- We thank the reviewers for helpful comments and suggestions. We will address the concerns raised by the reviewers.
- (R1:O1) On using our framework for learning from label proportions (LLP).
- (R1:A1) Our proposed framework is applicable for tackling learning from label proportions, even for the multiclass 3
- case, by using class proportions as aggregated labels. However, due to space limitation and the fact that LLP has been
- explored extensively, we would like to focus on other problem settings to expand the usage of learning from aggregate
- observations and provide the theoretical foundation of a more general case. Nevertheless, we agree that it is interesting
- to see the performance of this framework compared with other LLP methods to see the competency of our framework.
- We will add more explanations of LLP, potentially in Appendix due to lack of space.
- (R1:Q2) Baselines are quite weak in the experiments, however I note that there might not be too much related work.
- (R1:A2) As pointed out, related work that can be used as baselines for our experiments are quite limited. For example, 10
- we are not aware of any methods for multiclass classification from triplet comparison data. We tried to come up 11
- with several baselines and found that a representation learning method is reasonable and its performance is quite 12
- reasonable. It worked quite well in the pairwise comparison case but failed to work well in the triplet case which 13
- might be because more data are needed. For regression via mean observation, [1] is the most related as suggested. The 14
- difference is that [1] used Gaussian processes and variational inference. We believe both frameworks have different 15
- advantages/disadvantages such as the variety of model choices, scalability, or the uncertainty measure. We will add 16
- such discussion in the final version. 17
- (R1:Q3) Why linear regression is used as one of the methods in the experiments?
- (R1:A3) As R1 suggested, we can use any differentiable model. Linear regression was used because it is one of the
- standard models for regression on these datasets. Moreover, it is insightful to see the difference in performance between 20
- a linear model and a more complex model with the same objective function. Thus, we implemented the proposed 21
- objective and the baseline objective on both the linear model and a gradient boosting machine (GBM). We will add 22
- more discussion on the choice of models. 23
- (R2:Q4) How does this setup differ from the weakly labeled setting? 24
- (R2:A4) Our problem setting can be regarded as a weakly-supervised learning problem, where only a group-level label
- is observed although we want to predict a label for an individual instance. It is different from many weakly-labeled 26
- settings in the literature (e.g., partial labels, complementary labels, positive-unlabeled learning, noisy labels) in the 27 sense that individual labels are given in those settings although they are weak (i.e., not clean fully-supervised).
- (R2:Q5) On how to improve paper's presentation 29
- (R2:A5) Thank you. We will provide explanations to give key ideas how to interpret our results and why they are useful. 30
- (R3:Q6) On the practicality of Assumption 2
- (R3:A6) We admit that it is possible that Assumption 2 is violated in real-world problems. Thus, it is interesting to relax 32
- Assumption 2 and investigate the situation when this assumption does not hold. For example, we may try to explore a 33
- new framework that relies on another assumption that is more practical in some settings. Then, a practitioner can select
- an appropriate method depending on their problem of interests. We believe there are many issues to be discussed when 35
- going beyond this assumption and it is a good future direction. we will discuss these issues as a future work in the final 36
- version. 37

28

- (R4:Q7) Why the proposed method is much better in classification from triplet comparisons?
- (R4:A7) One explanation is we might need much more data to learn a reasonable representation compared with simply 39
- learning a probabilistic classifier to separate between classes. In Appendix E, we also showed the performance in the 40
- binary classification task and found that the baseline can be quite competitive for some datasets. But in the multiclass 41
- cases especially when the number of classes is quite high, baselines become much weaker than the proposed method. 42
- We will add more discussion in the final version. 43
- (R4:Q8) What are some specific/practical examples where the triplet comparison is given?
- (R4:A8) Examples include the sensor network problem and search engine query logs, which were discussed in [12]. 45
- Triplets has been used a lot for representation learning but not classification (maybe due to lack of methods). We will 46
- include this issue in Introduction. 47
- (R4:Q9) How did you select multiple samples that are aggregated in the experiments? 48
- (R4:A9) It was randomly selected. We are aware that this way may not be ideal. To make up for that, we did experiments
- on many datasets (59 datasets including Appendix E). We will add more explanations in the final version.