
Supplementary materials for the Pontryagin Differentiable Programming paper

A Proof of Lemma 5.1

To prove Lemma 5.1, we just need to show that the Pontryagin’s Maximum Principle for the auxiliary
control system Σ(ξθ) in (16) is exactly the differential PMP in (13). To this end, we define the
following Hamiltonian for the auxiliary control system Σ(ξθ):

H̄t = Tr

(
1

2

[
Xt

Ut

]′ [
Hxx

t Hxu
t

Hux
t Huu

t

][
Xt

Ut

]
+

[
Hxe

t

Hue
t

]′ [
Xt

Ut

])
+ Tr

(
Λ′t+1(FtXt +GtUt + Et)

)
, (S.1)

with t = 0, 1, · · · , T − 1. Here Λt+1 ∈ Rn×r denotes the costate (matrix) variables for the auxiliary
control system. Based on Section 3 in [72], there exists a sequence of costates Λθ1:T , which together
the stationary solution {Xθ0:T , U

θ
0:T−1} to the auxiliary control system must satisfy the following the

matrix version of PMP (we here follow the notation style used in (11)).

The dynamics equation:

∂H̄t

∂Λθt+1

=
∂ Tr

(
Λ′t+1(FtXt +GtUt + Et)

)
∂Λt+1

∣∣∣∣Λt+1=Λθ
t+1

Xt=X
θ
t

Ut=U
θ
t

= FtX
θ
t +GtU

θ
t + Et = 0. (S.2a)

The costate equation:

∂H̄t

∂Xθt
=
∂ Tr (1

2X
′
tH

xx
t Xt) + ∂ Tr (U ′tH

ux
t Xt) + ∂ Tr (Hex

t Xt) + ∂ Tr (Λ′t+1FtXt)

∂Xt

∣∣∣∣Λt+1=Λθ
t+1

Xt=X
θ
t

Ut=U
θ
t

= Hxx
t Xθt +Hxu

t Uθt +Hxe
t + F ′tΛ

θ
t+1 = Λθt . (S.2b)

Input equation:

∂H̄t

∂Uθt
=
∂ Tr (1

2U
′
tH

uu
t Ut) + ∂ Tr (U ′tH

ux
t Xt) + ∂ Tr (Heu

t Ut) + ∂ Tr (Λ′t+1GtUt)

∂Ut

∣∣∣∣Λt+1=Λθ
t+1

Xt=X
θ
t

Ut=U
θ
t

= Huu
t Uθt +Hux

t Xθt +Hue
t +G′tΛ

θ
t+1 = 0. (S.2c)

And boundary conditions:

ΛθT =
∂ Tr(1

2X
′
TH

xx
T XT) + ∂ Tr((Hxe

T)′XT)

∂XT

∣∣∣∣
XT =Xθ

T

= Hxx
T XθT +Hxe

T , (S.2d)

and Xθ0 = 0. Note that in the above derivations, we used the following matrix calculus [72]:

∂ Tr(AB)

∂A
= B′,

∂f(A)

∂A′
=

[
∂f(A)

∂A

]′
,

∂ Tr(X ′HX)

∂X
= HX +H ′X, (S.3)

and the following matrix trace properties:

Tr(A) = Tr(A′), Tr(ABC) = Tr(BCA) = Tr(CAB), Tr(A+B) = Tr(A)+Tr(B). (S.4)

Since the above obtained PMP equations (S.2) are the same with the differential PMP in (13), we thus
can conclude that the Pontryagin’s Maximum Principle of the auxiliary control system Σ(ξθ) in (16)
is exactly the differential PMP equations (13), and thus (17) holds. This completes the proof.

B Proof of Lemma 5.2

Based on Lemma 5.1 and its proof, we known that the PMP of the auxiliary control system, (S.2),
is exactly the differential PMP equations (13). Thus below, we only look at the differential PMP
equations in (S.2). From (S.2c), we solve for Uθt (if Huu

t invertible):

Uθt = −(Huu
t)−1

(
Hux
t Xθt +G′tΛ

θ
t+1 +Hue

t

)
. (S.5)

1

By substituting (S.5) into (S.2a) and (S.2b), respectively, and considering the definitions of matrices
At, Rt,Mt, Qt and Nt in (18), we have

Xθt+1 = AtX
θ
t −RtΛθt+1 +Mt, (S.6)

Λθt = QtX
θ
t +A′tΛ

θ
t+1 +Nt, (S.7)

for t = 0, 1, . . . , T − 1, and also the boundary condition in (S.2d)

ΛθT = Hxx
T XθT +Hxe

T ,

for t = T . Next, we prove that there exist matrices Pt and Wt such that

Λθt = PtX
θ
t +Wt. (S.8)

Proof by induction: (S.2d) shows that (S.8) holds for t = T if PT = Hxx
T and WT = Hxe

T . Assume
(S.8) holds for t+ 1, then by manipulating (S.6) and (S.7), we have

Λθt =
(
Qt +A′t(I + Pt+1Rt)

−1Pt+1At
)︸ ︷︷ ︸

Pt

Xθt +A′t(I + Pt+1Rt)
−1(Wt+1+P t+1Mt) +Nt︸ ︷︷ ︸

Wt

, (S.9)

which indicates (S.8) holds for t, if Pt and Wt satisfy (18a) and (18b), respectively. Substituting (S.8)
to (S.7) and also considering (S.5) will lead to (19a). (19b) directly results from (S.2a). We complete
the proof.

C Proof of the Discrete-Time Pontryagin’s Maximum Principle

We here provide an easy-approach derivation of the discrete-time PMP based on Karush-Kuhn-Tucker
(KKT) conditions in non-linear optimization [73]. The original derivation for continuous optimal
control systems uses the calculus of variation theory, which can be found in [39] and [74].

We view the optimal control system (1) with a fixed θ as a constrained optimization problem, where
the objective function is given by J(θ) and the constraints given by dynamics f(θ). Define the
following Lagrangian for this constrained optimization problem:

L = J(θ) +
∑T−1

t=0
λ′t+1

(
f(xt,ut,θ)− xt+1

)
=
∑T−1

t=0

(
ct(xt,ut,θ) + λ′t+1

(
f(xt,ut,θ)− xt+1

))
+ h(xT ,θ)

=
∑T−1

t=0

(
Ht − λ′t+1xt+1

)
+ h(xT ,θ),

(S.10)

where λt is the Lagrange multiplier for the dynamics constraint for t = 1, 2, · · · , T , and the third
line in (S.10) is due to the definition of Hamiltonian in (10). According to the KKT conditions, for
the optimal solution ξθ = {xθ0:T ,u

θ
0:T−1}, there must exist the multiplers λθ1:T (in optimal control

they are called costates) such that the following first-order conditions are satisfied:

∂L

∂λθ1:T

= 0,
∂L

∂xθ0:T

= 0,
∂L

∂uθ0:T -1
= 0. (S.11)

By extending the above three conditions in (S.11) at each λt, xt and ut, respectively, and particularly
taking care of xT , we will obtain

0 = f(xθt ,u
θ
t ;θ)− xθt+1, (S.12a)

0 =
∂Ht

∂xθt
− λθt =

∂ct
∂xθt

+
∂f ′

∂xθt
λθt+1 − λ

θ
t , (S.12b)

0 =
∂Ht

∂uθt
=

∂ct
∂uθt

+
∂f ′

∂uθt
λθt+1, (S.12c)

0 =
∂h

∂xθT
− λθT , (S.12d)

respectively, which are exactly the PMP equations in (11). This completes the proof.

2

D Algorithms Details for Different Learning Modes

Algorithm 2: Solving ∂ξθ
∂θ using Auxiliary Control System

Input: The trajectory ξθ generated by the system Σ(θ)
Compute the coefficient matrices (14) to obtain the auxiliary control system Σ(ξθ) in (16);
def Auxiliary_Control_System_Solver (Σ(ξθ)): . implementation of Lemma 5.2

Set PT = Hxx
T and WT = Hxe

T ;
for t← T to 0 by −1 do

Update Pt and Wt using equations (18); . backward in time
end
Set Xθ0 = 0;
for t← 0 to T by 1 do

Update Xθt and Uθt using equations (19); . forward in time
end
Return: {Xθ0:T , U

θ
0:T−1}

Return: ∂ξθ
∂θ = {Xθ0:T , U

θ
0:T−1}

Algorithm 3: PDP Algorithm for IRL/IOC Mode

Data :Expert demonstrations {ξd}
Parameterization: The parameterized optimal control system Σ(θ) in (1)
Loss: L(ξθ,θ) in (4)
Initialization :θ0, learning rate {ηk}k=0,1,···
for k = 0, 1, 2, · · · do

Solve ξθk
from the current optiaml control system Σ(θk) ; . using any OC solver

Obtain ∂ξθ
∂θ

∣∣
θk

using Algorithm 2 given ξθk
; . using Algorithm 2

Obtain ∂L
∂ξ

∣∣
ξθk

from the given loss function L(ξθ,θ) ;

Apply the chain rule (9) to obtain dL
dθ

∣∣
θk

;

Update θk+1 ← θk − ηk dLdθ
∣∣
θk

;
end

Algorithm 4: PDP Algorithm for SysID Mode
Data: Input-state data {ξo}
Parameterization: The parameterized dynamics model Σ(θ) in (5)
Loss: L(ξθ,θ) in (6)
Initialization: θ0, learning rate {ηk}k=0,1,···
for k = 0, 1, 2, · · · do

Obtain ξθk
by iteratively integrating Σ(θk) in (5) for t = 0, ..., T − 1;

Compute the coefficient matrices (14) to obtain the auxiliary control system Σ(ξθ) in (20);

Obtain ∂ξθ
∂θ

∣∣
θk

by iteratively integrating Σ(ξθk
) in (20) for t = 0, ..., T − 1;

Obtain ∂L
∂ξ

∣∣
ξθk

from the given loss function in (6);

Apply the chain rule (9) to obtain dL
dθ

∣∣
θk

;

Update θk+1 ← θk − ηk dLdθ
∣∣
θk

;
end

3

Algorithm 5: PDP Algorithm for Control/Planning Mode
Parameterization: The parameterized-policy system Σ(θ) in (7)
Loss: L(ξθ,θ) in (8)
Initialization: θ0, learning rate {ηk}k=0,1,···
for k = 0, 1, 2, · · · do

Obtain ξθk
by iteratively integrating Σ(θk) in (7) for t = 0, ..., T − 1;

Compute the coefficient matrices (14) to obtain the auxiliary control system Σ(ξθ) in (21);

Obtain ∂ξθ
∂θ

∣∣
θk

by iteratively integrating Σ(ξθk
) in (21) for t = 0, ..., T − 1;

Obtain ∂L
∂ξ

∣∣
ξθk

from the given loss function L(ξθ,θ) in (8);

Apply the chain rule (9) to obtain dL
dθ

∣∣
θk

;

Update θk+1 ← θk − ηk dLdθ
∣∣
θk

;
end

Additional comments: combining different learning modes. In addition to using different learn-
ing modes to solve different types of problems, one can combine different modes in a single learning
task. For example, when solving model-based reinforcement learning, one can call SysID Mode to
first learn a dynamics model, then use the learned dynamics in Control/Planning Mode to obtain an
optimal policy. In problems such as imitation learning, one can first learn a dynamics model using
SysID Mode, then use the learned dynamics as the initial guess in IRL/IOC Mode. In forward pass
of IOC/IRL Mode, one can call Control/Planning Mode to solve the OC system. For control and
planning problems, the loss required in Control/Planning Mode can be learned using IOC/IRL Mode.
In MPC-based learning and control [67], one can use the general formulation in (3) to learn a MPC
controller, and then execute the MPC controller by calling Control/Planning Mode.

E Experiment Details

We have released the PDP source codes and different simulation environments/systems in this paper
as two standalone packages, both of which are available at https://github.com/wanxinjin/
Pontryagin-Differentiable-Programming. The video demos for some of the experiments are
available at https://wanxinjin.github.io/posts/pdp.

E.1 System/Environment Setup

Quadrotor maneuvering control on SE(3). We consider a quadrotor system maneuvering on
SE(3) space (i.e. full position and full attitude space). The equation of motion of a quadrotor is given
by:

ṗI = v̇I ,

mv̇I = mgI + f I ,

q̇B/I =
1

2
Ω(ωB)qB/I ,

JBω̇B = MB − ω × JBωB .

(S.13)

Here, the subscriptions B and I denote that a quantity is expressed in the quadrotor’s body frame
and inertial (world) frame, respectively; m is the mass of the quadrotor, respectively; p ∈ R3 and
v ∈ R3 are the position and velocity vector of the quadrotor; JB ∈ R3×3 is the moment of inertia
of the quadrotor with respect to its body frame; ωB ∈ R3 is the angular velocity of the quadrotor;
qB/I ∈ R4 is the unit quaternion [75] describing the attitude of quadrotor with respect to the inertial
frame; Ω(ωB) is

Ω(ωB) =

 0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

 (S.14)

and used for quaternion multiplication; MB ∈ R3 is the torque applied to the quadrotor; and
f I ∈ R3 is the force vector applied to the quadrotor’s center of mass (COM). The total force

4

https://github.com/wanxinjin/Pontryagin-Differentiable-Programming
https://github.com/wanxinjin/Pontryagin-Differentiable-Programming
https://wanxinjin.github.io/posts/pdp

magnitude ‖f I‖ ∈ R (along the z-axis of the body frame) and torque MB = [Mx,My,Mz] are
generated by thrusts [T1, T2, T3, T4] of the four rotating propellers of the quadrotor, which can be
written as ‖f I‖Mx

My

Mz

 =

 1 1 1 1
0 −lw/2 0 lw/2

−lw/2 0 lw/2 0
c −c c −c

T1

T2

T3

T4

 , (S.15)

with lw being the wing length of the quadrotor and c a fixed constant.

We define the state and input vectors of the quadrotor system as

x = [p′ v′ q′ ω′]
′ ∈ R13 and u = [T1 T2 T3 T4]

′ ∈ R4. (S.16)
respectively. In design of the quadrotor’s control objective function, to achieve SE(3) maneuvering
control performance, we need to carefully design the attitude error. As used in [76], we define the
attitude error between the quadrotor’s current attitude q and the goal attitude qg as

e(q, qg) =
1

2
Tr(I −R′(qg)R(q)), (S.17)

where R(q) ∈ R3×3 are the direction cosine matrix directly corresponding to q (see [75] for more
details). Other error term in the control objective is the distance to the respective goal:

e(p,pg) = ‖p− pg‖
2
, e(v,vg) = ‖v − vg‖2, e(ω,ωg) = ‖ω − ωg‖2. (S.18)

Two-link robot arm. The dynamics of a two-link robot arm can be found in [77, p. 171], where
the state vector is x = [q, q̇]′ with q ∈ R2 the vector of joint angles and q̇ ∈ R2 the vector of joint
angular velocities, and the control input u ∈ R2 is the vector of torques applied to each joint.

Dynamics discretization. The continuous-time dynamics of all experimental systems in Table 2
are discretized using the Euler method: xt+1 = xt + ∆ · f(xt,ut) with the discretization interval
∆ = 0.05s or ∆ = 0.1s.

Simulation environment source codes. We have made different simulation environments/systems in
Table 2 as a standalone Python package, which is available at https://github.com/wanxinjin/
Pontryagin-Differentiable-Programming. This environment package is easy to use and has
user-friendly interfaces for customization.

E.2 Experiment of Imitation Learning

Data acquisition. The dataset of expert demonstrations {ξd} is generated by solving an expert
optimal control system with the expert’s dynamics and control objective parameter θ∗ = {θ∗dyn,θ

∗
dyn}

given. We generate a number of five trajectories, where different trajectories ξd = {xd
0:T ,u

d
0:T−1}

have different initial conditions x0 and time horizons T (T ranges from 40 to 50).

Inverse KKT method. We choose the inverse KKT method [52] for comparison because it is
suitable for learning objective functions for high-dimensional continuous-space systems. We adapt
the inverse KKT method, and define the KKT loss as the norm-2 violation of the KKT condition
(S.11) by the demonstration data ξd, that is,

min
θ,λ1:T

(∣∣∣∣∣∣∣∣ ∂L

∂x0:T

(xd
0:T ,u

d
0:T−1)

∣∣∣∣∣∣∣∣2 +

∣∣∣∣∣∣∣∣ ∂L

∂u0:T -1
(xd

0:T ,u
d
0:T−1)

∣∣∣∣∣∣∣∣2
)
, (S.19)

where ∂L
∂x0:T

(·) and ∂L
∂u0:T−1

(·) are defined in (S.11) and θ={θdyn,θdyn}. We minimize the above
KKT-loss with respect to the unknown θ and the costate variables λ1:T .

Note that to illustrate the inverse-KKT learning results in Fig. 3, we plot the imitation loss L(ξθ,θ) =

‖ξd − ξθ‖
2 instead of the KKT loss (S.19), because we want to guarantee that the comparison

criterion is the same across different methods. Thus for each iteration k in minimizing the KKT loss
(S.19), we use the parameter θk to compute the optimal trajectory ξθk

and obtain the imitation loss.

Neural policy cloning. For the neural policy cloning (similar to [78]), we directly learn a neural-
network policy u = πθ(x) from the dataset using supervised learning, that is

min
θ

∑T−1

t=0
‖ud

t − πθ(xd
t)‖

2
. (S.20)

5

https://github.com/wanxinjin/Pontryagin-Differentiable-Programming
https://github.com/wanxinjin/Pontryagin-Differentiable-Programming

Learning neural control objective function. In Fig. 3d, we apply PDP to learn a neural objective
function of the robot arm. The neural objective function is constructed as

J(θ) = Vθ(x) + 0.0001‖u‖2, (S.21)

with Vθ(x) a fully-connected feed-forward network with n-n-1 layers and tanh activation functions,
i.e., an input layer with n neurons equal to the dimension of state, n, one hidden layer with n neurons
and one output layer with 1 neuron. θ is the neural network parameter. We separate the input cost
from the neural network because otherwise it will cause instability when solving OC problems in
the forward pass. Also, in learning the above neural objective function, we fix the dynamics because
otherwise it will also lead to instability of solving OC.

In the comparing GAIL method [56], we use the following hyper-parameters: the policy network is a
fully-connected feed-forward network with n-400-300-m layers and relu activation functions; the
discriminator network is a (n+m)-400-300-1 fully-connected feed-forward network with tanh and
sigmoid activation functions; and the policy regularizer λ is set to zero.

Results and validation. In Fig. S1, we show more detailed results of imitation loss versus iteration
for three systems (cart-pole, robot arm, and quadrotor). On each system, we run five trials for all
methods with random initial guess, and the learning rate for all methods is set as η = 10−4. In
Fig. S4, we validate the learned models (i.e., learned dynamics and learned control objective) by
performing motion planning of each system in unseen settings. Specifically, we set each system with
new initial state x0 and horizon T and plan the control trajectory using the learned models, and we
also show the corresponding true trajectory of the expert.

E.3 Experiment of System Identification

Data acquisition. In the system identification experiment, we collect a total number of five
trajectories from systems (in Table 2) with dynamics known, wherein different trajectories ξo =
{xo

0:T ,u0:T−1} have different initial conditions x0 and horizons T (T ranges from 10 to 20), with
random inputs u0:T−1 drawn from uniform distribution.

DMDc method. The DMDc method [57], which can be viewed as a variant of Koopman theory [6],
estimates a linear dynamics model xt+1 = Axt +But, using the following least square regression

min
A,B

∑T−1

t=0
‖xo

t+1 −Axo
t −But‖

2
. (S.22)

Neural network baseline. For the neural network baseline, we use a neural network fθ(x,u) to
represent the system dynamics, where the input of the network is state and control vectors, and output
is the state of next step. We train the neural network by minimizing the following residual

min
θ

∑T−1

t=0
‖xo

t+1 − fθ(xo
t ,ut)‖

2
. (S.23)

Learning neural dynamics model. In Fig. 4d, we compare the performance of PDP with Adam
[58] for learning the same neural dynamics model for the robot arm system. Here, the neural dynamics
model is a fully-connected feed-forward neural network with (m+n)-(2m+2n)-n layers and tanh
activation functions, that is, an input layer with (m+n) neurons equal to the dimension of state, n,
plus the dimension of control m, one hidden layer with (2m+2n) neurons and one output layer with
(n) neurons. The learning rate for the PDP and the PyTorch Adam is both set as η = 10−5.

Results and validation. In Fig. S2, we show more detailed results of SysID loss versus iteration
for the three systems (cart-pole, robot arm, and quadrotor). On each system, we run five trials with
random initial guess, and we set the learning rate as η = 10−4 for all methods. In Fig. S5, we use the
learned dynamics model to perform motion prediction of each system in unactuated conditions (i.e.,
ut = 0), in order to validate the effectiveness/correctness of the learned dynamics models.

E.4 Experiment of Control/Planning

We use the dynamics identified in the system ID part, and the specified control objective function
is set as weighted distance to the goal, as given in Table 2 (θobj is given). Throughout the optimal
control/planning experiments, we use the time horizons T ranging from 20 to 40.

6

Learning neural network policies. On the cart-pole and robot-arm systems (in Fig. 5a and Fig.
5b), we learn a feedback policy by minimizing given control objective functions. For both systems, we
parameterize the policy using a neural network. Specifically, we use a fully-connected feed-forward
neural network which has a layer structure of n-n-m with tanh activation functions, i.e., there is an
input layer with n neurons equal to the dimension of state, one hidden layer with n neurons and one
output layer with m neurons. The policy parameter θ is the neural network parameter. We apply the
PDP Control/Planning mode in Algorithm 5 and set the learning rate η = 10−4. For comparison, we
apply the guided policy search (GPS) method [59] (its deterministic version) to learn the same neural
policy with the learning rate η = 10−6 (η in GPS is used to update the Lagrange multipliers for the
policy constraint and we choose η = 10−6 because it achieves the most stable results).

Motion planning with Lagrange polynomial policies. On the 6-DoF quadrotor, we use PDP to
perform motion planning, that is, to find a control sequence to minimize the given control cost (loss)
function. Here, we parameterize the policy ut = u(t,θ) as N -degree Lagrange polynomial [80] with
N+1 pivot points evenly populated over the time horizon, that is, {(t0,u0), (t1,u1), · · · , (tN ,uN)}
with ti = iT/N , i = 0, · · · , N . The analytical form of the parameterized policy is

u(t,θ) =

N∑
i=0

uibi(t) with bi(t) =
∏

0≤j≤N,j 6=i

t− tj
ti − tj

. (S.24)

Here, bi(t) is called Lagrange basis, and the policy parameter θ is defined as

θ = [u0, · · · ,uN]′ ∈ Rm(N+1). (S.25)

The above Lagrange polynomial parameterization has been normally used in some trajectory opti-
mization method such as [41, 81]. In this planning experiment, we have used different degrees of
Lagrange polynomials, i.e., N = 5 and N = 35, respectively, to show how policy expressiveness can
influence the final control loss (cost). The learning rate in PDP is set as η = 10−4. For comparison,
we also apply iLQR [38] to solve for the optimal control sequence.

Results In Fig. S3, we show the detailed results of control loss (i.e. the value of control objective
function) versus iteration for three systems (cart-pole, robot arm, and quadrotor). For each system,
we run five trials with random initial parameter θ0. In Fig. S6, we apply the learned neural network
policies (for cart-pole and robot arm systems) and the Lagrange polynomial policy (for quadrotor
system) to simulate the corresponding system. For reference, we also plot the optimal trajectory
solved by an OC solver [79] (which corresponds to the minimal control cost).

Comments on the result comparison between GPS [59] and PDP. In learning feedback policies,
comparing the results obtained by the guided policy search (GPS) [59] and PDP in Fig. S3 and in Fig.
S6, we have the following remarks.

(1) PDP outperforms GPS in terms of having lower control loss (cost). This can be seen in Fig. S3 and
Fig. S6 (in Fig. S6, PDP results in a simulated trajectory which is closer to the optimal one than that
of GPS). This can be understood from the fact that GPS considers the policy as constraint and updates
it in a supervised learning step during the learning process. Although GPS aims to simultaneously
minimize the control cost and the degree to which the policy is violated, it does not necessarily mean
that before the learning researches convergence, when strictly following a pre-convergence control
policy, the system will have a cost as minimal as it can possibly achieve.

(2) Instead, PDP adopts a different way to synchronize the fulfillment of policy constraints and
the minimization of the control cost. In fact, throughout the entire learning process, PDP always
guarantees that the policy constraint is perfectly respected (as the forward pass strictly follows the
policy). Therefore, the core difference between PDP and GPS is that PDP does not simultaneously
minimize two aspects—the policy violation and control cost, instead, it enforces that one aspect—
policy—is always respected and only focuses on minimizing the other—control cost. The benefit of
doing so is that at each learning step, the control cost for PDP is always as minimal as it can possibly
achieve. This explains why PDP outperforms GPS in terms of having lower control cost (loss).

7

0 10000
Iteration

10 2

10 1

100

101

102

103

Ca
rtp

ol
e

im
ita

tio
n

lo
ss

Trial#1
PDP
Inv. KKT
Clo. Policy

0 10000
Iteration

10 2

10 1

100

101

102

103
Trial#2

PDP
Inv. KKT
Clo. Policy

0 10000
Iteration

10 2

10 1

100

101

102

103
Trial#3

PDP
Inv. KKT
Clo. Policy

0 10000
Iteration

10 2

10 1

100

101

102

103
Trial#4

PDP
Inv. KKT
Clo. Policy

0 10000
Iteration

10 2

10 1

100

101

102

103
Trial#5

PDP
Inv. KKT
Clo. Policy

0 10000
Iteration

10 2

10 1

100

101

102

103

Ro
bo

t a
rm

 im
ita

tio
n

lo
ss

Trial#1
PDP
Inv. KKT
Clo. policy

0 10000
Iteration

10 3

10 2

10 1

100

101

102

103
Trial#2

PDP
Inv. KKT
Clo. policy

0 10000
Iteration

10 3

10 2

10 1

100

101

102

103
Trial#3

PDP
Inv. KKT
Clo. policy

0 10000
Iteration

10 4

10 3

10 2

10 1

100

101

102

103
Trial#4

PDP
Inv. KKT
Clo. policy

0 10000
Iteration

10 4

10 3

10 2

10 1

100

101

102

103
Trial#5

PDP
Inv. KKT
Clo. policy

0 10000
Iteration

10 3

10 2

10 1

100

101

102

103

Qu
ad

ro
to

r i
m

ita
tio

n
lo

ss

Trial#1
PDP
Inv. KKT
Clo. policy

0 10000
Iteration

10 3

10 2

10 1

100

101

102

103

Trial#2
PDP
Inv. KKT
Clo. policy

0 10000
Iteration

10 3

10 2

10 1

100

101

102

103

Trial#3
PDP
Inv. KKT
Clo. policy

0 10000
Iteration

10 3

10 2

10 1

100

101

102

103

Trial#4
PDP
Inv. KKT
Clo. policy

0 10000
Iteration

10 4

10 3

10 2

10 1

100

101

102

103

Trial#5
PDP
Inv. KKT
Clo. policy

Figure S1: Experiments for PDP IRL/IOC Mode: imitation loss versus iteration. For each system, we
run five trials starting with random initial guess θ0, and the learning rate is η = 10−4 for all methods.
The results show a significant advantage of the PDP over the neural policy cloning and inverse-KKT
[52] in terms of lower training loss and faster convergence speed. Please see Appendix Fig. S4 for
validation. Please find the video demo at https://youtu.be/awVNiCIJCfs.

8

https://youtu.be/awVNiCIJCfs

0 10000
Iteration

10 24

10 20

10 16

10 12

10 8

10 4

100

104
Ca

rtp
ol

e
Sy

sID
 lo

ss
Trial#1

PDP
DMDc
NN dyn

0 10000
Iteration

10 24

10 20

10 16

10 12

10 8

10 4

100

104 Trial#2

PDP
DMDc
NN dyn

0 10000
Iteration

10 24

10 20

10 16

10 12

10 8

10 4

100

104
Trial#3

PDP
DMDc
NN dyn

0 10000
Iteration

10 24

10 20

10 16

10 12

10 8

10 4

100

104
Trial#4

PDP
DMDc
NN dyn

0 10000
Iteration

10 25

10 21

10 17

10 13

10 9

10 5

10 1

103
Trial#5

PDP
DMDc
NN dyn

0 10000
Iteration

10 20

10 16

10 12

10 8

10 4

100

104

Ro
bo

t a
rm

 S
ys

ID
 lo

ss

Trial#1

PDP
DMDc
NN dyn

0 10000
Iteration

10 13

10 10

10 7

10 4

10 1

102

Trial#2

PDP
DMDc
NN dyn

0 10000
Iteration

10 15

10 12

10 9

10 6

10 3

100

103

Trial#3

PDP
DMDc
NN dyn

0 10000
Iteration

10 20

10 16

10 12

10 8

10 4

100

104
Trial#4

PDP
DMDc
NN dyn

0 10000
Iteration

10 19

10 16

10 13

10 10

10 7

10 4

10 1

102

Trial#5

PDP
DMDc
NN dyn

0 10000
Iteration

10 7

10 5

10 3

10 1

101

103

105

Qu
ad

ro
to

r S
ys

ID
 lo

ss

Trial#1

PDP
DMDc
NN dyn

0 10000
Iteration

10 7

10 5

10 3

10 1

101

103

105
Trial#2

PDP
DMDc
NN dyn

0 10000
Iteration

10 10

10 8

10 6

10 4

10 2

100

102

104

Trial#3

PDP
DMDc
NN dyn

0 10000
Iteration

10 7

10 5

10 3

10 1

101

103

105 Trial#4

PDP
DMDc
NN dyn

0 10000
Iteration

10 8

10 6

10 4

10 2

100

102

104

Trial#5

PDP
DMDc
NN dyn

Figure S2: Experiments for PDP SysID Mode: SysID loss versus iteration. For each system, we
run five trials with random initial guess θ0, and set the learning rate η = 10−4 for all methods. The
results show a significant advantage of the PDP over neural-network dynamics and DMDc in terms
of lower training loss and faster convergence speed. Please see Fig. S5 for validation. Please find the
video demo at https://youtu.be/PAyBZjDD6OY.

9

https://youtu.be/PAyBZjDD6OY

0 250
Iteration

130

140

150

160

170

180

190

200

Ca
rtp

ol
e

co
nt

ro
l l

os
s

Trial#1
PDP
GPS

0 250
Iteration

130

140

150

160

170

180

190

200 Trial#2
PDP
GPS

0 250
Iteration

130

140

150

160

170

180

190

200 Trial#3
PDP
GPS

0 250
Iteration

130

140

150

160

170

180

190

200 Trial#4
PDP
GPS

0 250
Iteration

130

140

150

160

170

180

190

200 Trial#5
PDP
GPS

0 250
Iteration

0

10

20

30

40

50

Ro
bo

t a
rm

 c
on

tro
l l

os
s

Trial#1
PDP
GPS

0 250
Iteration

0

10

20

30

40

50 Trial#2
PDP
GPS

0 250
Iteration

0

10

20

30

40

50 Trial#3
PDP
GPS

0 250
Iteration

0

10

20

30

40

50 Trial#4
PDP
GPS

0 250
Iteration

0

10

20

30

40

50 Trial#5
PDP
GPS

0 100
Iteration

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Qu
ad

ro
to

r c
on

tro
l l

os
s

×104 Trial#1
PDP, N=5
PDP, N=35
iLQR
by OC solver

0 100
Iteration

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5 ×104 Trial#2
PDP, N=5
PDP, N=35
iLQR
by OC solver

0 100
Iteration

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5 ×104 Trial#3
PDP, N=5
PDP, N=35
iLQR
by OC solver

0 100
Iteration

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5 ×104 Trial#4
PDP, N=5
PDP, N=35
iLQR
by OC solver

0 100
Iteration

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5 ×104 Trial#5
PDP, N=5
PDP, N=35
iLQR
by OC solver

Figure S3: Experiments for PDP Control/Planning Mode: control loss (i.e., objective function
value) versus iteration. For the cart-pole (top panel) and robot arm (middle panel) systems, we
learn neural feedback policies, and compare with the GPS method [59]. For the quadrotor system,
we perform motion planning with a Lagrange polynomial policy (we use different degree N),
and compare with iLQR and an OC solver [79]. The results show that for learning feedback
control policies, PDP outperforms GPS in terms of having lower control loss (cost); and for motion
planning, iLQR has faster convergence speed than PDP. Please find the video demo at https:
//youtu.be/KTw6TAigfPY.

10

https://youtu.be/KTw6TAigfPY
https://youtu.be/KTw6TAigfPY

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time

20

15

10

5

0

5

10

Ca
rt

fo
rc

e

Ground truth
PDP
Inverse KKT
Policy clone

Cartpole planning

(a) Cart-pole

0 5 10 15 20 25 30 35 40

0

10

To
rq

ue
 1

Ground truth
PDP
Inverse KKT
Policy clone

0 5 10 15 20 25 30 35 40
Time

5.0

2.5

0.0

2.5

To
rq

ue
 2

Robot arm planning

(b) Robot arm

0 20 40

10

0

10

Th
ru

st
 1

0 20 40

0

5

10

To
rq

ue
 2

Ground truth
PDP
Inverse KKT
Policy clone

0 20 40
Time

0

5

10

To
rq

ue
 3

0 20 40
Time

10

0

10

To
rq

ue
 4

Quadrotor planning

(c) Quadrotor

Figure S4: Validation for the imitation learning experiment in Fig. S1. We preform motion planing
for each system in unseen conditions (new initial condition and new time horizon) using the learned
models. Results show that compared to the neural policy cloning and inverse KKT [52], PDP result
can accurately plan the expert’s trajectory in unseen settings. This indicates PDP can accurately learn
the dynamics and control objective, and has the better generality than the other two. Although policy
imitation has lower imitation loss than inverse KKT, it has the poorer performance in planing. This is
because with limited data, the cloned policy can be over-fitting, while the inverse KKT learns a cost
function, a high-level representation of policies, thus has better generality to unseen conditions.

0 5 10 15 20 25 30 35 40

1

0

1

Ca
rt

po
sit

io
n

Ground truth
PDP

DMDc
NN dynamics

0 5 10 15 20 25 30 35 40
Time

2

0

2

Po
le

 a
ng

le

Cartpole prediction

(a) Cart-pole

0 5 10 15 20 25 30 35 40
3

2

1

0

Jo
in

t1
 a

ng
el

e

0 5 10 15 20 25 30 35 40
Time

15

10

5

0

5

Jo
in

t 2
 a

ng
le

Ground truth
PDP

DMDc
NN dynamics

Robot arm prediction

(b) Robot arm

0 1 2

20

10

Po
sit

io
n

x

0 1 2
10

5

Po
sit

io
n

y
0 1 2

Time

10

0

Po
sit

io
n

z
Ground truth
PDP

DMDc
NN dynamics

Quadrotor prediction

(c) Quadrotor

Figure S5: Validation for the system identification experiment in Fig. S2. We perform motion
prediction in unactuated conditions (u = 0) using the learned dynamics. Results show that compared
to neural-network dynamics training and DMDc, PDP can accurately predict the motion trajectory of
each systems. This indicates the effectiveness of the PDP in identifying dynamics models.

0 5 10 15 20 25
Time

1.0

0.5

0.0

0.5

1.0

1.5

Ca
rt

fo
rc

e

Neural policy learned by PDP
Neural policy learned by GPS
Trajectory solved by OC solver

Cartpole optimal control

(a) Cart-pole

0 5 10 152

0

2

4

Jo
in

t t
or

qu
e

1 Neural policy learned by PDP
Neural policy learned by GPS
Trajectory solved by OC solver

0 5 10 15
Time

2

0

Jo
in

t t
or

qu
e

2

Robot arm optimal control

(b) Robot arm

0 10 20 30

0

2

4

Th
ru

st
 2

0 10 20 30
20

10

0

10

Th
ru

st
 1

iLQR
PDP, N=5
PDP, N=35
by OC solver

0 10 20 30
Time

0

2

4

Th
ru

st
 3

0 10 20 30
Time

20

10

0

10

Th
ru

st
 4

Quadrotor optimal control

(c) Quadrotor

Figure S6: Simulation of the learned policies in the control and planning experiment in Fig. S3. Fig.
S6a-S6b are the simulations of the learned neural feedback policies on the cart-pole and robot arm
systems, respectively, where we also plot the optimal trajectory solved by an OC solver [79] for
reference. From Fig. S6a-S6b, we observe that PDP results in a trajectory that is much closer to the
optimal one than that of GPS; this implies that PDP has lower control loss (please check our analysis
on this in Appendix E.4) than GPS. Fig. S6c is the planning results for the quadrotor system using
PDP, iLQR, and an OC solver [79], where we have used different degrees of Lagrange polynomial
policies in PDP. The results show that PDP can successfully plan a trajectory very close to the ground
truth optimal trajectory. We also observe that the accuracy of the resulting trajectory depends on
choice of the policy parameterization (i.e., expressive power): for example, the use of polynomial
policy of a higher degree N results in a trajectory closer to the optimal one (the one using the OC
solver) than the use of a lower degree. iLQR is generally able to achieve high-accuracy solutions
because it directly optimizes the loss function with respect to individual control inputs (instead of a
parameterized policy), but this comes at the cost of high computation expense, as shown in Fig. 5d.

11

F Related End-to-End Learning Frameworks

As discussed in Section 7, two categories are related to this work. Here, we only detail the difference
of PDP from the second category, i.e., the methods that learn an implicit planner within a RL policy.

Differentiable MPC. [67] develops an end-to-end differentiable MPC framework to jointly learn
the system dynamics model and control objective function of an optimal control system. In the
forward pass, it first uses iLQR [38] to solve the optimal control system and find a fixed point,
and then approximate the optimal control system by a LQR at the fixed point. In the backward
pass, the gradient is obtain by differentiating the LQR approximation. This process, however, may
have two drawbacks: first, since the differentiation in the backward pass is conducted on the LQR
approximation instead of on the original system, the obtained gradient thus may not be accurate due
to discrepancy of approximation; and second, computing the gradient of the LQR approximation
requires the inverse of a coefficient matrix, whose size is (2n+m)T × (2n+m)T with n and m
state and action dimensions, respectively, T the time horizon of the OC system, thus this will cause
huge computational cost when handling the system of longer time horizon T .

Compared to differentiable MPC, the first advantage of the PDP framework is that the differentiation
in the backward pass is directly performed on the parameterized optimal control system (by differen-
tiating through PMP). Second, we develop the auxiliary control system in the backward pass of PDP,
whose trajectory is exactly the gradient of the system trajectory in the forward pass. The gradient
then is iteratively solved using the auxiliary control system by Lemma 5.2 (Algorithm 2). Those
proposed techniques enables the PDP to have significant advantage in computational efficiency over
differentiable MPC. To illustrate this, we have compare the algorithm complexity for both PDP and
differentiable MPC in Table S1 and provide an experiment in Fig. S7.

Figure S7: Runtime (per iteration) comparison between the PDP and differentiable MPC [67] for
different time horizons of a pendulum system. Note that y-axis is log-scale, and the runtime is
averaged over 100 iterations. Both methods are implemented in Python and run on the same machine
using CPUs. The results show that the PDP runs 1000x faster than differentiable MPC.

Path Integral Network. [65] and [66] develop a differentiable end-to-end framework to learn
path-integral optimal control systems. Path-integral optimal control systems [69] however are a
limited category of optimal control systems, where the dynamics is affine in control input and
the control objective function is quadratic in control input. More differently, this path integral
network is essentially an ‘unrolling’ method, which means that the forward pass of solving optimal
control is extended as a graph of multiple steps of applying gradient descent, and the solution of
the optimal control system is considered as the output of the final step of the gradient descent
operations. Although the advantage of this unrolling (gradient descent) computational graph is that
it can immediately take advantage of automatic differentiation techniques such as TensorFlow [70]
to obtain the gradient in backpropagation, its drawback is however obvious: the framework is both
memory- and computationally- expensive because it needs to store and traverse all intermediate results
of the gradient descent process along the graph; furthermore, there is a conflict between computational
complexity and accuracy in the forward pass. We have provided its complexity analysis in Table S1.

Universal Planning Network. In [68], the authors develop an end-to-end imitation learning frame-
work consisting of two layers: the inner layer is a planner, which is formulated as an optimal control
system in a latent space and is solved by gradient descent, and an outer layer to minimize the imitation

12

loss between the output of inner layer and expert demonstrations. However, this framework is also
based on the ‘unrolling’ strategy. Specifically, the inner planning layer using gradient descent is
considered as a large computation graph, which chains together the sub-graphs of each step of
gradient descent. In the backward pass, the gradient derived from the outer layer back-propagates
through the entire computation graph. Again, this unrolled learning strategy will incur huge memory
and computation costs in implementation. Please find its complexity analysis in Table S1.

Different from the above ‘unrolling’ learning methods [65, 66, 68, 82], the proposed PDP method
handles the learning of optimal control systems in a ‘direct and compact’ manner. Specifically, in
forward pass, PDP only obtains and stores the final solution of the optimal control system and does
not care about the (intermediate) process of how such solution is obtained. Thus, the forward pass
of the PDP accepts any external optimal control solver such as CasADi [79]. Using the solution in
the forward pass, the PDP then automatically builds the auxiliary control system, based on which,
the exact analytical gradient is solved efficiently in backward pass. Such features guarantee that the
complexity of the PDP framework is only linearly scaled up to the time horizon of the system, which
is significantly efficient than the above ‘unrolling’ learning methods (please find the comparison in
Table S1). In Appendix G, we will present the detailed complexity analysis.

Table S1: Complexity comparison for different end-to-end learning frameworks

Learning
frameworks

Forward pass Backward pass

Method and accuracy
Complexity
(linear to) Method

Complexity
(linear to)

PI-Net [65]
N -step unrolled graph
using gradient descent;
accuracy depends on N

computation: NT
memory: NT

Back-propagation over
the unrolled graph

computation: NT
memory: NT

UPN [68]
N -step unrolled graph
using gradient descent;
accuracy depends on N

computation: NT
memory: NT

Back-propagation over
the unrolled graph

computation: NT
memory: NT

Diff-MPC [67]
iLQR finds fixed points;
can achieve any accuracy

computation: —
memory: T

Differentiate the LQR
approximation and
solve linear equations

computation: T 2

memory: T 2

PDP
Accept any OC solver;
can achieve any accuracy

computation: —,
memory: T Auxiliary control system computation: T ,

memory: T

*Here T denotes the time horizon of the system;

G Complexity of PDP

We consider the algorithm complexity of different learning modes of PDP (see Appendix D), and
suppose that the time horizon of the parameterized system Σ(θ) is T .

IRL/IOC Mode (Algorithm 3): in forward pass, PDP needs to obtain and store the optimal trajectory
ξθ of the optimal control system Σ(θ) in (1), and this optimal trajectory can be solved by any
(external) optimal control solver. In backward pass, PDP first uses ξθ to build the auxiliary control
system Σ(ξθ) in (16) and then computes ∂ξθ

∂θ by Lemma 5.2, which takes 2T steps.

SysID Mode (Algorithm 4): in forward pass, PDP needs to obtain and store the trajectory ξθ of the
original dynamics system Σ(θ) in (5). Such trajectory is simply a result of iterative integration of (5),
which takes T steps. In backward pass, PDP first uses ξθ to build the auxiliary control system Σ(ξθ)

in (20) and then computes ∂ξθ
∂θ by iterative integration of (20), which takes T steps.

Control/Planning Mode (Algorithm 5): in forward pass, PDP needs to obtain and store the trajectory
ξθ of the controlled system Σ(θ) in (7). Such trajectory is simply a result of iterative integration of
(7), which takes T steps. In backward pass, PDP first uses ξθ to build an auxiliary control system
Σ(ξθ) in (21) and then computes ∂ξθ

∂θ by integration of (21), which takes T steps.

Therefore, we can summarize that the memory- and computational- complexity for the PDP frame-
work is only linear to the time horizon T of the parameterized system Σ(θ). This is significantly
advantageous over existing end-to-end learning frameworks, as summarized in Table S1.

13

H Limitation of PDP

PDP is a first-order algorithm. We observe that (i) all gradient quantities in PDP are analytical and
exact; (ii) the development of PDP does not involve any second-order derivative/approximation of
functions or models (note that PMP is a first-order optimality condition for optimal control); and
(iii) PDP minimizes a loss function directly with respect to unknown parameters in a system using
gradient descent. Thus, we conclude that PDP is a first-order gradient-descent based optimization
framework. Specifically for the SysID and Control/Planning modes of PDP, they are also first-order
algorithms. When using these modes to solve optimal control problems, this first-order nature may
bring disadvantages of PDP compared to high-order methods, such as iLQR which can be considered
as 1.5-order because it uses second-order derivative of a value function and first-order derivative of
dynamics, or DDP which is a second-order method as it uses the second-order derivatives of both
value function and dynamics. The disadvantages of PDP have already been empirically shown in Fig.
5c and Fig. S3, where the converging speed of PDP in its planning mode is slower than that of iLQR.
For empirical comparisons between first- and second-order techniques, we refer the reader to [83].

Convergence to local minima. Since PDP is a first-order gradient-descent based algorithm, PDP
can only achieve local minima for general non-convex optimization problems in (3). Furthermore, we
observe that the general problem in (3) belongs to a bi-level optimization framework. As explored in
[71], under certain assumptions such as convexity and smoothness on models (e.g., dynamics model,
policy, loss function and control objective function), global convergence of the bi-level optimization
can be established. But we think such conditions are too restrictive in the context of dynamical
control systems. As a future direction, we will investigate mild conditions for good convergence by
resorting to dynamical system and control theory, such as Lyapunov theory.

Parameterization matters for global convergence. Although PDP only achieves local convergence,
these still exists a question of how likely PDP can obtain the global convergence. In our empirical
experiments, we find that how models are parameterized matters for good convergence performance.
For example, in IOC/IRL mode, we observe that using a neural network control objective function
(in Fig. 3d) is more likely to get trapped in local minima than using the parameterization of weighted
distance objective functions (in Fig. 3a-3c). In control/planning mode, using a deeper neural network
policy (in Fig. 5a-5b) is more like to result in local minima than using a simpler one. Also in the
motion planning experiment, we use the Lagrange polynomial to parameterize a policy instead of
using standard polynomials, because the latter can lead to poor conditioning and sensitivity issues (a
small change of polynomial parameter results in large change in performance) and thus more easily
get stuck in local minima. One high-level explanation is that more complex parameterization will
bring extreme non-convexity to the optimization problem, making the algorithm more easily trapped
in local minima. Again, how to theoretically justify those empirical experience and find the mild
conditions for global convergence guarantee still needs to be investigated in future research.

I PDP to Solve 6-DoF Rocket Powered Landing Problems

As a final part in this supplementary, we will demonstrate the capability of PDP to solve the more
challenging 6-DoF rocket powered landing problems.

We here omit the description of mechanics modeling for the 6-DoF powered rocket system, and refer
the reader to Page 5 in [84] for the rigid body dynamics model of a rocket system (the notations and
coordinates used below follows the ones in [84]). The state vector of the rocket system is defined as

x =
[
m r′I v′I q′B/I ω′B

]′ ∈ R14, (S.26)

where m ∈ R is the mass of the rocket; rI ∈ R3 and vI ∈ R3 are the position and velocity of the
rocket (center of mass) in the inertially-fixed Up-East-North coordinate frame; qB/I ∈ R4 is the unit
quaternion denoting the attitude of rocket body frame with respect to the inertial frame (also see the
description in the quadrotor dynamics in Appendix E.1); and ωB ∈ R3 is the angular velocity of the
rocket expressed in the rocket body frame. In our simulation, we only focus on the final descending
phase before landing, and thus assume the mass depletion during such a short phase is very slow and
thus ṁ ≈ 0. We define the control input vector of the rocket, which is the thrust force vector

u = T B = [Tx, Ty, Tz]
′ ∈ R3, (S.27)

14

acting on the gimbal point of the engine (situated at the tail of the rocket) and is expressed in the
body frame. Note that the relationship between the total torque MB applied to the rocket and the
thrust force vector T B isMB = rI,B×T B, with rI,B ∈ R3 being constant position vector from the
center-of-mass of the rocket to the gimbal point of the engine. The continuous dynamics is discretized
using the Euler method: xt+1 = xt + ∆ · f(xt,ut) with the discretization interval ∆ = 0.1s.

For the rocket system, the unknown dynamics parameter, θdyn, includes the rocket’s initial mass m0,
and the moment of inertia JB ∈ R3×3, and the rocket length `, thus, θdyn = {m0,JB, `} ∈ R8.

For the control objective (cost) function, we consider a weighted combination of the following
aspects:

• distance of the rocket position from the target position, associated with weight w1;
• distance of the rocket velocity from the target velocity, associated with weight w2;
• penalty of the excessive title angle of the rocket, associated with weight w3;
• penalty of the side effects of the thrust vector, associated with weight w4;
• penalty of the total fuel cost, associated with weighted w5.

So the parameter of the control objective function, θobj = [w1, w2, w3, w4, w5]
′ ∈ R5. In sum,

the overall parameter for the 6-DoF rocket powered landing control system is

θ = {θdyn, θobj} ∈ R13. (S.28)

Imitation learning. We apply the IRL/IOC mode of PDP to perform imitation learning of the
6-DoF rocket powered landing. The experiment process is similar to the experiments in Appendix
E.2, where we collect five trajectories from an expert system with dynamics and control objective
function both known (different trajectories have different time horizons T ranging from 40 to 50 and
different initial state conditions). Here we minimize imitation loss L(ξθ,θ)=‖ξd − ξθ‖

2 over the
parameter of dynamics and control objective, θ in (S.28). The learning rate is set to η = 10−4, and
we run five trials with random initial parameter guess θ0. The imitation loss L(ξθ,θ) versus iteration
is plotted in Fig. S8a. To validate the learned models (the learned dynamics and the learned objective
function), we use the learned models to perform motion planing of rocket powered landing in unseen
settings (here we use new initial condition and new time horizon). The planing results are plotted in
Fig. S8b, where we also plot the ground truth for comparison.

System identification. We apply the SysID mode of PDP to identify the dynamics parameter θdyn
of the rocket. The experiment process is similar to the experiments in Appendix E.3, where we collect
five trajectories with different initial state conditions, time horizons (T ranges from 10 to 20), and
random control inputs. We minimize the SysID loss L(ξθ,θ) = ‖ξo − ξθ‖

2 over θdyn in (S.28). The
learning rate is set to η = 10−4, and we run five trials with random initial parameter guess for θdyn.
The SysID loss L(ξθ,θ) versus iteration is plotted in Fig. S9a. To validate the learned dynamics, we
use it to predict the motion of rocket given a new sequence of control inputs. The prediction results
are in Fig. S9b, where we also plot the ground truth for reference.

Optimal powered landing control. We apply the Control/Planning mode of PDP to find an optimal
control sequence for the rocket to perform a successful powered landing. The experiment process
is similar to the experiments performed for the quadrotor system in Appendix E.4. We set the time
horizon as T = 50, and randomly choose an initial state condition x0 for the rocket. We minimize
the control loss function, which is now a given control objective function with θobj known. The
control policy we use here is parameterized as the Lagrangian polynomial, as described in (S.24) in
Appendix E.4, here with degree N = 25. The control loss is set as the control objective function
learned in the previous imitation learning experiment. The learning rate is set to η = 10−4, and we
run five trials with random initial guess of the policy parameter. The the control loss L(ξθ,θ) versus
iteration is plotted in Fig. S10a. To validate the learned optimal control policy, we use it to simulate
the motion (control trajectory) of the rocket landing, and compare with the ground truth optimal
trajectory obtained by an OC solver. The validation results are in Fig. S10b.

15

0 200 400 600 800 1000
Iteration

10 3

10 1

101

103

Im
ita

tio
n

Lo
ss

Imitation of powered landing

(a) Training

0 25
Time

40
30
20
10

0
10
20

T x
 [N

]

0 25
Time

8

6

4

2

0

2

T y
 [N

]

0 25
Time

2

0

2

4

6

T z
 [N

]

truth
PDP

Planning for powered landing

(b) Validation
(Tx is defined along the rocket direction)

Figure S8: (a) Training process for imitation learning of 6-DoF rocket powered landing: the imitation
loss versus iteration; here we have performed five trials (labeled by different colors) with random
initial parameter guess. (b) Validation: we use the learned models (dynamics and control objective
function) to perform motion planning of the rocket powered landing in unseen settings (i.e. given new
initial state condition and new time horizon requirement); here we also plot the ground-truth motion
planning of the expert for reference. The results in (a) and (b) show that the PDP can accurately learn
the dynamics and control objective function from demonstrations, and have good generalizability to
novel situations. Please find the video demo at https://youtu.be/4RxDLxUcMp4.

0 500 1000 1500 2000
Iteration

10 22

10 16

10 10

10 4

102

Sy
sID

 L
os

s

Dynamics identification

(a) Training

0 10

10

0

v x

0 10
0.00

0.25

0.50

v y
0 10

0.0

0.2

0.4

v z truth
PDP

0 10
Time

0.1

0.0

0.1

x

0 10
Time

0.0

0.2y

0 10
Time

0.2

0.0

z

Prediction using learned dynamics

(b) Validation

Figure S9: (a) Training process for identification of rocket dynamics: SysID loss versus iteration;
here we have performed five trials (labeled by different colors) with random initial parameter guess.
(b) Validation: we use the learned dynamics model to perform motion prediction of the rocket given a
new control sequence; here we also plot the ground-truth motion (where we know the exact dynamics).
The results in (a) and (b) show that the PDP can accurately identify the dynamics model of the rocket.

0 2000 4000 6000 8000 10000
Iteration

10000

15000

20000

25000

30000

Co
nt

ro
l l

os
s

Control for powered landing

(a) Training

0 50
Time

5

10

15

T x
 [N

]

0 50
Time

0

5

10

15

T y
 [N

]

0 50
Time

1

0

1

2

T z
 [N

]

OC solver
PDP

Learned control for powered landing

(b) Validation
(Tx is defined along the rocket)

Figure S10: (a) Training process of learning the optimal control policy for rocket powered landing:
the control loss versus iteration; here we have performed five trials (labeled by different colors) with
random initial guess of the policy parameter. (b) Validation: we use the learned policy to simulate
the rocket control trajectory; here we also plot the ground-truth optimal control solved by an OC
solver. The results in (a) and (b) show that the PDP can successfully find the optimal control policy
(or optimal control sequence) to successfully perform the rocket powered landing. Please find the
video demo at https://youtu.be/5Jsu772Sqcg.

16

https://youtu.be/4RxDLxUcMp4
https://youtu.be/5Jsu772Sqcg

	Introduction
	Background and Related Work
	Problem Formulation
	An End-to-End Learning Framework
	Key Contributions: Differential PMP & Auxiliary Control System
	Differential PMP
	Auxiliary Control System

	Applications to Different Learning Modes and Experiments
	Discussion
	Conclusions
	Proof of Lemma 5.1
	Proof of Lemma 5.2
	Proof of the Discrete-Time Pontryagin's Maximum Principle
	Algorithms Details for Different Learning Modes
	Experiment Details
	System/Environment Setup
	Experiment of Imitation Learning
	Experiment of System Identification
	Experiment of Control/Planning

	Related End-to-End Learning Frameworks
	Complexity of PDP
	Limitation of PDP
	PDP to Solve 6-DoF Rocket Powered Landing Problems

