
A Proofs

A.1 Proof of Lemma 1

Lemma 1. Given a loss function L and under the first-order Taylor expansion, the solution of

max
‖x′−x‖p≤ε

L(x′)

is x∗ = x+ εUp(∇L(x)). Furthermore, there is L(x∗) = L(x) + ε‖∇L(x)‖q, where ‖ · ‖q is the
dual norm of ‖ · ‖p.

Proof. We denote x′ = x + εv, where ‖v‖p ≤ 1. Then we know that ‖x′ − x‖p ≤ ε. Under the
first-order Taylor expansion, there is

max
‖x′−x‖p≤ε

L(x′) = max
‖v‖p≤1

[
L(x) + εv>∇L(x)

]
= L(x) + ε max

‖v‖p≤1
v>∇L(x).

According to the definition of the dual norm [2], there is max‖v‖p≤1 v
>∇L(x) = ‖∇L(x)‖q , where

where ‖ · ‖q is the dual norm of ‖ · ‖p. Thus we prove that L(x∗) = L(x) + ε‖∇L(x)‖q and
x∗ = x+ εUp(∇L(x)).

A.2 Proof of Lemma 2

Lemma 2. By derivations, there is

∇x′ LCE(f(x
′), f(x)) = −

∑
i 6=j

f(x)if(x
′)j∇x′(W>ij z

′),

where Wij = Wi − Wj , z′ = z(x′;ω). When f(x) = 1y, we have ∇x′ LCE(f(x
′), y) =

−
∑
l 6=y f(x

′)l∇x′(W>ylz
′).

Proof. By derivations, there is

−∇x′ LCE(f(x
′), f(x))

= ∇x′
(
f(x)> log f(x′)

)
=
∑
i∈[L]

f(x)i∇x′ log(f(x′)i)

=
∑
i∈[L]

f(x)i∇x′ log

(
exp(W>i z

′)∑
j∈[L] exp(W

>
j z
′)

)

=
∑
i∈[L]

f(x)i∇x′

W>i z′ − log

∑
j∈[L]

exp(W>j z
′)


=
∑
i∈[L]

f(x)i

∇x′(W>i z
′)−

∑
j∈[L]

f(x′)j∇x′(W>j z
′)


=
∑
i∈[L]

f(x)i

∑
j 6=i

f(x′)j∇x′(W>ij z
′)


=
∑
i 6=j

f(x)if(x
′)j∇x′(W>ij z

′).

Specially, when f(x) = 1y , we can obtain based on the above formulas that

∇x′ LCE(f(x
′), y) = −

∑
l 6=y

f(x′)l∇x′(W>ylz
′).
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B Related work

In this section, we extensively introduce the related work in the adversarial setting, including the
adversarial threat models (Sec. B.1), the adversarial attacks (Sec. B.2), the adversarial training strategy
(Sec. B.3), and some recent work on combining metric learning with adversarial training (Sec. B.4).

B.1 Adversarial threat models

Now we introduce different threat models in the adversarial setting following the suggestions in
Carlini et al. [6]. Specifically, a threat model includes a set of assumptions about the adversary’s
goals, capabilities, and knowledge.

Adversary’s goals could be simply fooling the classifiers to misclassify, which is referred to as
untargeted mode. On the other hand, the goals can be more aggressive to make the model misclassify
from a source class into a target class, which is referred to as targeted mode.

Adversary’s capabilities describe the constraints imposed on the attackers. For the `p bounded threat
models, adversarial examples require the perturbation δ to be bounded by a preset threshold ε under
`p-norm, i.e., ‖δ‖p ≤ ε.
Adversary’s knowledge tells what knowledge the adversary is assumed to own. Typically, there are
four settings when evaluating a defense method:

• Oblivious adversaries are not aware of the existence of the defense D and generate adver-
sarial examples based on the unsecured classification model F [5].

• White-box adversaries know the scheme and parameters of D, and can design adaptive
methods to attack both the model F and the defense D simultaneously [1].

• Black-box adversaries have no access to the parameters of the defense D or the model F
with varying degrees of black-box access [10].
• General-purpose adversaries apply general transformations or corruptions on the images,

which are related to traditional research topics on the input invariances [15, 39].

B.2 Adversarial attacks

Below we show the details of the attack methods that we test on in our experiments. For clarity, we
only introduce the untargeted attacks. The descriptions below mainly adopt from Dong et al. [11].

FGSM [13] generates an untargeted adversarial example under the `∞ norm as

xadv = x+ ε · sign(∇xLCE(x, y)). (1)

BIM [21] extends FGSM by iteratively taking multiple small gradient updates as

xadvt+1 = clipx,ε
(
xadvt + η · sign(∇xLCE(x

adv
t , y))

)
, (2)

where clipx,ε projects the adversarial example to satisfy the `∞ constrain and η is the step size.

PGD [25] is similar to BIM except that the initial point xadv0 is uniformly sampled from the neigh-
borhood around the clean input x, which can cover wider diversity of the adversarial space [34].

MIM [10] integrates a momentum term into BIM with the decay factor µ = 1.0 as

gt+1 = µ · gt +
∇xLCE(x

adv
t , y)

‖∇xLCE(xadvt , y)‖1
, (3)

where the adversarial examples are updated by

xadvt+1 = clipx,ε(x
adv
t + α · sign(gt+1)). (4)

MIM has good performance as a transfer-based attack, which won the NeurIPS 2017 Adversarial
Competition [23]. We set the step size η and the number of iterations identical to those in BIM.

DeepFool [27] is also an iterative attack method, which generates an adversarial example on the
decision boundary of a classifier with the minimum perturbation. We set the maximum number of
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iterations as 100 in DeepFool, and it will early stop when the solution at an intermediate iteration is
already adversarial.

C&W [4] is a powerful optimization-based attack method, which generates an `2 adversarial example
xadv by solving

argmin
x′

{
c ·max(Z(x′)y −max

i 6=y
Z(x′)i, 0)

+ ‖x′ − x‖22
}

,
(5)

where Z(x′) is the logit output of the classifier and c is a constant. This optimization problem is
solved by an Adam [19] optimizer. c is found by binary search. The C&W attack can also be applied
under the `∞ threat model with the adversarial loss function max(Z(x′)y − maxi6=y Z(x

′)i, 0),
using the iterative crafting process.

ZOO [7] has been proposed to optimize Eq. (5) in the black-box manner through queries. It estimates
the gradient at each coordinate as

ĝi =
L(x+ σei, y)− L(x− σei, y)

2σ
≈ ∂L(x, y)

∂xi
, (6)

where L is the objective in Eq. (5), σ is a small constant, and ei is the i-th unit basis vector. In our
experiments, we perform one update with ĝi at one randomly sampled coordinate. We set σ = 10−4

and max queries as 20, 000.

NES [17] and SPSA [32] adopt the update rule in Eq. (2) for adversarial example generation.
Although the true gradient is unavailable, NES and SPSA give the full gradient estimation as

ĝ =
1

q

q∑
i=1

J (x+ σui, y)− J (x− σui, y)
2σ

· ui, (7)

where we use J (x, y) = Z(x)y −maxi 6=y Z(x)i instead of the cross-entropy loss, {ui}qi=1 are the
random vectors sampled from a Gaussian distribution in NES, and a Rademacher distribution in
SPSA. We set σ = 0.001 and q = 128 in our experiments, as default in the original papers.

B.3 Adversarial training

Adversarial training (AT) is one of the most effective strategies on defending adversarial attacks,
which dominates the winner solutions in recent adversarial defense competitions [3, 23]. The AT
strategy stems from the seminal work of Goodfellow et al. [13], where the authors propose to craft
adversarial examples with FGSM and augment them into the training data batch in a mixed manner,
i.e., each mini-batch of training data consists of a mixture of clean and crafted adversarial samples.
However, FGSM-based AT was shown to be vulnerable under multi-step attacks, where Wong et al.
[34] later verify that random initialization is critical for the success of FGSM-based AT. Recent work
also tries to solve the degeneration problem of one-step AT by adding regularizers [33]. Another
well-known AT strategy using the mixed mini-batch manner is ALP [18], which regularizes the
distance between the clean logits and the adversarial ones. But later Engstrom et al. [12] successfully
evade the models trained by ALP. As to the mixed mini-batch AT, Xie and Yuille [35] show that
using an auxiliary batch normalization for the adversarial part in the data batch can improve the
performance of the trained models.

Among the proposed AT frameworks, the most popular one is the PGD-AT [25], which formulates
the adversarial training procedure as a min-max problem. Zhang et al. [38] propose the TRADES
framework to further enhance the model robustness by an additional regularizer between model
predictions, which achieves state-of-the-art performance in the adversarial competition of NeurIPS
2018 [3]. However, multi-step AT usually causes high computation burden, where training a robust
model on ImageNet requires tens of GPU workers in parallel [22, 36]. To reduce the computational
cost, Shafahi et al. [31] propose the FreeAT strategy to reuse the back-propagation result for crafting
the next adversarial perturbation, which facilitate training robust models on ImageNet with four
GPUs running for two days.

B.4 Metric learning + adversarial training

Previous work finds that the adversarial attack would cause the internal representation to shift closer
to the ”false” class [26, 24]. Based on this observation, they propose to introduce an extra triplet loss
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term in the training objective to capture the stable metric space representation, formulated as

Ltrip(z(x
∗), z(xp), z(xn))

= [D(z(x∗), z(xp))−D(z(x∗), z(xn)) + α]
+ ,

(8)

where α > 0 is a hyperparameter for margin, x∗ (anchor example) is an adversarial counterpart based
on the clean input x, xp (positive example) is a clean image from the same class of x; xn (negative
example) is a clean image from a different class. Here D(u, v) is a distance function. Mao et al.
[26] employ an angular distance as D(u, v) = 1− cos∠(u, v); Li et al. [24] apply the `∞ distance
as D(u, v) = ‖u − v‖∞. In the implementation, these methods apply some heuristic strategies to
sample triplets, in order to alleviate high computation overhead. For example, Mao et al. [26] select
the closest sample in a mini-batch as an approximation to the semi-hard negative example. However,
the optimization on sampled triplets is still computationally expensive and could introduce class
biases on unbalanced datasets [16].

Zhang and Wang [37] apply a feature-scatter solver for the inner maximization problem of AT, which
is different from PGD. Instead of crafting each adversarial example based on its clean counterpart, the
feature-scatter solver generate the adversarial examples in batch to utilize inter-sample interactions,
via maximizing the optimal transport (OT) distance between the clean and adversarial empirical
distributions. In the implementation, they use practical OT-solvers to calculate the OT distance and
maximize it w.r.t. the adversarial examples. However, the calculation of the OT distance will increase
the computational burden for the AT procedure. Besides, the feature-scatter solver also leads to
potential threats for the trained models to be evaded by adaptive attacks, e.g., feature attacks, as
discussed before12.

C More empirical results

In this section, we provide more empirical results and setups. In our experiments, we apply NVIDIA
P100 / 2080Ti GPUs, as well as the Apex package to execute training for FastAT [8, 34]. On
CIFAR-10, all the models are trained by four GPUs in parallel for PGD-AT, ALP, and TRADES.

C.1 Code references

To ensure that our experiments perform fair comparison with previous work, we largely adopt the
public codes and make minimal modifications on them to run the trials. Specifically, we refer to the
codes of TRADES3 [38], FreeAT4 [31], FastAT5 [34] and the corrupted datasets6 from Hendrycks
and Dietterich [14]. The codes are mostly based on PyTorch [30].

C.2 Datasets

The CIFAR-10 dataset [20] consists of 60,000 32x32 colour images in 10 classes, with 6,000 images
per class. There are 50,000 training images and 10,000 test images. We perform RandomCrop with 4
padding and RandomHorizontalFlip in training as the data augmentation. The ImageNet (ILSVRC
2012) dataset [9] consists of 1.28 million training images and 50,000 validation images in 1,000
classes. As to the data augmentation, we perform RandomResizedCrop and RandomHorizontalFlip
in training; Resize and CenterCrop in test. The image size is 256 and the crop size is 224.

C.3 Extensive ablation studies

Different choices of the scale s and the margin m in HE lead to different trade-offs between the clean
accuracy and the adversarial robustness of the trained models, as shown in Table 1. This kind of
trade-off is ubiquitous w.r.t. the hyperparameter settings in different AT frameworks [18, 38].

1https://github.com/Line290/FeatureAttack
2https://openreview.net/forum?id=Syejj0NYvr&noteId=rkeBhuBMjS
3https://github.com/yaodongyu/TRADES
4https://github.com/mahyarnajibi/FreeAdversarialTraining
5https://github.com/locuslab/fast adversarial
6https://github.com/hendrycks/robustness
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Table 1: Classification accuracy (%) on CIFAR-10. The training framework is TRADES + HE with
different scale s and margin m. We report the performance on clean inputs and under PGD-20 attack.

Defense Scale s Margin m Clean PGD-20

TRADES + HE

15 0.0 82.53 60.35
15 0.1 85.00 61.13
15 0.2 84.88 62.02
15 0.3 82.99 61.54
15 0.4 78.05 58.05
15 0.5 74.71 56.27
1 0.2 89.34 50.33
5 0.2 85.70 58.75
10 0.2 85.30 60.17
15 0.2 84.88 62.02
20 0.2 77.67 57.51

C.4 Transfer-based black-box attacks

Due to the adversarial transferability [28, 29], the black-box adversaries can construct adversarial
examples based on the substitute models and then feed these examples to evade the original models.
In our experiments, we apply PGD-AT, ALP, and TRADES to train the substitute models, respectively.
To generate adversarial perturbations, we employ the untargeted PGD-20 [25] and MIM-20 [10]
attacks, where the MIM attack won both the targeted and untargeted attacking tracking in the
adversarial competition of NeurIPS 2017 [23]. In Fig. 1, we show the results of transfer-based attacks
against the defense models trained without or with the HE mechanism. As expected, we can see that
applying HE can also better defend transfer-based attacks.

Figure 1: Classification accuracy (%) under the black-box transfer-based attacks on CIFAR-10. The
substitute models are PGD-AT, ALP and TRADES separately. * indicates white-box cases.
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C.5 Full results of m-HE on CIFAR-10

In Table 2, we evaluate the white-box performance of the combinations of the modified HE (m-HE)
with PGD-AT, ALP, and TRADES. We set the parameters with s = 15 and m = 0.1. We can see that
m-HE is more effective than HE when combining with PGD-AT, FreeAT and Fast AT that exclusively
train on adversarial examples. In contrast, HE performs better than m-HE when combining with the
frameworks training on the mixture of clean and adversarial examples, e.g., ALP and TRADES.

Table 2: Classification accuracy (%) on CIFAR-10 under the white-box threat model. The perturbation
ε = 0.031, step size η = 0.003, following the setting in Zhang et al. [38].

Defense Clean PGD-20 PGD-500 MIM-20 FGSM DeepFool C&W-`∞
PGD-AT 86.75 53.97 51.63 55.08 59.70 57.26 84.00

PGD-AT + HE 86.19 59.36 57.59 60.19 63.77 61.56 84.07
PGD-AT + m-HE 86.25 59.90 58.46 60.50 63.70 59.47 83.71

ALP 87.18 52.29 50.13 53.35 58.99 59.40 84.96
ALP + HE 89.91 57.69 51.78 58.63 65.08 65.19 87.86

ALP + m-HE 89.23 57.09 53.34 58.04 63.81 60.74 87.21
TRADES 84.62 56.48 54.84 57.14 61.02 60.70 81.13

TRADES + HE 84.88 62.02 60.75 62.71 65.69 60.48 81.44
TRADES + m-HE 84.30 61.83 60.43 62.67 65.49 60.51 80.53
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C.6 Full results on CIFAR-10-C and ImageNet-C

In Table 3 and Table 4 we provide the full classification accuracy results of different defenses on
CIFAR-10-C and ImageNet-C [14], respectively. These reports include detailed accuracy under 75
combinations of severity and corruption.

Table 3: Classification accuracy (%) on CIFAR-10-C. Full results on different combination of
severity and corruption. Here ’S’ refers to the severity from 1 to 5, ’P’ refers to PGD-AT, ’A’ refers
to ALP, ’T’ refers to TRADES.

Defense S Noise Blur Weather Digital
Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contra Elastic Pixel JPEG

P

1 85.97 86.3 83.55 86.15 81.92 83.65 82.86 86.12 84.88 84.27 87.15 82.37 82.06 86.23 85.17
2 84.16 85.82 79.92 84.8 82.06 80.09 82.49 84.4 80.84 76.22 86.68 59.77 82.2 85.62 84.64
3 81.22 83.08 76.79 82.87 81.55 76.32 81.12 82.39 75.24 65.71 85.7 40.64 81.13 85.33 84.41
4 79.4 81.2 69.55 80.67 76.18 76.39 80.17 78.03 75.93 51.96 83.87 23.09 79.65 84.27 83.86
5 77.48 78.02 62.8 74.7 76.72 71.66 77.77 75.69 72.9 30.37 76.86 16.9 78.95 82.37 83.69

P+HE

1 85.37 85.67 83.7 85.63 81.51 83.75 82.67 85.33 84.26 84.1 86.45 82.43 81.69 85.43 85.05
2 83.69 84.99 80.97 84.5 81.76 80.66 82.33 83.99 80.33 76.84 86.0 61.36 81.92 85.15 84.52
3 81.14 82.46 78.01 82.65 81.2 76.73 81.11 81.43 75.71 66.59 85.17 41.76 81.2 84.63 84.05
4 79.74 81.25 71.67 80.83 76.14 77.03 80.09 77.77 76.35 52.75 83.31 23.65 80.01 83.77 83.67
5 77.76 77.99 66.37 75.58 76.67 72.68 78.16 75.35 73.28 31.96 77.44 16.36 78.61 81.84 83.23

A

1 86.57 86.93 84.13 86.53 83.04 84.12 83.07 86.4 85.77 85.12 87.4 83.21 82.18 86.46 85.79
2 84.96 86.31 80.48 85.01 82.65 81.04 82.73 84.86 82.19 77.27 87.24 61.34 82.11 86.02 85.09
3 81.84 83.55 77.23 82.84 81.83 76.91 81.15 82.76 76.57 65.68 86.36 41.96 81.32 85.73 84.63
4 80.05 81.64 69.53 80.65 77.1 77.09 80.17 78.56 77.54 51.09 84.74 24.92 80.13 84.46 84.23
5 78.01 78.6 62.97 74.69 76.96 71.99 77.75 76.13 74.26 28.39 78.66 17.85 78.81 82.79 83.68

A+HE

1 88.61 89.27 85.56 89.58 83.58 87.05 86.36 88.71 88.62 88.2 90.1 86.55 85.93 89.37 88.52
2 85.89 88.25 81.13 88.15 83.79 83.83 85.88 87.0 86.2 82.37 89.9 69.33 85.97 88.72 87.62
3 81.61 83.99 76.29 86.14 83.69 79.81 84.68 85.71 82.47 73.58 89.13 51.2 84.94 87.98 86.99
4 78.72 81.42 67.61 84.08 75.73 80.34 83.73 82.52 82.79 61.5 88.06 30.06 83.36 86.92 86.89
5 76.26 76.64 60.84 78.21 77.56 75.28 81.5 81.76 79.36 38.48 84.46 16.58 82.01 84.19 86.37

T

1 83.74 84.16 81.61 84.01 79.97 81.98 80.69 84.16 83.57 82.53 85.21 79.91 79.47 84.22 83.27
2 81.84 83.44 78.34 82.61 79.85 78.62 80.04 82.96 79.7 74.42 84.78 57.63 79.8 83.45 82.64
3 78.63 80.56 74.84 80.58 79.55 75.09 78.9 80.79 73.97 63.06 83.78 39.34 79.05 83.07 82.32
4 77.09 78.42 67.85 78.62 74.7 75.0 77.9 76.33 75.08 49.91 82.13 24.6 77.48 82.2 81.83
5 74.8 75.27 61.88 73.4 74.55 71.03 75.78 73.39 72.41 28.5 74.41 17.54 76.86 80.31 81.53

T+HE

1 83.06 83.78 81.12 83.96 79.42 82.13 81.28 83.69 83.22 82.31 85.0 80.2 80.35 83.84 83.24
2 81.18 83.02 78.41 82.89 79.75 79.39 81.03 82.23 79.21 75.12 84.93 60.38 80.14 83.23 82.64
3 78.43 80.11 75.4 81.35 79.53 76.19 79.9 80.13 73.93 65.6 83.87 41.97 79.88 83.12 82.37
4 76.85 78.63 69.59 79.78 74.03 76.62 78.95 76.34 74.51 52.36 82.2 25.59 78.33 82.16 82.07
5 74.89 75.55 64.55 74.77 75.32 71.98 76.92 73.74 71.79 31.56 75.64 17.07 77.74 80.17 81.66

Table 4: Classification accuracy (%) on ImageNet-C. Full results on different combination of severity
and corruption. Here ’S’ refers to the severity from 1 to 5, ’F’ refers to FreeAT.

Defense S Noise Blur Weather Digital
Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contra Elastic Pixel JPEG

F

1 54.26 53.23 44.00 33.91 42.25 43.97 38.64 42.57 45.83 11.00 56.42 18.29 48.45 53.91 54.74
2 45.84 43.08 32.60 26.68 34.06 34.70 33.36 26.16 28.50 4.41 53.20 6.59 31.78 52.98 53.92
3 29.74 28.36 23.48 16.82 25.22 23.83 26.93 22.69 17.22 1.54 47.98 1.38 49.64 50.19 53.34
4 12.96 10.66 8.91 11.10 19.35 15.20 23.52 11.98 15.51 1.20 39.56 0.40 46.09 45.24 51.57
5 3.28 4.85 2.73 7.25 12.29 11.05 18.84 11.75 10.28 0.43 28.73 0.34 32.82 41.55 49.19

F+HE

1 55.14 53.27 44.29 38.15 46.08 47.57 41.90 45.92 50.32 15.25 58.73 23.31 51.15 56.17 57.03
2 43.96 40.02 29.08 30.34 37.97 38.39 36.21 30.21 34.26 6.59 56.47 9.23 34.61 55.40 56.23
3 24.49 23.14 18.38 18.52 27.98 26.44 29.38 26.83 22.34 2.39 52.39 1.71 52.64 52.65 55.77
4 9.37 8.37 5.89 11.71 21.45 16.42 25.61 15.22 20.43 1.85 45.56 0.47 48.94 47.82 54.17
5 2.23 3.95 1.63 7.09 12.93 11.59 20.68 14.89 14.36 0.58 36.21 0.41 36.25 43.81 52.04
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