. The MF (model-free) abla-
tion does not employ any forward intrinsic reward planning (d = 0), while the MB (model-based)
ablation only uses forward intrinsic reward planning without using or learning Q-values.

F.2 Pure model-based/model-free
We test the importance of using a combination of both model-based and model-free components on
the multi-step maze environment introduced in Section 5.2.2. We train with the same hyperparam-
eters but in the model free (d = 0) and model-based (d = 5, no Q-value tails) settings. We show
results in Table 2.

G Montezuma’s Revenge visualizations
We show preliminary results for learning abstract representations for a more complex task, Mon-
tezuma’s Revenge. Comparing the two figures above, we observe how temporally closer states are
closer together in lower-dimensional learnt representational space as compared to pixel space. Tran-
sitions are not shown for raw observations.

16

(a) 5 dimensional abstract representations visualized with
t-SNE.

(b) Original observations (each shaped 4 x 64 x
64) visualized with t-SNE.

Figure 5: a) Visualization for 100 observations (4 frames per observation) of Montezuma’s Revenge
game play. Representation learnt was nX = 5 and visualized with t-SNE (van der Maaten and
Hinton, 2008) in 2 dimensions. Labels on top-left of game frames correspond to labels of states in
lower-dimensional space. Transitions are shown by shaded lines. b) Original resized game frames
visualized using t-SNE with the same parameters.

H Labyrinth state count visualization

Figure 6: An example of the state counts of our agent in the open labyrinth with d = 5 step plan-
ning. Titles of each subplot denotes the number of steps taken. The brightness of the points are
proportional to the state visitation count. The bright spots that begins after 200 counts is the agent
requiring a few trials for learning the dynamics of labyrinth walls.

17

I Gridworld visualizations

(a) (b)

Figure 7: Left: Open labyrinth - A 21× 21 empty labyrinth environment. Right: 4-room labyrinth -
A 21× 21 4-room labyrinth environment inspired by the 4-room domain in Sutton et al. (1999).

J Experimental setup and hyperparameters
For all of our experiments, we use a batch size of 64 and take 64 random steps transitions before
beginning training. We also use the same discount factor for all experiments (γ = 0.8) and the
same freeze interval for target parameters 1000. The reason behind our low discount factor is due
to the high density of non-stationary intrinsic rewards in our state. We also use a replay buffer size
corresponding to the maximum number of steps in each environment for all experiments. For all
model-based abstract representation training, the following hyperparameters were all kept constant:
minimum distance between consecutive states ω = 0.5, slack ratio δ = 12 and transition model
dropout of 0.1. For all experiments run with our novelty metric, we use k = 5 for our k-NN
calculations. For all experiments that allows for forward planning and not explicitly mention depth
d, we set planning depth d = 5. For abstract representation size (nX), we use a dimensionality of 2
for both labyrinth exploration tasks, a dimensionality of 4 for Acrobot, and finally a dimensionality
of 3 for the multi-step maze.

J.1 Neural Network Architectures
For reference, ’Dense’ implies a full-connected layer. ’Conv2D’ refers to a 2D convolutional layer
with stride 1. ’MaxPooling2D’ refers to a max pooling operation. All networks were trained with
the RMSProp optimizer. Throughout all experiments, we use the following neural network architec-
tures:

J.1.1 Encoder
For all our non-control task inputs, we flatten our input and use the following feed-forward neural
network architecture for ê:

• Dense(200, activation=’tanh’)

• Dense(100, activation=’tanh’)

• Dense(50, activation=’tanh’)

• Dense(10, activation=’tanh’)

• Dense(abstract representation dimension).

For our control task, we use a convolution-based encoder:

• Conv2D(channels=8, kernel=(3,3), activation=’tanh’)

• Conv2D(channels=16, kernel=(3,3), activation=’tanh’)

• MaxPool2D(pool size=(4,4))

• Conv2D(channels=32, kernel=(3,3), activation=’tanh’)

• MaxPool2D(pool size=(3,3))

• Dense(abstract state representation dimension).

18

J.1.2 Transition model
The input to our transition model is a concatenation of an abstract representation and an action. We
use the following architecture

• Dense(10, activation=’tanh’, dropout=0.1)

• Dense(30, activation=’tanh’, dropout=0.1)

• Dense(30, activation=’tanh’, dropout=0.1)

• Dense(10, activation=’tanh’, dropout=0.1)

• Dense(abstract representation dimension)

and add the output of this to the input abstract representation.

J.1.3 Reward and discount factor models
For both reward and discount factor estimators, we use the following architecture:

• Dense(10, activation=’tanh’)

• Dense(50, activation=’tanh’)

• Dense(20, activation=’tanh’)

• Dense(1).

J.1.4 Q function approximator
We use two different architecture based on the type of input. If we use the concatenation of abstract
representation and action, we use the following architecture:

• Dense(20, activation=’relu’)

• Dense(50, activation=’relu’)

• Dense(20, activation=’relu’)

• Dense(nactions)

For the pixel frame inputs for our control environments, we use:

• Conv2D(channels=8, kernel=(3,3), activation=’tanh’)

• Conv2D(channels=16, kernel=(3,3), activation=’tanh’)

• MaxPool2D(pool size=(4,4))

• Conv2D(channels=32, kernel=(3,3), activation=’tanh’)

• MaxPool2D(pool size=(3,3))

• Dense(nactions).

Finally, for our (purely model free) gridworld environments we use:

• Dense(500, activation=’tanh’)

• Dense(200, activation=’tanh’)

• Dense(50, activation=’tanh’)

• Dense(10, activation=’tanh’)

• Dense(nactions)

As for our Bootstrap DQN implementation, we use the same architecture as above, except we replace
the final Dense layer with 10 separate heads (each a Dense layer with nactions nodes).

19

J.2 Labyrinth environments
Both environments used the same hyperparameters except for two: we add an ε-greedy (ε = 0.2)
policy for the 4-room maze, and increased nfreq from 1 to 3 in the 4-room case due to unnecessary
over-training. We have the following hyperparameters for our two labyrinth environments:

• niters = 30000

• α = 0.00025

J.3 Control environment
In our Acrobot environment, the input to our agent is 4 stacked consecutive pixel frames, where
we reduce each frame down to a 32 × 32 pixel frame. Our abstract representation dimension is
4. We use a learning rate of α = 0.00025 for all experiments. We train for niters = 50000 for
all experiments with the exception of RND and transition loss - this discrepancy is due to time
constraints for the latter two experiments which used niters = 3000, as both these experiments used
prohibitively more time to run due to the increased number of steps used to reach the goal state of
the environment.

J.4 Multi-step maze environment
In our multistep maze environment, the input to our agent is a single 15× 15 frame of an overview
of the environment. Our abstract representation dimension is 3. We use an ε-greedy (ε = 0.1)
policy for this environment. We use α = 0.00025, niters = 30000 for our model-free algorithms
and α = 0.000025, niters = 50000 for experiments that include a model-based component. Each
episode is at most 4000 environment steps.

K Potential improvements and future work
K.1 Incorporating agent history for better generalization
As mentioned in Section 5.1.2, generalization across states while only conditioning on primary
features (X,A in our case) restricts the generalization ability of our agent. An interesting potential
for future work would be to somehow incorporate this information into the learnt representation
(potentially by using the same IB method, but using a full history of states as the conditioning
variable).

K.2 Increasing efficiency of learning the abstract wtate representations
Currently, learning our low-dimensional state representation takes many iterations per timestep, and
is also sensitive to hyperparameter tuning. Our method requires an accurate state representation
and dynamics model according to our losses for our method to be effective - the sample-efficiency
from our model-learning methods comes at a cost of more time and compute. This is due to the
careful balance our model needs to maintain between its losses for good representations. Another
interesting potential for future work would be to find ways to incorporate our model-learning losses
using less time and computation.

K.3 Extension to stochastic environments
One avenue of future work would be to extend this work for stochastic environments. While there
has been recent work on using expectation models for planning (Wan et al., 2020) that we could use
to extend our algorithm, this still comes with its own limitations.

K.4 Empirical validation for representation size
Another avenue of investigation is to find a more principled approach to finding the right represen-
tation size for a given environment. While we currently simply pick the lowest representation size
from prior knowledge about an environment, it may be worthwhile to somehow allow the algorithm
to decide this.

20

	Introduction
	Problem setting
	Abstract state representations
	Information Bottleneck
	Encoding and dynamics learning
	Distance measures in representational space

	Novelty Search in abstract representational space
	Sparsity in representation space as a measure for novelty
	Asymptotic behavior
	Combining model-free and model-based components for exploration policies

	Experiments
	Labyrinth exploration
	Open labyrinth
	4-room labyrinth

	Control and sub-goal exploration
	Acrobot
	Multi-step goal maze

	Related work
	Discussion
	Using to gauge model accuracy
	Discussion on the distance between successive encoded states
	Motivation for 2 distance
	Novelty heuristic as an inverse recoding probability score
	Limiting behavior for novelty heuristic
	Ablation study
	Consecutive distance loss
	Pure model-based/model-free

	Montezuma's Revenge visualizations
	Labyrinth state count visualization
	Gridworld visualizations
	Experimental setup and hyperparameters
	Neural Network Architectures
	Encoder
	Transition model
	Reward and discount factor models
	Q function approximator

	Labyrinth environments
	Control environment
	Multi-step maze environment

	Potential improvements and future work
	Incorporating agent history for better generalization
	Increasing efficiency of learning the abstract wtate representations
	Extension to stochastic environments
	Empirical validation for representation size

