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Abstract

In this paper, we revisit and improve the convergence of policy gradient (PG),
natural PG (NPG) methods, and their variance-reduced variants, under general
smooth policy parametrizations. More specifically, with the Fisher information
matrix of the policy being positive definite: i) we show that a state-of-the-art
variance-reduced PG method, which has only been shown to converge to stationary
points, converges to the globally optimal value up to some inherent function
approximation error due to policy parametrization; ii) we show that NPG enjoys a
lower sample complexity; iii) we propose SRVR-NPG, which incorporates variance-
reduction into the NPG update. Our improvements follow from an observation
that the convergence of (variance-reduced) PG and NPG methods can improve
each other: the stationary convergence analysis of PG can be applied to NPG as
well, and the global convergence analysis of NPG can help to establish the global
convergence of (variance-reduced) PG methods. Our analysis carefully integrates
the advantages of these two lines of works. Thanks to this improvement, we have
also made variance-reduction for NPG possible, with both global convergence and
an efficient finite-sample complexity.

1 Introduction

Policy gradient (PG) methods, or more generally direct policy search methods, have long been
recognized as one of the foundations of reinforcement learning (RL) [1]. Specifically, PG methods
directly search for the optimal policy parameter that maximizes the long-term return in Markov
decision processes (MDPs), following the policy gradient ascent direction [2, 3]. This search
direction can be more efficient using a preconditioning matrix, e.g., using the natural PG direction
[4]. These methods have achieved tremendous empirical successes recently, especially boosted by
the power of (deep) neural networks for policy parametrization [5, 6, 7, 8]. These successes are
primarily attributed to the fact that PG methods naturally incorporate function approximation for
policy parametrization, in order to handle massive and even continuous state-action spaces.

In practice, the policy gradients are usually estimated via samples using Monte-Carlo rollouts and
bootstrapping [2, 9]. Such stochastic PG methods notoriously suffer from very high variances, which
not only destabilize but also slow down the convergence. Several conventional approaches have
been advocated to reduce the variance of PG methods, e.g., by adding a baseline [3, 10], or by using
function approximation for estimating the value function, namely, developing actor-critic algorithms
[11, 12, 13]. More recently, motivated by the advances of variance-reduction techniques in stochastic
optimization [14, 15, 16, 17], there have been surging interests in developing variance-reduced PG
methods [18, 19, 20, 21, 22], which are shown to be faster.

In contrast to the empirical successes of PG methods, their theoretical convergence guarantees,
especially non-asymptotic global convergence guarantees, have not been addressed satisfactorily
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until very recently [23, 24, 25, 26, 27]. By non-asymptotic global convergence, here we mean the
convergence behavior of PG methods from any initialization, and the quality of the point they converge
to (usually enjoys global optimality up to some compatible function approximation error due to policy
parametrization), after a finite number of iterations/samples. These recent prominent guarantees are
normally beyond the folklore first-order stationary-point convergence1, as expected from a stochastic
nonconvex optimization perspective of solving RL with PG methods. Special landscapes of the RL
objective, though nonconvex, have enabled the convergence to even globally optimal values. On
the other hand, none of the aforementioned variance-reduced PG methods [18, 19, 20, 21, 22] have
been shown to enjoy these desired global convergence properties. It remains unclear whether these
methods can converge to beyond first-order stationary policies.

Motivated by these advances and the questions that remain to be answered, we aim in this paper to
improve the convergence of PG and natural PG (NPG) methods, and their variance-reduced variants,
under general smooth policy parametrizations. Our contributions are summarized as follows.

Contributions. With a focus on the conventional Monte-Carlo-based PG methods, we propose a
general framework for analyzing their global convergence. Our contribution is three-fold: first,
we establish the global convergence up to compatible function approximation errors due to policy
parametrization, for a variance-reduced PG method SRVR-PG [21]; second, we improve the global
convergence of NPG methods established in [27], from O

(
ε−4
)

to O
(
ε−3
)
; third, we propose a

new variance-reduced algorithm based on NPG, and establish its global convergence with an efficient
sample-complexity. These improvements are based on a framework that integrates the advantages
of previous analyses on (variance reduced) PG and NPG, and rely on a (mild) assumption that the
Fisher information matrix induced by the policy parametrization is positive definite (see Assumption
2.1). A comparison of previous results and our improvements is laid out in Table 1.

Related Work.

Global Convergence of (Natural) PG. Recently, there has been a surging research interest in inves-
tigating the global convergence of PG and NPG methods, which is beyond the folklore convergence
to first-order stationary policies. In the special case with linear dynamics and quadratic reward, [23]
shows that PG methods with random search converge to the globally optimal policy with linear
rates. In [24], with a simple reward-reshaping, PG methods have been shown to converge to the
second-order stationary-point policies. [26] shows that for finite-MDPs and several control tasks,
the nonconvex RL objective has no suboptimal local minima. [25] prove that (natural) PG methods
converge to the globally optimal value when overparametrized neural networks are used for function
approximation. [27] provides a fairly general characterization of global convergence for these meth-
ods, and a basic sample complexity result for sample-based NPG updates. It is also worth noting that
trust-region policy optimization (TRPO) [5], as a variant of NPG, also enjoys global convergence with
overparametrized neural networks [28], and for regularized MDPs [29]. Very recently, for actor-critic
algorithms, a series of non-asymptotic convergence results have also been established [30, 31, 32, 33],
with global convergence guarantees when natural PG/PPO are used in the actor step.

Variance-Reduction (VR) for PG. Conventional approaches to reduce the high variance in PG
methods include using (natural) actor-critic algorithms [11, 12, 13], and adding baselines [3, 10]. The
idea of variance reduction (VR) is first proposed to accelerate stochastic minimization. VR algorithms
such as SVRG [14, 15, 16], SAGA [17], SARAH [34], and Spider [35] achieve acceleration over
SGD in both convex and nonconvex settings. SVRG is also accelerated by applying a positive
definite preconditioner that captures the curvature of the objective [36]. Inspired by these successes
in stochastic optimization, VR is also incorporated into PG methods [18], with empirical validations
for acceleration, and analyzed rigorously in [19]. Then, [20] improves the sample complexity of
SVRPG, and [21] proposes a new SRVR-PG method that uses recursively updated semi-stochastic
policy gradient, which leads to an improved sample complexity of O(ε−1.5) over previous works.
More recently, [22] proposes a new STORM-PG method, which blends momentum in the update
and matches the sample complexity of in [21], and [37] applies the idea of SARAH and considers
a more general setting with regularization. Finally, heavy-ball type of momentum has also been
applied to PG methods [38]. We highlight that all these sample complexity results are for first-order
stationary-point convergence (which might have arbitrarily bad performance: see (2.2)), in contrast

1That is, finding a parameter θ such that ‖∇J(θ)‖2 ≤ ε, where J is the expected return.
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to the more desired global convergence guarantees (up to some function approximation errors that
can be small) that we are interested in.

NPG
[27]

NPG
[25]

TRPO
[28]

TRPO
[29]

O(ε−4) O(TTDε
−2) 1 O(ε−8) O(ε−4)

NPG
(2.8)

PG
(2.4)

SRVR-PG [21]
(Algorithm 2)

SRVR-NPG
(Algorithm 1)

O(ε−3) O(σ2ε−4) O
(
(W + σ2)ε−3

)
O
(
(W + σ2)ε−2.5 + ε−3

)
Table 1: Comparison of sample complexities of several methods to reach global optimality up to
some compatible function approximation error (see (2.9)). Our results are listed in the second table
(See App. A for their derivations). We compare the number of trajectories to reach ε−optimality in
expectation, up to some inherent error due to the function approximation for policy parametrization
(see (2.3)). σ2 is an upper bound for the variance of gradient estimator (see Assumption 4.1), and W
is an upper bound for the variance of importance weight (see Assumption 4.3).

2 Preliminaries
We first introduce some preliminaries regarding both the MDPs and policy gradient methods.

2.1 Markov Decision Processes
Consider a discounted Markov decision process defined by a tuple (S,A,P, R, γ), where S and A
denote the state and action spaces of the agent, P(s′ | s, a) : S × A → P(S) is the Markov kernel
that determines the transition probability from (s, a) to state s′, γ ∈ (0, 1) is the discount factor, and
r : S ×A → [−R,R] is the reward function of s and a.

At each time t, the agent executes an action at ∈ A given the current state st ∈ S, following a
possibly stochastic policy π : S → P(A), i.e., at ∼ π(· | st). Then, given the state-action pair
(st, at), the agent observes a reward rt = r(st, at). Thus, under any policy π, one can define the
state-action value function Qπ : S ×A → R as

Qπ(s, a) := Eat∼π(· | st),st+1∼P(· | st,at)

( ∞∑
t=0

γtrt

∣∣∣∣ s0 = s, a0 = a

)
.

One can also define the state-value function V π : S → R, and the advantage function Aπ : S ×A →
R, under policy π, as V π(s) := Ea∼π(· | s)[Qπ(s, a)] andAπ(s, a) := Qπ(s, a)−V π(s), respectively.
Suppose that the initial state s0 is drawn from some distribution ρ. Then, the goal of the agent is to
find the optimal policy that maximizes the expected discounted return, namely,

max
π

J(π) := Es0∼ρ[V π(s0)]. (2.1)

In practice, both the state and action spaces S and A can be very large. Thus, the policy π is usually
parametrized as πθ for some parameter θ ∈ Rd, using, for example, deep neural networks. As such,
the goal of the agent is to maximize J(πθ) in the space of the parameter θ, which naturally induces
an optimization problem. Such a problem is in general nonconvex [24, 27], making it challenging to
find the globally optimal policy.

For notational convenience, let us denote J(πθ) by J(θ). Many of the previous works focus on
establishing stationary convergence of policy gradient methods. That is, finding a θ that satisfies

‖∇J(θ)‖2 ≤ ε. (2.2)

Obviously, such a θ may not lead to a large J(θ). Instead, we are interested in finding a θ such that

J? − J(θ) ≤ O(
√
εbias) + ε, (2.3)

where J? = maxπ J(π), and the O(
√
εbias) term reflects the inherent error related to the possibly

limited expressive power of the policy parametrization πθ (see Assumption 4.4 for the definition).
1In [25], TTD iterations of temporal difference updates are needed at each iteration, TTD can be large for wide neural networks. See App.

A for details.
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2.2 (Natural) Policy Gradient Methods

To solve the optimization problem (2.1), one standard way is via the policy gradient (PG) method [3].
Specifically, let τi = {si0, ai0, si1, · · · } denote the data of a sampled trajectory under policy πθ. Then,
a stochastic PG ascent update is given as

θk+1 = θk + η · 1

N

N∑
i=1

g(τi | θk), (2.4)

where η > 0 is a stepsize, N is the number of trajectories, and g(τi | θk) estimates ∇J(θk) using
the trajectory τi. Common unbiased estimators of PG include REINFORCE [2], using the policy
gradient theorem [39], and GPOMDP [9]. The commonly used GPOMDP estimator will be given by

g(τi | θ) =

∞∑
h=0

(
h∑
t=0

∇θ log πθ(a
i
t | sit)

)(
γhr(sih, a

i
h)
)
, (2.5)

where ∇θ log πθ(a
i
t | sit) is the score function. If the expectation of this infinite sum exits, then (2.5)

becomes an unbiased estimate of the policy gradient of the objective J(θ) defined in (2.1). This
unbiasedness is established in App. B for completeness.

In practice, a truncated version of GPOMDP is used to approximate the infinite sum in (2.5), as

g(τHi | θ) =

H−1∑
h=0

(
h∑
t=0

∇θ log πθ(a
i
t | sit)

)(
γhr(sih, a

i
h)
)
, (2.6)

where τHi = {si0, ai0, si1, · · · , siH−1, aiH−1, siH} is a truncation of the full trajectory τi of length H .
(2.6) is thus a biased stochastic estimate of∇J(θ), with the bias being negligible for a large enough
H . For notational simplicity, we denote the H-horizon trajectory distribution induced by the initial
state distribution ρ and policy πθ as pHρ (· | θ), that is,

pHρ (τH | θ) = ρ(s0)

H−1∏
h=0

πθ(ah | sh)P(sh+1 | ah, sh).

Hereafter, unless otherwise stated, we refer to this H-horizon trajectory simply as trajectory, drawn
from pHρ (· | θ).

As a significant variant of PG, NPG [4] also incorporates a preconditioning matrix Fρ(θ), leading to
the following update

Fρ(θ) = Es∼dπθρ [Fs(θ)], θk+1 = θk + η · F †ρ (θk)∇J(θk), (2.7)

where Fs(θ) = Ea∼πθ(· | s)
[
∇θ log πθ(a | s)∇θ log πθ(a | s)>

]
is the Fisher information matrix of

πθ(· | s) ∈ P(A), F †ρ (θk) is the Moore-Penrose pseudoinverse of Fρ(θk), and dπθρ ∈ P(S) is the
state visitation measure induced by policy πθ and initial distribution ρ, which is defined as

dπθρ (s) := (1− γ)Es0∼ρ
∞∑
t=0

γtP(st = s | s0, πθ).

The NPG update (2.7) can also be written as [4, 27]

θk+1 = θk + η · wk, with wk ∈ argmin
w∈Rd

Lνπθρ (w; θ), (2.8)

where Lνπθρ (w; θ) is the compatible function approximation error defined by

Lνπθρ (w; θ) = E(s,a)∼νπθρ

[(
Aπθ (s, a)− (1− γ)w>∇θ log πθ(a | s)

)2]
. (2.9)

Here, νπθρ (s, a) = dπθρ (s)π(a | s) is the state-action visitation measure induced by πθ and initial state
distribution ρ, which can also be written as

νπθρ (s, a) := (1− γ)Es0∼ρ
∞∑
t=0

γtP(st = s, at = a | s0, πθ). (2.10)
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For convenience, we will denote νπθρ by νπθ hereafter. In other words, the NPG update direction wk is
given by the minimizer of a stochastic optimization problem. In practice, one obtains an approximate
NPG update direction wk by SGD (see Procedure 1).

Regarding the NPG update (2.8), we make the following standing assumption on the Fisher informa-
tion matrix induced by πθ and ρ.

Assumption 2.1. For all θ ∈ Rd, the Fisher information matrix induced by policy πθ and initial state
distribution ρ satisfies

Fρ(θ) = E(s,a)∼νπθρ

[
∇θ log πθ(a | s)∇θ log πθ(a | s)>

]
< µF · Id

for some constant µF > 0.

Assumption 2.1 essentially states that Fρ(θ) behaves well as a preconditioner in the NPG update
(2.8). This is a common (and minimal) requirement for the convergence of preconditioned algorithms
in both convex and nonconvex settings in the optimization realm, for example, the quasi-Newton
algorithms [40, 41, 42, 43], and their stochastic variants [44, 45, 46, 47, 36]. In the RL realm, one
common example of policy parametrizations that can satisfy this assumption is the Gaussian policy
[2, 48, 19, 21], where πθ(· | s) = N (µθ(s),Σ) with mean parametrized linearly as µθ(s) = φ(s)>θ,
where φ(s) denotes some feature matrix of proper dimensions, θ is the coefficient vector, and Σ � 0
is some fixed covariance matrix. In this case, the Fisher information matrix at each s becomes
φ(s)Σ−1φ(s)>, independent of θ, and is uniformly lower bounded (positive definite sense) if φ(s)
is full-row-rank, namely, the features expanded by θ are linearly independent, which is a common
requirement for linear function approximation settings [49, 50, 51]. See App. B.2 for more detailed
justifications, as well as discussions on more general policy parametrizations.

In the pioneering NPG work [4], F (θ) is directly assumed to be positive definite. So is in the
follow-up works on natural actor-critic algorithms [12, 13]. In fact, this way, F (θ) will define a
valid Riemannian metric on the parameter space, which has been used for interpreting the desired
convergence properties of natural gradient methods [52, 53]. In a recent version of [27], a relevant
assumption (specifically, Assumption 6.5, item 3) is made to establish the global convergence of
NPG, in which it is assumed that λmin(Fρ(θ)) is not too small compared with the Fisher information
matrix induced by a fixed comparator policy. this can be implied by our Assumption 2.1. To sum up,
the positive definiteness on the Fisher preconditioning matrix is common and not very restrictive.

In Sec. 4, we shall see that under Assumption 2.1, the stationary convergence of NPG can be analyzed,
and NPG enjoys a better sample complexity of O(ε−3) in terms of its global convergence, compared
with the existing sample complexity ofO(ε−4) in [27]. In addition, interestingly, PG and its variance-
reduced version SRVR-PG also enjoy global convergence, although the Fisher information matrix
does not appear explicitly in their updates.

3 Variance-Reduced Policy Gradient Methods

Recently, [21] proposes an algorithm called Stochastic Recursive Variance Reduced Policy Gradient
(SRVR-PG, see Algorithm 2), which applies variance-reduction on PG. It achieves a sample com-
plexity of O(ε−1.5) to find an ε−stationary point, compared with the O(ε−2) sample complexity of
stochastic PG. However, it remains unclear whether SRVR-PG converges globally. In this work, we
provide an affirmative answer to this question by showing that SRVR-PG has a sample complexity
of O(ε−3) to find an ε−optimal policy, up to some compatible function approximation error due to
policy parametrization.

We also propose a new algorithm called SRVR-NPG to incorporate variance reduction into NPG,
which is described in Algorithm 1. In Sec. 4, we provide a sample complexity for its global
convergence, which is comparable to our improved NPG result.

In line 8 of Algorithm 1, gw(τHj |θ
j+1
t−1 ) is a weighted gradient estimator given by

gw(τHj | θ
j+1
t−1 ) =

H−1∑
h=0

w0:h(τHj | θ
j+1
t−1 , θ

j+1
t )

(
h∑
t=0

∇θ log πθ(a
i
t | sit)

)(
γhr(sih, a

i
h)
)
, (3.1)
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Algorithm 1 Stochastic Recursive Variance Reduced Natural Policy Gradient (SRVR-NPG)
Input: number of epochs S, epoch size m, stepsize η, batch size N , minibatch size B, truncation
horizon H , initial parameter θ0m = θ0 ∈ Rd .

1: for j ← 0, ..., S − 1 do
2: θj+1

0 = θjm;
3: Sample {τHi }Ni=1 from pHρ (· | θj+1

0 ) and calculate uj+1
0 = 1

N

∑N
i=1 g(τHi | θ

j+1
0 );

4: wj+1
0 = SRVR-NPG-SGD(ν

π
θ
j+1
0 , πθj+1

0
, uj+1

0 ); . wj+1
0 ≈ wj+1

0,? = F−1ρ (θj+1
0 )uj+1

0 ;

5: θj+1
1 = θj+1

0 + ηwj+1
0 ;

6: for t← 1, ...,m− 1 do
7: Sample B trajectories {τHj }Bj=1 from pHρ (·|θj+1

t );

8: uj+1
t = uj+1

t−1 + 1
B

∑B
j=1

(
g(τHj | θ

j+1
t )− gw(τHj | θ

j+1
t−1 )

)
;

9: wj+1
t = SRVR-NPG-SGD(ν

π
θ
j+1
t , πθj+1

t
, uj+1
t ); . wj+1

t ≈ wj+1
t,? = F−1ρ (θj+1

t )uj+1
t ;

10: θj+1
t+1 = θj+1

t + ηwj+1
t ;

11: end for
12: end for
13: return θout chosen uniformly from {θ}j=1,...,S;t=0,...,m−1.

where the importance weight factor w0:h(τHj |θ
j+1
t−1 , θ

j+1
t ) is defined by

w0:h(τHj | θ
j+1
t−1 , θ

j+1
t ) =

h∏
h′=0

πθj+1
t−1

(ah′ | sh′)

πθj+1
t

(ah′ | sh′)
. (3.2)

This importance sampling makes uj+1
t an unbiased estimator of∇JH(θj+1

t ).

In lines 4 and 8 of Algorithm 1, wj+1
t is produced by SRVR-NPG-SGD (see Procedure 2), which

applies SGD1 to solve the following subproblem:

wj+1
t ≈ argmin

w

{
E(s,a)∼νj+1

t

[(
wT∇θ log πθj+1

t
(a | s)

)2]
− 2〈w, uj+1

t 〉
}
, (3.3)

where νj+1
t is the state-action visitation measure induced by πθj+1

t
. The exact update direction given

by (3.3) is F−1ρ (θj+1
t )uj+1

t , and as in NPG, Fρ(θ
j+1
t ) also serves as a preconditioner.

4 Theoretical Results
Before presenting the global convergence results, we first introduce some standard assumptions.

Assumption 4.1. The truncated GPOMDP estimator g(τH | θ) defined in (2.6) satisfies
Var
(
g(τH | θ)

)
:= E[‖g(τH | θ)− E[g(τH | θ)]‖2] ≤ σ2 for any θ and τH ∼ pHρ (· | θ).

Assumption 4.2. 1. ‖∇θ log πθ(a | s)‖ ≤ G for any θ and (s, a) ∈ S ×A.

2. ‖∇θ log πθ1(a | s)−∇θ log πθ2(a | s)‖ ≤M‖θ1 − θ2‖ for any θ1, θ2 and (s, a) ∈ S ×A.

Assumption 4.3. For the importance weight w0:h(τH |θ1, θ2) (3.2), there exists W > 0 such that

Var(w0:h

(
τH | θ1, θ2)

)
≤W, ∀θ1, θ2 ∈ Rd, τH ∼ pHρ (· | θ2).

Assumptions 4.1, 4.2 and 4.3 are standard in the analysis of PG methods and their variance reduced
variants [27, 19, 20, 21]. They can be verified for simple policy parametrizations such as Gaussian
policies; see [19, 57, 58] for more justifications.

Following the Assumption 6.5 of [27], we assume that the policy parametrization πθ achieves a good
function approximation, as measured by the transferred compatible function approximation error.

1Following [27], we apply SGD [54] to make a fair comparison. One can also apply the SA algorithm [55] and AC-SA algorithm [56].
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Assumption 4.4. For any θ ∈ Rd, the transferred compatible function approximation error satisfies

Lν?(wθ?; θ) = E(s,a)∼ν?
[(
Aπθ (s, a)− (1− γ)(wθ?)

>∇θ log πθ(a | s)
)2] ≤ εbias, (4.1)

where ν?(s, a) = dπ
?

ρ (s) · π?(a | s) is the state-action distribution induced by an optimal policy π?

that maximizes J(π), and wθ? = argminw∈Rd Lνπθρ (w; θ) is the exact NPG update direction at θ.

εbias reflects the error when approximating the advantage function from the score function, it measures
the capacity of the parametrization πθ. When πθ is the softmax parametrization, we have εbias = 0
[27]. When πθ is a restricted parametrization, εbias is often positive as πθ may not contain all
stochastic policies. For rich neural parametrizations, εbias is very small [25].

4.1 A General Framework for Global Convergence
Inspired by the global convergence analysis of NPG in [27], we present a general framework that
relates the global convergence rates of these algorithms to i) their stationary convergence rate on
J(θ), and ii) the difference between their update directions and exact NPG update directions.
Proposition 4.5. Let {θk}Kk=1 be generated by a general update of the form

θk+1 = θk + ηwk, k = 0, 1, ...K − 1.

Furthermore, let wk? = F−1ρ (θk)∇J(θk) be the exact NPG update direction at θk. Then, we have

J(π?)− 1

K

K−1∑
k=0

J(θk) ≤
√
εbias

1− γ
+

1

ηK
Es∼dπ?ρ [KL (π?(· | s)||πθ0(· | s))]

+
Mη

2K

K−1∑
k=0

‖wk‖2 +
G

K

K−1∑
k=0

‖wk − wk?‖, (4.2)

where π? is an optimal policy that maximizes J(π).

The detailed proof of this global convergence framework can be found in J. To obtain a high level
idea, one first starts from the M−smoothness of the score function to get

Es∼dπ?ρ [KL (π?(· | s)||πθk(· | s))− KL (π?(· | s)||πθk+1(· | s))]

≥ ηEs∼dπ?ρ Ea∼π?(· | s)[∇θ log πθk(a | s) · wk? ]

+ ηEs∼dπ?ρ Ea∼π?(· | s)[∇θ log πθk(a | s) · (wk − wk?)]− Mη2

2
‖wk‖2.

On the other hand, the renowned Performance Difference Lemma [59] tells us that
Es∼dπ?ρ Ea∼π?(· | s)[Aπθk (s, a)] = (1− γ)

(
J? − J(θk)

)
.

To connect the advantage term Es∼dπ?ρ Ea∼π?(· | s)[Aπθk (s, a)] with the inner product term
Es∼dπ?ρ Ea∼π?(· | s)[∇θ log πθk(a | s) · wk? ], we invoke Assumption 4.4:

Es∼dπ?ρ Ea∼π?(· | s)
[(
Aπθ (s, a)− (1− γ)(wθ?)

>∇θ log πθ(a | s)
)2] ≤ εbias, for any θ ∈ Rd.

The final result follows from a telescoping sum on k = 0, 1, ...,K − 1.

Several remarks are in order. The first term on the right-hand side of (4.2) reflects the function
approximation error due to the parametrization πθ, and the second term is of the form O( 1

K ). The
third term depends on the stationary convergence. With Assumption 2.1, it can be shown that1

1
K

∑K−1
k=0 E[‖wk‖2] → 0 for both NPG and SRVR-NPG. The proof follows from an optimization

perspective and is inspired by the stationary convergence analysis of stochastic PG (see App. E).

With Assumption 2.1, we can also show that the last term of (4.2) is small. Take stochastic PG as an
example; then, we have wk = 1

N

∑N
i=1 g(τHi |θk), and

1

K

K−1∑
k=0

‖wk − wk?‖ ≤
1

K

K−1∑
k=0

‖wk −∇J(θk)‖+
1

K

K−1∑
k=0

(
1 +

1

µF

)
‖∇J(θk)‖.

1The stationary convergence of SRVR-PG has been established in [21].
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WhenH andN are large enough, wk is a low-variance estimator of∇JH(θk), and∇JH(θk) is close
to∇J(θk), this makes the first term above small. The second term also goes to 0 as θk approaches
stationarity.

4.2 Global Convergence Results
By applying Proposition 4.5 on the PG, NPG, SRVR-PG, and SRVR-NPG updates and analyzing
their stationary convergence, we obtain their global convergence rates. In the following, we only keep
the dependences on σ2 (the variance of the gradient estimator), W (variance of importance weight),
1

1−γ (the effective horizon) and ε (target accuracy). The specific choice of the parameters and sample
complexities, as well as the proof, can be found in the appendix.
Theorem 4.6. In the stochastic PG (2.4) with the truncated GPOMDP estimator (2.6), take η = 1

4LJ
,

K = O
(

1
(1−γ)2ε2

)
, N = O

(
σ2

ε2

)
, and H = O

(
log( 1

(1−γ)ε )
)

. Then, we have

J(π?)− 1

K

K−1∑
k=0

E[J(θk)] ≤
√
εbias

1− γ
+ ε.

In total, stochastic PG samples O
(

σ2

(1−γ)2ε4

)
trajectories.

Remark 4.7. LJ = MR
(1−γ)2 is the Lipschitz constant of∇J , see Lemma B.1 for details.

Remark 4.8. Theorem 4.6 improves the result of [27, Thm. 6.11] from (impractical) full gradients
to sample-based stochastic gradients.

Theorem 4.9. In the NPG update (2.8), let us applyO
(

1
(1−γ)4ε2

)
iterations of SGD as in Procedure

1 to obtain an update direction. In addition, take η =
µ2
F

4G2LJ
and K = O

(
1

(1−γ)2ε

)
. Then,

J? − 1

K

K−1∑
k=0

E[J(θk)] ≤
√
εbias

1− γ
+ ε.

In total, NPG samples O
(

1
(1−γ)6ε3

)
trajectories.

Remark 4.10. Compared with [27, Coro. 6.10], Theorem 4.9 improves the sample complexity of
NPG by O(ε−1). This is because our stationary convergence analysis on NPG allows for a constant
stepsize η, while [27, Coro. 6.10] applies a stepsize of η = O(1/

√
K). It is worth noting that the

O(
√
εbias) term is the same as in [27], and we also apply the average SGD [54] to solve the NPG

subproblem (2.8).

Theorem 4.11. In SRVR-PG (Algorithm 2), take η = 1
8LJ

, S = O
(

1
(1−γ)2.5ε

)
,m = O

(
(1−γ)0.5

ε

)
,

B = O
(

W
(1−γ)0.5ε

)
, N = O

(
σ2

ε

)
, and H = O

(
log( 1

(1−γ)ε )
)

. Then, we have

J? − 1

Sm

S−1∑
s=0

m−1∑
t=0

E[J(θj+1
t )] ≤

√
εbias

1− γ
+ ε.

In total, SRVR-PG samples O
(

W+σ2

(1−γ)2.5ε3

)
trajectories.

Remark 4.12. Theorem 4.11 establishes the global convergence of SRVR-PG proposed in [21],
where only stationary convergence is shown. Also, compared with stochastic PG, SRVR-PG enjoys a
better sample complexity thanks to its faster stationary convergence.

Theorem 4.13. In SRVR-NPG (Algorithm 1), let us apply O
(

1
(1−γ)4ε2

)
iterations of SGD as in

Procedure 2 to obtain an update direction. In addition, take η = µF
16LJ

, S = O
(

1
(1−γ)2.5ε0.5

)
,

m = O
(

(1−γ)0.5
ε0.5

)
, B = O

(
W

(1−γ)0.5ε1.5

)
, N = O

(
σ2

ε2

)
, and H = O

(
log( 1

(1−γ)ε )
)

. Then,

J? − 1

Sm

S−1∑
s=0

m−1∑
t=0

E[J(θj+1
t )] ≤

√
εbias

1− γ
+ ε.

In total, SRVR-NPG samples O
(

W+σ2

(1−γ)2.5ε2.5 + 1
(1−γ)6ε3

)
trajectories.
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Remark 4.14. Compared with SRVR-PG, our SRVR-NPG has a better dependence on W and σ2,
which could be large in practice (especially W ). The current sample complexity of SRVR-NPG is not
better than our (improved) result of NPG since, in our analysis, the advantage of variance reduction is
offset by the cost of solving the subproblems.

5 Numerical Experiments

In this section, we compare the numerical performances of stochastic PG, NPG, SRVR-PG, and
SRVR-NPG. Specifically, we test on benchmark reinforcement learning environments Cartpole and
Mountain Car. Our implementation is based on the implementation of SRVPG1 and SRVR-PG2, and
can be found in the supplementary material.

For both tasks, we apply a Gaussian policy of the form πθ(a | s) = 1√
2π

exp
(
− (µθ(s)−a)2

2σ2

)
where

the mean µθ(s) is modeled by a neural network with Tanh as the activation function.

For the Cartpole problem, we apply a neural network of size 32× 1 and a horizon of H = 100. In
addition, each training algorithm uses 5000 trajectories in total. For the Mountain Car problem, we
apply a neural network of size 64 × 1 and take H = 1000. 3000 trajectories are allowed for each
algorithm. The numerical performance comparison, as well as the settings of algorithm-specific
parameters, can be found in Figures 1 and 2. In App. O, we provide more implementation details.

Figure 1: Numerical Performances on Cart-
pole. For PG, SRVR-PG and SRVR-NPG,
we report the undiscounted average return
averaged over 10 runs. For NPG, we report
the averaged return over 40 runs. Overall,
SRVR-NPG has the best performance.

Figure 2: Numerical Performances on
Mountain Car. For PG, SRVR-PG and
SRVR-NPG, we report the undiscounted av-
erage return averaged over 10 runs. For
NPG, we report the averaged return over
40 runs. Overall, NPG has the best perfor-
mance.

6 Concluding Remarks
In this work, we have introduced a framework for analyzing the global convergence of (natural)
PG methods and their variance-reduced variants, under the assumption that the Fisher information
matrix is positive definite. We have established the sample complexity for the global convergence of
stochastic PG and its variance-reduced variant SRVR-PG, and improved the sample complexity of
NPG. In addition, we have introduced SRVR-NPG, which incorporates variance-reduction into NPG,
and enjoys both global convergence guarantee and an efficient sample complexity. Our improved
analysis hinges on exploiting the advantages of previous analyses on (variance reduced) PG and NPG
methods, which may be of independent interest, and can be used to design faster variance-reduced
NPG methods in the future.

1https://github.com/Dam930/rllab
2https://github.com/xgfelicia/SRVRPG
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Broader Impact

The results of this paper improves the performance of policy-gradient methods for reinforcement
learning, as well as our understanding to the existing methods. Through reinforcement learning, our
study will also benefit several research communities such as machine learning and robotics. We do
not believe that the results in this work will cause any ethical issue, or put anyone at a disadvantage
in our society.
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A Derivation of Previous Complexity Bounds

In this section, we briefly explain how to derive the sample complexities bounds in the first line of
Table 1.

In the most recent version of [27], a complexity bound of O(ε−6) can be obtained the taking
N = O(ε−4) and N = O(ε−2) in its Corollary 6.2. Note this complexity bound can be improved to
O(ε−4) if a uniform upper bound for exact NPG update directions is applied. In this case, one can
apply the convergence bound of SGD instead of Projected SGD for the NPG subproblem. In this
paper, we establish an upper bound for ‖∇J(θ)‖ in Lemma B.1. Therefore the exact NPG update
direction is also upper bounded thanks to Assumption 2.1.

For [25], the sample complexity bound of O(TTDε
−2) is achieved by its Theorem 4.13. To be

specific, one takes T = O(ε−2) and TTD = O(m) number of temporal difference updates at each
iteration. Here, m is width of the neural network.

Note that in the proof of its Corollary 4.14, we can choose m = O(T 4) (instead of O(T 6)) to have
a convergence bound of the form O(

√
ε0) + ε (instead of O(ε)), which is similar to our

√
εbias

1−γ + ε

convergence bound.

For [28], by the Corollary 4.10 therein, one needs to take K = O(ε−2) and T = O(K3) = O(ε−6),
which results in a total sample complexity of O(ε−8).

For [29], its Theorem 5 (item 1) gives a sample complexity of
∑N
k=1Mk = O(ε−4), where we have

applied N = O(ε−2) and Mk = O(ε−2).

B Helper Lemmas

In this section, we lay out several results that will be useful in later analyses and proofs.

B.1 Properties of PG Estimator

First, for any H > 1, we define the H-horizon truncated versions of the return J(θ) as

JH(θ) := Es0∼ρ

(
H−1∑
t=0

γtrt

)
, (B.1)

where the expectation is taken over the trajectories, starting from the state distribution ρ. Now we
establish several properties of the GPOMDP policy gradient estimators and the return functions.
Lemma B.1. Recall the GPOMDP policy gradient estimate given in (2.5). The following properties
hold:

• If the infinite-sum in (2.5) is well defined, g(τi | θ) in (2.5) is an unbiased estimate of the PG
∇J(θ). Similarly, the truncated GPOMDP estimate g(τHi | θ) given by (2.6) is an unbiased
estimate of the PG∇JH(θ).

• J(θ), JH(θ) are LJ -smooth, where LJ = MR
(1−γ)2 . Furthermore, we have

max
{
‖∇J(θ)‖, ‖∇JH(θ)‖

}
≤ GR

(1−γ)2 .

• We also have ‖∇JH(θ)−∇J(θ)‖ ≤ GR
(
H+1
1−γ + γ

(1−γ)2

)
γH .

Proof. the unbiasedness of g(τi | θ) follows directly from [9]. A similar decomposition can also be
done for its truncated version g(τHi | θ).
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For the second argument, the smoothness proof is similar to that of Proposition 4.2 in [21]. Specifi-
cally, we have know from their Proposition 4.2 that

‖∇g(τi|θ)‖2 ≤
MR

(1− γ)2
, ‖∇g(τHi |θ)‖2 ≤

MR

(1− γ)2
.

Due to the unbiasedness of g(τi|θ) and g(τHi |θ) for estimating ∇J(θ) and ∇JH(θ), respectively, by
applying E[‖ξ‖2] ≥ ‖E[ξ]‖2, we know that both J(θ) and JH(θ) are LJ -smooth. For obtaining the
boundedness of the gradients, similar arguments also apply.

For the third argument, one can calculate that

‖g(τHi | θ)− g(τi | θ)‖ =

∥∥∥∥∥
∞∑
h=H

(
h∑
t=0

∇θ log πθ(a
i
t | sit)

)(
γhr(sih, a

i
h)
)∥∥∥∥∥

≤ ‖GR
∞∑
h=H

(h+ 1)γh‖

= GR

(
H + 1

1− γ
+

γ

(1− γ)2

)
γH

This rest of the proof follows from the unbiasedness of g(τi|θ) and g(τHi |θ) for estimating ∇J(θ)
and ∇JH(θ), respectively.

B.2 On the Positive Definiteness of Fρ(θ)

Now we remark that the positive definiteness on the Fisher information matrix induced by πθ, as
stated in Assumption 2.1, is not restricted. Assumption 2.1 essentially states that F (θ) behaves well
as a preconditioner in the NPG update (2.8). This is a common (and minimal) requirement for the
convergence of preconditioned algorithms in both convex and nonconvex settings in the optimization
realm [44, 45, 46, 47, 36].

In the RL realm, one common example of policy parametrizations that can satisfy this assumption is
the Gaussian policy [2, 48, 19, 21], where πθ(· | s) = N (µθ(s),Σ) with mean parametrized linearly
as µθ(s) = φ(s)>θ, where φ(s) denotes some feature matrix of proper dimensions, θ is the coefficient
vector, and Σ � 0 is some fixed covariance matrix. Suppose the action a ∈ A ⊆ RA and recall
θ ∈ Rd. Thus, φ(s) ∈ Rd×A. In this case, the Fisher information at each s becomes φ(s)Σ−1φ(s)>,
independent of θ, and is positive definite if φ(s) is full-row-rank. For the case d < A, which is usually
the case as a lower-dimensional (than a) parameter θ is used, this can be achieved by designing the
rows of φ(s) to be linearly independent, a common requirement for linear function approximation
settings [49, 50, 51].

For µθ(s) being nonlinear functions of θ, e.g., neural networks, the positive definiteness can still be
satisfied, if the Jacobian of µθ(s) at all θ uniformly satisfies the aforementioned conditions of φ(s)
(the Jacobian in the linear case). In addition, beyond Gaussian policies, with the same conditions
mentioned above on the feature φ(s) or the Jacobian of µθ(s), Assumption 2.1 also holds more
generally for any full-rank exponential family parametrization with mean parametrized by µθ(s),
as the Fisher information matrix, in this case, is also positive definite, in replace of the covariance
matrix φ(s)Σ−1φ(s) in the Gaussian case [60].

Indeed, the Fisher information matrix is positive definite for any regular statistical model [61].
In the pioneering NPG work [4], F (θ) is directly assumed to be positive definite. So is in the
follow-up works on natural actor-critic algorithms [12, 13]. In fact, this way, Fρ(θ) will define a
valid Riemannian metric on the parameter space, which has been used for interpreting the desired
convergence properties of natural gradient methods [52, 53]. In sum, the positive definiteness on the
Fisher preconditioning matrix is common and not restrictive.

C SGD and Sampling Procedures

C.1 SGD for Solving the Subproblems of NPG and SRVR-NPG

Similar to the Algorithm 1 of [27], we also apply the averaged SGD algorithm as in [54] to solve the
subproblems of NPG and SRVR-NPG.
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Procedure 1 NPG-SGD
Input: number of iterations T , stepsize α > 0, objective function l(w), initialization w0 = 0.

1: for t← 0, ..., T − 1 do
2: wt+1 = wt − α∇̃l(wt); . l(w) is defined in (C.1), ∇̃l(wt) is defined in (C.2).
3: end for
4: return wout = 1

T

∑T
t=1 wt.

Procedure 2 SRVR-NPG-SGD
Input: number of iterations T , stepsize α > 0, objective function l(w), initialization w0 = 0.

1: for t← 0, ..., T − 1 do
2: wt+1 = wt − α∇̃l(wt); . l(w) is defined in (C.3), ∇̃l(wt) is defined in (C.4).
3: end for
4: return wout = 1

T

∑T
t=1 wt.

For NPG, its subproblem (2.8) is of the form

wk ∈ argmin
w∈Rd

Lνπθk (w; θk) = E(s,a)∼νπθk
[(
Aπθk (s, a)− (1− γ)w>∇θ log πθk(a | s)

)2]
,

where

νπθk (s, a) = (1− γ)E(s0,a0)∼ρ

∞∑
t=0

γtP(st = s, at = a | s0, a0, πθk).

In Procedure 1, let us set

l(w) =
1

2(1− γ)2
Lνπθk (w; θk). (C.1)

Then, we can obtain a stochastic gradient at wt by

∇̃l(wt) =

(
(wt)

T∇θ log πθk(a|s)− 1

1− γ
Âπθk (s, a)

)
∇θ log πθk(a|s) (C.2)

where (s, a) ∼ νπθk , and Âπθk (s, a) is an unbiased estimate of Aπθk (s, a). We will describe how to
obtain (s, a) ∼ νπθk and Âπθk (s, a) in App. C.2.

Following Corollary 6.10 of [27], we can verify that ∇̃l(wt) is an unbiased estimate of∇l(wt).

For SRVR-NPG, its subproblem (3.3) is of the form

wj+1
t ≈ argmin

w

{
E

(s,a)∼ν
π
θ
j+1
t

[(
wT∇θ log πθj+1

t
(a | s)

)2]− 2〈w, uj+1
t 〉

}
,

where

ν
π
θ
j+1
t (s, a) = (1− γ)E(s0,a0)∼ρ

∞∑
t=0

γtP(st = s, at = a | s0, a0, πθj+1
t

).

In Procedure 2, let us set

l(w) =
1

2

(
E

(s,a)∼ν
π
θ
j+1
t

[(
wT∇θ log πθj+1

t
(a | s)

)2]− 2〈w, uj+1
t 〉

)
. (C.3)

Then, a stochastic gradient ∇̃l(wt) is given by

∇̃l(wt) =
(

(wt)
T∇θ log πθj+1

t
(a|s)

)
∇θ log πθj+1

t
(a|s)− uj+1

t . (C.4)

where (s, a) ∼ ν
π
θ
j+1
t is obtained in a similar way as above. It is straightforward to verify that

∇̃l(wt) is an unbiased estimate of∇l(wt).
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C.2 Sampling Procedures

Sampling (s, a) ∼ νπθk and Obtaining Âπθk (s, a) can be done in a standard way, for example, by
apply Algorithm 3 of [27]. Both of them needs to sample 1

1−γ state-action pairs in expectation.

D SRVR-PG Algorithm

The Stochastic Recursive Variance-Reduced PG (SRVR-PG) algorithm is introduced in [21], where a
recursively updated semi-stochastic gradient uj+1

t is applied as an update direction.

Algorithm 2 Stochastic Recursive Variance Reduced Policy Gradient (SRVR-PG)
Input: number of epochs S, epoch size m, stepsize η, batch size N , minibatch size B, truncation
horizon H , initial parameter θ0m = θ0 ∈ Rd .

1: for j ← 0, ..., S − 1 do
2: θj+1

0 = θjm;
3: Sample N trajectories {τHi }Ni=1 from pHρ (·|θj+1

0 );
4: uj+1

0 = 1
N

∑N
i=1 g(τHi |θ

j+1
0 );

5: θj+1
1 = θj+1

0 − ηνj+1
0 ;

6: for t← 1, ...,m− 1 do
7: Sample B trajectories {τHj }Bj=1 from pHρ (·|θj+1

t );

8: uj+1
t = uj+1

t−1 + 1
B

∑B
j=1

(
g(τHj |θ

j+1
t )− gw(τHj |θ

j+1
t−1 )

)
;

9: θj+1
t+1 = θj+1

t − ηuj+1
t ;

10: end for
11: end for
12: return θout chosen uniformly from {θ}j=1,...,S;t=0,...,m−1.

Here, the gradient estimators g and gw are defined in (2.6) and (3.1), respectively.

E Stationary Convergence

In this section, we proceed to establish the stationary convergence of stochastic PG, NPG, SRVR-PG,
and SRVR-NPG from an optimization perspective.

The stationary convergence of stochastic PG follows from the analysis of SGD. For SRVR-PG, we
adapt its analysis in [18].

For NPG and SRVR-NPG, the Fisher information matrix F (θ) is applied as a preconditioner on top
of PG and SRVR-PG, respectively. Regarding F (θ), we know from Assumptions 2.1 and 4.2 that

µF Id 4 F (θ) 4 G2Id for any θ ∈ Rd .

Since µF > 0, we know that F (θ) defines a nice metric around θ. Consequently, with the analysis of
gradient methods in nonconvex optimization, one can show that NPG (SRVR-NPG) has a similar
iteration complexity compared with PG (SRVR-PG), although at each iteration, a subproblem needs
to be solved in order to obtain an approximate preconditioned update direction.

We next present the stationary convergence results, and prove them in the subsequent sections. These
results are established for JH(θ) or J(θ), and we will apply the intermediate results in their proof
to establish the global convergence on J(θ) (up to function approximation errors due to policy
parametrizations).

Theorem E.1. In the stochastic PG update (2.4), by choosing η = 1
4LJ

, K = 32LJ (J
H,?−JH(θ0))
ε ,

and N = 6σ2

ε , we have

1

K

K−1∑
k=0

E[‖∇JH(θk)‖2] ≤ ε.
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In total, stochastic PG samples O
(

σ2

(1−γ)2ε2

)
trajectories.

Theorem E.2. In the NPG update (2.8), let us apply O
(

1
(1−γ)4ε

)
iterations of SGD as in Procedure

1 to obtain an update direction wk. In addition, let us take η =
µ2
F

4G2LJ
and K = 32LJG

4(J?−J(θ0)
µ2
F ε

.
Then, we have

1

K

K−1∑
k=0

E[‖∇J(θk)‖2] ≤ ε.

In total, NPG samples O
(

1
(1−γ)6ε2

)
trajectories.

Corollary E.3. (Theorem 4.5 of [21]) In SRVR-PG (Algorithm 2), take η = 1
4LJ

, N = 12σ2

ε ,

S = 64MR(J?−J(θ0))
(1−γ)2.5ε0.5 , m = (1−γ)0.5

ε0.5 , and B = 72ηG2(2G2+M)(W+1)γ
M(1−γ)3 m. Then, we have

1

Sm

S−1∑
s=0

m−1∑
t=0

E‖∇JH(θj+1
t )‖2 ≤ ε.

In total, SRVR-PG samples O
(

W+σ2

(1−γ)2.5ε1.5

)
trajectories.

Theorem E.4. In SRVR-NPG (Algorithm 1), take η = µF
8LJ

, S = 24G2(JH,?−JH(θ0))
ηε0.5 , m = 1

ε0.5 ,

B =
(
η
µF

+ η
4G2

)
72RG2(2G2+M)(W+1)γ

(1−γ)5
1

LJε0.75
, and N = 3

(
8G2

µF
+ 2
)
σ2

ε . In addition, assume
that ε is small enough such that

ε ≤ min
{

3

(
8G2

µF
+ 2

)(
GR

(1− γ)2

)2

, 3

(
8G2

4
+

8G4

4µF

)
2

µF

(
GR

(1− γ)2

)2

,(
2

3ηLJ
(µF +

µ2
F

4G2
)

)4 }
.

Let us also apply O
(

1
(1−γ)4ε

)
iterations of SGD as in Procedure 2 to obtain an update direction

wj+1
t . Then, in order to have

1

Sm

S−1∑
s=0

m−1∑
t=0

E‖∇JH(θj+1
t )‖2 ≤ ε,

SRVR-NPG samples O
(

σ2

(1−γ)2ε1.5 + W
(1−γ)3ε1.75 + 1

(1−γ)6ε2

)
trajectories.

F Proof of Theorem E.1

Proof. Let gk = 1
N

∑N
i=1 g(τHi |θk). Then, we have

JH(θk+1) ≥ JH(θk) + 〈∇JH(θk), θk+1 − θk〉 − LJ
2
‖θk+1 − θk‖2

= JH(θk) + η〈∇JH(θk), gk〉 − LJη
2

2
‖gk‖2

= JH(θk) + η〈∇JH(θk), gk −∇JH(θk) +∇JH(θk)〉

− LJη
2

2
‖gk −∇JH(θk) +∇JH(θk)‖2

≥ JH(θk) +
η

2
‖∇JH(θk)‖2 − η

2
‖gk −∇JH(θk)‖2

− LJη2‖gk −∇JH(θk)‖2 − LJη2‖∇JH(θk)‖2

= JH(θk) + (
η

2
− LJη2)‖∇JH(θk)‖2 − (

η

2
+ LJη

2)‖gk −∇JH(θk)‖2,

(F.1)
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where we have applied Lemma B.1 in the first inequality, and Cauchy-Schwartz in the second
inequality.

Taking expectation on both sides and applying Lemma B.1 and Assumption 4.1 yields

E[JH(θk+1)] ≥ E[JH(θk)] + (
η

2
− LJη2)E[‖∇JH(θk)‖2]− (

η

2
+ LJη

2)
σ2

N
.

Let us further telescope from k = 0 to K − 1 to obtain

1

K

K−1∑
k=0

E[‖∇JH(θk)‖2] ≤
JH,?−JH(θ0)

K + (η2 + LJη
2)σ

2

N
η
2 − LJη2

. (F.2)

Taking η = 1
4LJ

, K = 32LJ (J
?−JH(θ0))
ε , and N = 6σ2

ε gives

1

K

K−1∑
k=0

E[‖∇JH(θk)‖2] ≤ ε.

Finally, by applying LJ = MR
(1−γ)2 , we know that PG needs to sample KN =

192MR(JH,?−JH(θ0))σ
2

(1−γ)2ε2 = O
(

σ2

(1−γ)2ε2

)
trajectories.

G Proof of Theorem E.2

Before proving Theorem E.2, let us first establish the sample complexity of SGD when applied to
obtain an approximate NPG update direction wk.

Proposition G.1. In Procedure 1, take α = 1
4G2 and let the objective be

l(w) =
1

2(1− γ)2
Lνπθ (w; θk) =

1

2
E(s,a)∼νπθk

[ 1

1− γ
Aπθk (s, a)− w>∇θ log πθk(a | s)

]2
.

Let wk? be the minimizer of l(w). Then, in order to achieve

E[‖wout − wk?‖2] ≤ ε′,

Procedure 1 requires sampling

4
(

( G2R
µF (1−γ)2 + 2

1−γ )
√
d+ G2R

µF (1−γ)2

)2
µF ε′

= O
(

1

(1− γ)4ε′

)
trajectories.

Proof. In this proof, we will suppress the superscript k.

Let l? = minw∈Rd l(w) and w? = argminw∈Rd l(w).

By Theorem 1 of [54], we know that

E[l(wout)− l?] ≤
2(ξ
√
d+GE[‖w?‖])2

T
,

where l? is the minimum of l(w), and ξ is defined such that

E[g?(g?)
T ] 4 ξ2∇2

wl(w),

where g? is a stochastic gradient of l(w) at w?.

Following Coro 6.10 of [27], we can take

ξ =
G2R

µF (1− γ)2
+

2R

(1− γ)2
.
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This leads to

E[l(wout)− l(w?)] ≤
2
(

( G2R
µF (1−γ)2 + 2R

(1−γ)2 )
√
d+ G2R

µF (1−γ)2

)2
T

.

Since l(w) is µF−strongly convex, in order to achieve E[‖wout − wk?‖2] ≤ ε′, let us set

E[l(wout)− l(w?)] ≤
µF
2
ε′.

Then, we need

T =
4
(

( G2R
µF (1−γ)2 + 2R

(1−γ)2 )
√
d+ G2R

µF (1−γ)2

)2
µF ε′

= O
(

1

(1− γ)4ε′

)
.

Since each stochastic gradient of SGD has a cost of 2
1−γ (see App. C), this means to sample

O
(

1
(1−γ)4ε′

)
trajectories.

Now, we are ready to prove Theorem E.2.

Proof of Theorem E.2. We apply SGD to obtain a wk such that

E‖wk − F−1(θk)∇J(θk)‖2 ≤ µ2
F ε

32η2G4L2
J

(
2G4

µ2
F

+ 1
) = O (ε) . (G.1)

By Proposition G.1, we need to sample O
(

1
(1−γ)4ε

)
trajectories.

From (G.1) we have

E‖θk+1 − θk+1
? ‖2 = η2E‖wk − F−1(θk)∇J(θk)‖2 ≤ µ2

F ε

32G4L2
J

(
2G4

µ2
F

+ 1
) , (G.2)

where θk+1
? = θk + ηF−1(θk)∇J(θk).

By Lemma B.1 and Assumption 4.2 we have

J(θk+1) ≥ J(θk) + 〈∇J(θk), θk+1
? − θk〉+ 〈∇J(θk), θk+1 − θk+1

? 〉 − LJ
2
‖θk+1 − θk‖2

= J(θk) + η〈∇J(θk), F−1(θk)∇J(θk)〉

+ 〈∇J(θk), θk+1 − θk+1
? 〉 − LJ

2
‖θk+1 − θk‖2

≥ J(θk) +
η

G2
‖∇J(θk)‖2 + 〈∇J(θk), θk+1 − θk+1

? 〉 − LJ
2
‖θk+1 − θk‖2.

Therefore,

J(θk+1) ≥ J(θk) +
η

2G2
‖∇J(θk)‖2 − G2

2η
‖θk+1 − θk+1

? ‖2 − LJ
2
‖θk+1 − θk‖2

≥ J(θk) +
η

2G2
‖∇J(θk)‖2 −

(
G2

2η
+ LJ

)
‖θk+1 − θk+1

? ‖2 − LJ‖θk+1
? − θk‖2

≥ J(θk) +

(
η

2G2
− LJη

2

µ2
F

)
‖∇J(θk)‖2 −

(
G2

2η
+ LJ

)
‖θk+1 − θk+1

? ‖2,

where we have applied Cauchy-Schwartz in the first and second inequalities, and θk+1
? = θk +

ηF−1(θk)∇J(θk) in the last step.
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Taking full expectation on both sides yields

E[J(θk+1)] ≥ E[J(θk)] +

(
η

2G2
− LJη

2

µ2
F

)
E‖∇J(θk)‖2 −

(
G2

2η
+ LJ

)
E‖θk+1 − θk+1

? ‖2

≥ E[J(θk)] +

(
η

2G2
− LJη

2

µ2
F

)
E‖∇J(θk)‖2 −

(
G2

2η
+ LJ

)
µ2
F ε

32G4L2
J

(
2G4

µ2
F

+ 1
) ,

where we have applied (G.2) in the second inequality.

Telescoping the above inequality from k = 0 to k = K − 1 gives

J? − J(θ0)

K
≥
(

η

2G2
− LJη

2

µ2
F

)
1

K

K−1∑
k=0

E‖∇J(θk)‖2 −
(
G2

2η
+ LJ

)
µ2
F ε

32G4L2
J

(
2G4

µ2
F

+ 1
) .

Finally, by taking η =
µ2
F

4G2LJ
and K = 32LJG

4(J?−J(θ0)
µ2
F ε

= O
(

1
(1−γ)2ε

)
, we arrive at

1

K

K−1∑
k=0

E[‖∇J(θk)‖2] ≤

J?−J(θ0)
K +

(
G2

2η +LJ
)
µ2
F ε

32G4L2
J

(
2G4

µ2
F

+1

)
(

η
2G2 − LJη2

µ2
F

) = ε. (G.3)

Recall that at each iteration of NPG, we apply SGD as in Procedure 1 to reach (G.1). By Proposition
G.1, we know that in total, NPG requires to sample

32LJG
4(J? − J(θ0))

µ2
F ε

·
4
(

( G2R
µF (1−γ)2 + 2R

(1−γ)2 )
√
d+ G2R

µF (1−γ)2

)2
µF

µ2
F ε

32η2G4L2
J

(
2G4

µ2
F

+1

) = O
(

1

(1− γ)6ε2

)

trajectories.

H Proof of Theorem E.3

Proof. By Theorem 4.5 of [21], we know that if η = 1
4LJ

and

B =
3ηCγm

LJ
=

72ηG2(2G2 +M)(W + 1)γ

M(1− γ)3
m,

then
1

Sm

S−1∑
s=0

m−1∑
t=0

E‖∇JH(θj+1
t )‖2 ≤ 8(J? − JH(θ0))

ηSm
+

6σ2

N
.

Therefore, taking N = 12σ2

ε and Sm = 64MR(J?−JH(θ0))
(1−γ)2ε yields

1

Sm

S−1∑
s=0

m−1∑
t=0

E‖∇JH(θj+1
t )‖2 ≤ ε.

Let us take S = 64MR(J?−JH(θ0))
(1−γ)2.5ε0.5 and m = (1−γ)0.5

ε0.5 . Then, the number of trajectories required by
SRVR-PG is

S(N +mB) = S
12σ2

ε
+

64MR(J? − JH(θ0))

(1− γ)2ε
B

= S
12σ2

ε
+

64MR(J? − JH(θ0))

(1− γ)2ε

72ηG2(2G2 +M)(W + 1)γ

M(1− γ)3
m

= O
(

σ2

(1− γ)2.5ε1.5
+

W

(1− γ)2.5ε1.5

)
= O

(
W + σ2

(1− γ)2.5ε1.5

)
.
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Therefore, SRVR-PG needs to sample O
(

W+σ2

(1−γ)2.5ε1.5

)
trajectories.

I Proof of Theorem E.4

In order to prove Theorem E.4, we need the following technical results.
Lemma I.1 (Equation B.10 of [20]). We have

E‖∇JH(θj+1
t )− uj+1

t ‖2 ≤ Cγ
B

t∑
l=1

E‖θj+1
l − θj+1

l−1 ‖
2 +

σ2

N
,

where

Cγ =
24RG2(2G2 +M)(W + 1)γ

(1− γ)5
.

Proof. This lemma is adapted from the Equation B.10 of [20], where SRVR-PG is analyzed. It is
also true for our SRVR-NPG since the update rule of uj+1

t is the same for both algorithms.

Proposition I.2. In SRVR-NPG, apply SGD as in Procedure 2 to solve the subproblems. Take
α = 1

4G2 and let the objective be

l(w) =
1

2

(
E(s,a)∼νj+1

t
[wT∇θ log πθj+1

t
(a | s)]2 − 2〈ηw, uj+1

t 〉
)
.

Let wj+1
t,? = F−1(θj+1

t )∇JH(θj+1
t ) be the minimizer of l(w). Assume in addition that

σ2

N
≤
(

GR

(1− γ)2

)2

,

ε′ ≤ 2

µ2
F

(
GR

(1− γ)2

)2

Cγm

B
2η2 ≤ 1

3
µ2
F .

Then, in order to achieve

E[‖wj+1
t − wj+1

t,? )‖2] ≤ ε′

for each s = 0, 1, ..., S − 1 and t = 0, 1, ...,m− 1, Procedure 2 requires sampling

4

(
2
µF

GR
(1−γ)2

G2+ 2GR
(1−γ)2√

µF

√
d+ 2G2R

µF (1−γ)2

)2

µF ε′
= O

(
1

(1− γ)4ε′

)
trajectories.

Proof of Proposition I.2. Recall that we are applying SGD as in Procedure 2 to solve the SRVR-NPG
subproblem (3.3).

Let us focus on t = 0, where uj+1
0 = 1

N

∑N
i=1 g(τHi |θ

j+1
0 ). As a result, E[uj+1

0 ] = ∇JH(θj+1
0 ) and

Var(uj+1
0 ) ≤ σ2

N . Therefore,

E[‖wj+1
0,? ‖2] = E[‖F−1(θj+1

0 )uj+1
0 ‖2]

≤ 1

µ2
F

E[‖uj+1
0 ‖] ≤ 1

µ2
F

(
GR

(1− γ)2

)2

+
1

µ2
F

σ2

N
≤ 4

µ2
F

(
GR

(1− γ)2

)2

.

Recall from (C.4) that a stochastic gradient∇l(wt) is given by

∇l(w) =
(
wT∇θ log πθj+1

0
(a|s)

)
∇θ log πθj+1

0
(a|s)− uj+1

0 .
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Here, s, a ∼ νπθ .

Therefore, By Theorem 1 of [54], we know that in order to reach E[‖wj+1
0 − (wj+1

0 )?‖2] ≤ ε′, we
need

E[l(wout)− l?] ≤
2(ξ
√
d+G‖wj+1

0,? ‖)2

T
≤ µF

2
ε′,

where l? is the minimum of l(w), and ξ is defined such that the stochastic gradient g? at the solution
wj+1

0,? satisfies
E[g?(g?)

T ] 4 ξ2∇2
wl(w).

Similar as Proposition G.1, we know that ξ can be chosen by

ξ2 =

(
2
µF

GR
(1−γ)2G

2 + 2GR
(1−γ)2

)2
µF

.

As a result, the number of iterations, T , should be

T =

4

(
2
µF

GR
(1−γ)2

G2+ 2GR
(1−γ)2√

µF

√
d+ 2G2R

µF (1−γ)2

)2

µF ε′
= O

(
1

(1− γ)4ε′

)
.

Since each stochastic gradient of l(w) only needs to sample a state-action pair, this is equivalent to
sampling O

(
1

(1−γ)3ε′

)
trajectories.

Now, let us turn to t ≥ 1. uj+1
t is an unbiased estimate of∇J(θj+1

t ), and its variance is bounded as
in Lemma I.1. Therefore,

E[‖wj+1
t,? )‖2] = E[‖F−1(θj+1

t )uj+1
t ‖2] ≤ 1

µ2
F

E[‖uj+1
t ‖]

=
1

µ2
F

E[‖∇JH(θj+1
t )‖2] +

1

µ2
F

E[‖uj+1
t −∇JH(θj+1

t )‖2]

≤ 1

µ2
F

(
GR

(1− γ)2

)2

+
1

µ2
F

(
Cγ
B

t∑
l=1

E‖θj+1
l − θj+1

l−1 ‖
2 +

σ2

N

)

=
1

µ2
F

(
GR

(1− γ)2

)2

+
1

µ2
F

(
Cγ
B

t∑
l=1

η2E‖wj+1
l−1 ‖

2 +
σ2

N

)

≤ 1

µ2
F

(
GR

(1− γ)2

)2

+
1

µ2
F

(
Cγ
B

t∑
l=1

2η2
(
E‖wj+1

l−1,?‖
2 + E‖wj+1

l−1,? − w
j+1
l−1 ‖

2
)

+
σ2

N

)
.

(I.1)

Now, we are ready to prove the desired results by induction.

Assume that for all t′ < t, we have

E[‖wj+1
t′,? )‖] ≤ 4

µ2
F

(
GR

(1− γ)2

)2

,

and we have applied

T =

4

(
2
µF

GR
(1−γ)2

G2+ 2GR
(1−γ)2√

µF

√
d+ 2G2R

µF (1−γ)2

)2

µF ε′
= O

(
1

(1− γ)4ε′

)
iterations of SGD as in Procedure 2.

Similar to the case of t = 0, we know that this yields

E[‖wj+1
t′ − w

j+1
t′,? ‖

2] ≤ ε′.
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Then, by (I.1), we have

E[‖wj+1
t,? ‖2] ≤ 1

µ2
F

(
GR

(1− γ)2

)2

+
1

µ2
F

(
Cγ
B

t∑
l=1

2η2
(
E‖wj+1

l−1,?‖
2 + E‖wj+1

l−1,? − w
j+1
l−1 ‖

2
)

+
σ2

N

)

≤ 1

µ2
F

(
GR

(1− γ)2

)2

+
1

µ2
F

(
Cγm

B
2η2

(
4

µ2
F

(
GR

(1− γ)2

)2

+ ε′

)
+
σ2

N

)

=
1

µ2
F

(
GR

(1− γ)2

)2

+
1

µ2
F

Cγm

B
2η2

4

µ2
F

(
GR

(1− γ)2

)2

+
1

µ2
F

Cγm

B
2η2ε′ +

1

µ2
F

σ2

N

≤ 4

µ2
F

(
GR

(1− γ)2

)2

.

As a result, we can apply

T =

4

(
2
µF

GR
(1−γ)2

G2+ 2GR
(1−γ)2√

µF

√
d+ 2G2R

µF (1−γ)2

)2

µF ε′
= O

(
1

(1− γ)4ε′

)
iterations of SGD as in Procedure 2 so that

E[‖wj+1
t − wj+1

t,? ‖2] ≤ ε′.

Since each stochastic gradient of l(w) has a cost of 1
1−γ (see App. C), this is equivalent to sample

4

(
2
µF

GR
(1−γ)2

G2+ 2GR
(1−γ)2√

µF

√
d+ 2G2R

µF (1−γ)2

)2

µF ε′
= O

(
1

(1− γ)4ε′

)
trajectories.

We are now ready to prove Theorem E.4.

Proof of Theorem E.4. Line 9 of Algorithm 1 reads

wj+1
t ≈ argmin

w
{E(s,a)∼νj+1

t
[wT∇θ log πθj+1

t
(s, a)]2 − 2〈ηw, uj+1

t 〉}.

And we want to apply SGD as in Procedure 2 to obtain a wj+1
t that satisfies

E[‖wj+1
t − F−1(θj+1

t )uj+1
t ‖2] ≤ ε

3
(

8G2µF
4 + 8G4

4

) . (I.2)

Recall that the parameters S,m,B and N are chosen as

S =
24G2(J? − JH(θ0))

ηε0.5
,

m =
1

ε0.5
,

B =

(
η

µF
+

η

4G2

)
4Cγm

LJε0.25
,

N = 3

(
8G2

µF
+ 2

)
σ2

ε
.
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Since

ε ≤ min
{

3

(
8G2

µF
+ 2

)(
GR

(1− γ)2

)2

, 3

(
8G2

4
+

8G4

4µF

)
2

µF

(
GR

(1− γ)2

)2

,(
2

3ηLJ
(µF +

µ2
F

4G2
)

)4 }
,

the requirements of Proposition I.2 are satisfied:

σ2

N
=

ε

3
(

8G2

µF
+ 2
) ≤ ( GR

(1− γ)2

)2

,

ε′ =
ε

3
(

8G2µF
4 + 8G4

4

) ≤ 2

µ2
F

(
GR

(1− γ)2

)2

Cγm

B
2η2 =

2η2ε0.25(
η
µF

+ η
4G2

)
4
LJ

≤ 1

3
µ2
F .

By applying Proposition I.2, we know that in order to have (I.2), one needs to sample

4

( √
2

µF

GR
(1−γ)2

G2+
√

2GR

(1−γ)2√
µF

√
d+

√
2G2R

µF (1−γ)2

)2

µF ε′
= O

(
1

(1− γ)4ε

)

trajectories. By (I.2) we know that

E[‖θj+1
t+1 − θ

j+1
t+1,?‖2] ≤ ε

3
(

8G2µF
4η2 + 8G4

4η2

) (I.3)

where θj+1
t+1,? = θj+1

t + ηF−1(θj+1
t )uj+1

t .

On the other hand, we have

JH(θj+1
t+1 ) ≥ JH(θj+1

t ) + 〈∇JH(θj+1
t ), θj+1

t+1 − θ
j+1
t 〉 − LJ

2
‖θj+1
t+1 − θ

j+1
t ‖2

= JH(θj+1
t ) + 〈∇JH(θj+1

t )− uj+1
t , θj+1

t+1 − θ
j+1
t 〉

+ 〈uj+1
t , θj+1

t+1 − θ
j+1
t 〉 − LJ

2
‖θj+1
t+1 − θ

j+1
t ‖2

≥ JH(θj+1
t )− η

µF
‖∇JH(θj+1

t )− uj+1
t ‖2 − µF

4η
‖θj+1
t+1 − θ

j+1
t ‖2

+ 〈uj+1
t , θj+1

t+1 − θ
j+1
t 〉 − LJ

2
‖θj+1
t+1 − θ

j+1
t ‖2

where we have applied Lemma B.1 in the first inequality, and Cauchy-Schwartz in the second one.
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Rearranging gives

JH(θj+1
t+1 ) ≥ JH(θj+1

t )− η

µF
‖∇JH(θj+1

t )− uj+1
t ‖2 − µF

4η
‖θj+1
t+1 − θ

j+1
t ‖2

+
1

2
〈uj+1
t , θj+1

t+1,? − θ
j+1
t 〉

+
1

2
〈uj+1
t , θj+1

t+1 − θ
j+1
t+1,?〉+

1

2
〈1
η
F (θj+1

t )(θj+1
t+1,? − θ

j+1
t ), θj+1

t+1 − θ
j+1
t 〉

− LJ
2
‖θj+1
t+1 − θ

j+1
t ‖2

= JH(θj+1
t )− η

µF
‖∇JH(θj+1

t )− uj+1
t ‖2

− µF
4η
‖θj+1
t+1 − θ

j+1
t ‖2 +

1

2
〈uj+1
t , ηF−1(θj+1

t )uj+1
t 〉

+
1

2
〈uj+1
t , θj+1

t+1 − θ
j+1
t+1,?〉+

1

2
〈1
η
F (θj+1

t )(θj+1
t+1,? − θ

j+1
t ), θj+1

t+1 − θ
j+1
t 〉

− LJ
2
‖θj+1
t+1 − θ

j+1
t ‖2,

Applying F−1(θ) � 1
G2 I on the first inner product, and Cauchy-Schwartz on the second inner

product term leads to

JH(θj+1
t+1 ) ≥ JH(θj+1

t )− η

µF
‖∇JH(θj+1

t )− uj+1
t ‖2

− µF
4η
‖θj+1
t+1 − θ

j+1
t ‖2 +

η

2G2
‖uj+1

t ‖2

− η

4G2
‖uj+1

t ‖2 − G2

4η
‖θj+1
t+1 − θ

j+1
t+1,?‖2

+
1

2
〈1
η
F (θj+1

t )(θj+1
t+1,? − θ

j+1
t ), θj+1

t+1 − θ
j+1
t 〉 − LJ

2
‖θj+1
t+1 − θ

j+1
t ‖2

= JH(θj+1
t )− η

µF
‖∇JH(θj+1

t )− uj+1
t ‖2

−
(
µF
4η

+
LJ
2

)
‖θj+1
t+1 − θ

j+1
t ‖2 +

η

4G2
‖uj+1

t ‖2

+
1

2
〈1
η
F (θj+1

t )(θj+1
t+1,? − θ

j+1
t ), θj+1

t+1 − θ
j+1
t 〉 − G2

4η
‖θj+1
t+1 − θ

j+1
t+1,?‖2

= JH(θj+1
t )

− η

µF
‖∇JH(θj+1

t )− uj+1
t ‖2 −

(
µF
4η

+
LJ
2

)
‖θj+1
t+1 − θ

j+1
t ‖2 +

η

4G2
‖uj+1

t ‖2

+
1

2
〈1
η
F (θj+1

t )(θj+1
t+1 − θ

j+1
t ), θj+1

t+1 − θ
j+1
t 〉

+
1

2
〈1
η
F (θj+1

t )(θj+1
t+1,? − θ

j+1
t+1 ), θj+1

t+1 − θ
j+1
t 〉

− G2

4η
‖θj+1
t+1 − θ

j+1
t+1,?‖2.
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Applying ‖∇JH(θj+1
t )‖2 ≤ 2‖∇JH(θj+1

t )− uj+1
t ‖2 + 2‖uj+1

t ‖2 and F (θj+1
t ) � µF Id yields

JH(θj+1
t+1 ) ≥ JH(θj+1

t )−
(
η

µF
+

η

4G2

)
‖∇JH(θj+1

t )− uj+1
t ‖2

−
(
µF
4η

+
LJ
2

)
‖θj+1
t+1 − θ

j+1
t ‖2 +

η

8G2
‖∇JH(θj+1

t )‖2

+
µF
2η
‖θj+1
t+1 − θ

j+1
t ‖2 +

1

2
〈1
η
F (θj+1

t )(θj+1
t+1,? − θ

j+1
t+1 ), θj+1

t+1 − θ
j+1
t 〉

− G2

4η
‖θj+1
t+1 − θ

j+1
t+1,?‖2

≥ JH(θj+1
t )−

(
η

µF
+

η

4G2

)
‖∇JH(θj+1

t )− uj+1
t ‖2

−
(
µF
4η

+
LJ
2

)
‖θj+1
t+1 − θ

j+1
t ‖2 +

η

8G2
‖∇JH(θj+1

t )‖2

+
µF
2η
‖θj+1
t+1 − θ

j+1
t ‖2 − µ2

F

2µF η
‖θj+1
t+1,? − θ

j+1
t+1‖2 −

µF
8η
‖θj+1
t+1 − θ

j+1
t ‖2

− G2

4η
‖θj+1
t+1 − θ

j+1
t+1,?‖2

= JH(θj+1
t )−

(
η

µF
+

η

4G2

)
‖∇JH(θj+1

t )− uj+1
t ‖2

+

(
µF
8η
− LJ

2

)
‖θj+1
t+1 − θ

j+1
t ‖2 +

η

8G2
‖∇JH(θj+1

t )‖2

− (
µF
4η

+
G2

4η
)‖θj+1

t+1,? − θ
j+1
t+1‖2.

(I.4)

From Lemma I.1, we further know that

E[JH(θj+1
t+1 )] ≥ E[JH(θj+1

t )]−
(
η

µF
+

η

4G2

)(
Cγ
B

m−1∑
t=0

E‖θj+1
t+1 − θ

j+1
t ‖2 +

σ2

N

)

+

(
µF
8η
− LJ

2

)
E‖θj+1

t+1 − θ
j+1
t ‖2

+
η

8G2
E‖∇JH(θj+1

t )‖2 − (
µF
4η

+
G2

4η
)E‖θj+1

t+1,? − θ
j+1
t+1‖2.

Telescoping for s = 0, 1, ..., S − 1 and t = 0, 1, ...,m− 1 and dividing by Sm gives

8G2

η

(
µF
8η
− LJ

2
−
(
η

µF
+

η

4G2

)
Cγm

B

)
1

Sm

S−1∑
s=0

m−1∑
t=0

E‖θj+1
t+1 − θ

j+1
t ‖2

+
1

Sm

S−1∑
s=0

m−1∑
t=0

E‖∇JH(θj+1
t )‖2

≤ 8G2

η

J? − JH(θ0)

Sm
+

(
8G2

µF
+ 2

)
σ2

N
+

(
8G2µF

4η2
+

8G4

4η2

)
1

Sm

S−1∑
s=0

m−1∑
t=0

E‖θj+1
t+1,? − θ

j+1
t+1‖2.

(I.5)

Let us first show that the first term on the left hand side of (I.5) is non-negative. In fact, from η = µF
8LJ

and B =
(
η
µF

+ η
4G2

)
4Cγm
LJε0.25

we have

8G2

η

(
µF
8η
− LJ

2
−
(
η

µF
+

η

4G2

)
Cγm

B

)
≥ 16G2L2

J

µF
> 0.
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Therefore, in order to have

1

Sm

S−1∑
s=0

m−1∑
t=0

E‖∇JH(θj+1
t )‖2 ≤ ε,

we can set all the three terms on the right hand side of (I.5) to be ε
3 , which gives

Sm =
24G2(JH,? − JH(θ0))

ηε
,

N = 3

(
8G2

µF
+ 2

)
σ2

ε

E[‖θj+1
t+1 − θ

j+1
t+1,?‖2] ≤ ε

3
(

8G2µF
4η2 + 8G4

4η2

) ,
where the last requirement is satisfied according to (I.3).

For the parameters S,m,B, and N , we have

S =
24G2(JH,? − JH(θ0))

ηε0.5
= O

(
1

(1− γ)2ε0.5

)
,

m =
1

ε0.5
,

B =

(
η

µF
+

η

4G2

)
4Cγm

LJε0.25
= O

(
W

(1− γ)ε0.75

)
,

N = 3

(
8G2

µF
+ 2

)
σ2

ε
= O

(
σ2

ε

)
,

where we have applied the definition of Cγ in Lemma I.1 in the third equality.

Therefore in total, the number of trajectories required by SRVR-NPG to reach ε−stationarity is

S

N +mB + (m+ 1)
4
(

( 2G2R
µF (1−γ)2 + 2

1−γ )
√
d+ 2G2R

µF (1−γ)2

)2
µF

ε

3
(

8G2µF
4 + 8G4

4

)


= O
(

σ2

(1− γ)2ε1.5
+

W

(1− γ)3ε1.75
+

1

(1− γ)6ε2

)
.

J Proof of Proposition 4.5

In this section, we proceed to prove Proposition 4.5, which establishes a general global convergence
result on policy gradient methods of the form θk+1 = θk + ηwk.

Proof. First, by the M−smoothness of score function (see Assumption 4.2), we know that
Es∼dπ?ρ [KL (π?(· | s)||πθk(· | s))− KL (π?(· | s)||πθk+1(· | s))]

= Es∼dπ?ρ Ea∼π?(· | s)
[
log

πθk+1(a | s)
πθk(a | s)

]
≥ Es∼dπ?ρ Ea∼π?(· | s)[∇θ log πθk(a | s) · (θk+1 − θk)]− M

2
‖θk+1 − θk‖2

= ηEs∼dπ?ρ Ea∼π?(· | s)[∇θ log πθk(a | s) · wk]− Mη2

2
‖wk‖2

= ηEs∼dπ?ρ Ea∼π?(· | s)[∇θ log πθk(a | s) · wk? ]

+ ηEs∼dπ?ρ Ea∼π?(· | s)[∇θ log πθk(a | s) · (wk − wk?)]− Mη2

2
‖wk‖2
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where we have applied KL (p||q) = Ex∼p[− log q(x)
p(x) ] in the first step.

On the other hand, by the performance difference lemma [59] we know that

Es∼dπ?ρ Ea∼π?(· | s)[Aπθk (s, a)] = (1− γ)
(
J? − J(θk)

)
.

Therefore,

Es∼dπ?ρ [KL (π?(· | s)||πθk(· | s))− KL (π?(· | s)||πθk+1(· | s))]

≥ ηEs∼dπ?ρ Ea∼π?(· | s)[∇θ log πθk(a | s) · wk? ]

+ ηEs∼dπ?ρ Ea∼π?(· | s)[∇θ log πθk(a | s) · (wk − wk?)]− Mη2

2
‖wk‖2

= η
(
J? − J(θk)

)
+ ηEs∼dπ?ρ Ea∼π?(· | s)[∇θ log πθk(a | s) · wk? −

1

1− γ
Aπθk (s, a)]

+ ηEs∼dπ?ρ Ea∼π?(· | s)[∇θ log πθk(a | s) · (wk − wk?)]− Mη2

2
‖wk‖2

= η
(
J? − J(θk)

)
+ η

1

1− γ
Es∼dπ?ρ Ea∼π?(· | s)[∇θ log πθk(a | s) · (1− γ)wk? −Aπθk (s, a)]

+ ηEs∼dπ?ρ Ea∼π?(· | s)[∇θ log πθk(a | s) · (wk − wk?)]− Mη2

2
‖wk‖2.

Now, let us apply Jensen’s inequality and Assumption 4.2 to obtain

Es∼dπ?ρ [KL (π?(· | s)||πθk(· | s))− KL (π?(· | s)||πθk+1(· | s))]

≥ η
(
J? − J(θk)

)
− η 1

1− γ

√
Es∼dπ?ρ Ea∼π?(· | s)

[
(∇θ log πθk(a | s) · (1− γ)wk? −Aπθk (s, a))

2
]

− ηG‖wk − wk?‖ −
Mη2

2
‖wk‖2

Combining this with Assumption 4.4 yields

Es∼dπ?ρ [KL (π?(· | s)||πθk(· | s))− KL (π?(· | s)||πθk+1(· | s))]

≥ η
(
J? − J(θk)

)
− η

√
1

(1− γ)2
εbias − ηG‖wk − wk?‖ −

Mη2

2
‖wk‖2.

(J.1)

Finally, let us telescope the above inequality from k = 0 to K − 1, and divide by K, which gives

J(π?)− 1

K

K−1∑
k=0

J(θk) ≤
√
εbias

1− γ
+

1

ηK
Es∼dπ?ρ [KL (π?(· | s)||πθ0(· | s))]

+
G

K

K−1∑
k=0

‖wk − wk?‖+
Mη

2K

K−1∑
k=0

‖wk‖2.

(J.2)

On the right hand side of (J.2), the first term reflects the function approximation error due to the
possibly imperfect policy parametrization. The second term vanishes as K →∞.

By looking at the third and fourth term, we know that for an update of the form θk+1 = θk + ηwk,
its global convergence rate depends crucially on i) the difference between its update directions wk
and the exact NPG update direction wk? , and ii) its stationary convergence rate.

In the rest of this paper, we shall see that for stochastic PG, NPG, SRVR-PG, and SRVR-NPG,
both the third and fourth terms of (J.2) go to 0 as K → ∞, whose speed lead to different global
convergence rates for different algorithms. In order to achieve this, we will apply some intermediate
results in the previous proof of stationary convergence.
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K Proof of Theorem 4.6

Let us take wk as the update direction of PG and apply Proposition 4.5. To this end, we need
to upper bound 1

K

∑K−1
k=0 ‖wk − wk?‖,

1
K

∑K−1
k=0 ‖wk‖2, and 1

KEs∼dπ?ρ [KL (π?(· | s)||πθ0(· | s))],
where wk? = F−1(θk)∇J(θk) is the exact NPG update direction at θk.

• Bounding 1
K

∑K−1
k=0 ‖wk − wk?‖.

We know from Jensen’s inequality and
(
E[‖wj+1

t − wj+1
t,? ‖]

)2
≤ E[‖wj+1

t − wj+1
t,? ‖2] that

(
1

K

K−1∑
k=0

E[‖wk − wk?‖]

)2

≤ 1

K

K−1∑
k=0

(
E[‖wk − wk?‖]

)2
≤ 1

K

K−1∑
k=0

E[‖wk − wk?‖2]

≤ 2

K

K−1∑
k=0

E[‖wk −∇J(θk)‖2] +
2

K

K−1∑
k=0

E[‖∇J(θk)− F−1(θk)∇J(θk)‖2]

(K.1)

Since

wk =
1

N

N∑
i=1

g(τHi | θk),

we have from Lemma B.1 and Assumption 4.1 that

1

K

K−1∑
k=0

E[‖wk −∇J(θk)‖2]

≤ 2

K

K−1∑
k=0

E[‖wk −∇JH(θk)‖2] +
2

K

K−1∑
k=0

E[‖∇JH(θk)−∇J(θk)‖2]

≤ 2
σ2

N
+ 2G2R2

(
H + 1

1− γ
+

γ

(1− γ)2

)2

γ2H .

(K.2)

Furthermore, Assumption 2.1 tells us that

E[‖∇J(θk)− F−1(θk)∇J(θk)‖2]

≤
(

1 +
1

µF

)2

E[‖∇J(θk)‖2]

≤
(

1 +
1

µF

)2
(

2E[‖∇JH(θk)‖2] + 2G2R2

(
H + 1

1− γ
+

γ

(1− γ)2

)2

γ2H

)
.

(K.3)

30



Combining (K.2) and (K.3) with (K.1) gives

1

K

K−1∑
k=0

E[‖wk − wk?‖]

≤

(
2
σ2

N
+ 2G2R2

(
H + 1

1− γ
+

γ

(1− γ)2

)2

γ2H

+ 2

(
1 +

1

µF

)2

· 1

K

K−1∑
k=0

(
2E[‖∇JH(θk)‖2] + 2G2R2

(
H + 1

1− γ
+

γ

(1− γ)2

)2

γ2H

))0.5

(K.4)

And recall from (F.2) that

1

K

K−1∑
k=0

E[‖∇JH(θk)‖2] ≤
JH,?−JH(θ0)

K + (η2 + LJη
2)σ

2

N
η
2 − LJη2

.

Let us take η = 1
4LJ

. In addition, let H , N , and K satisfy

1

3
(
ε

3G
)2 ≥

(
2 + 4(1 +

1

µF
)2
)
G2R2

(
H + 1

1− γ
+

γ

(1− γ)2

)2

γ2H

N ≥

(
2 + 12(1 + 1

µF
)2
)
σ2

1
3

(
ε
3G

)2 ,

K ≥

(
1 + 1

µF

)2
64LJ(JH,? − JH(θ0))

1
3

(
ε
3G

)2 .

(K.5)

Then, we have

G

K

K−1∑
k=0

E[‖wk − wk?‖] ≤
ε

3
. (K.6)

• Bounding 1
K

∑K−1
k=0 ‖wk‖2.

We have from (K.2) and (F.2) that

1

K

K−1∑
k=0

E‖wk‖2

≤ σ2

N
+

1

K

K−1∑
k=0

E[‖∇JH(θk)‖2]

≤ σ2

N
+

JH,?−JH(θ0)
K + (η2 + LJη

2)σ
2

N
η
2 − LJη2

.

Taking η = 1
4Lj

and

N ≥ 12Mησ2

ε
,

K ≥ 48LJMη(JH,? − JH(θ0))

ε
,

(K.7)

we arrive at

Mη

2K

K−1∑
k=0

E[‖wk‖2] ≤ ε

3
. (K.8)
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• Bounding 1
KEs∼dπ?ρ [KL (π?(· | s)||πθ0(· | s))].

By taking

K ≥
3Es∼dπ?ρ [KL (π?(· | s)||πθ0(· | s))]

ηε
(K.9)

we have
1

ηK
Es∼dπ?ρ [KL (π?(· | s)||πθ0(· | s))] ≤ ε

3
, (K.10)

In summary, we require N and K to satisfy (K.5), (K.7), and (K.9), which leads to

N = O
(
σ2

ε2

)
, K = O

(
1

(1− γ)2ε2

)
, H = O

(
log((1− γ)−1ε−1)

)
.

By combining (K.6), (K.8), (K.10) and (J.2), we can conclude that

J(π?)− 1

K

K−1∑
k=0

J(θk) ≤
√
εbias

1− γ
+ ε.

In total, stochastic PG requires to sample KN = O
(

σ2

(1−γ)2ε4

)
trajectories.

L Proof of Theorem 4.9

Let us take wk as the update direction of NPG and apply Proposition 4.5. To this end, we need
to upper bound 1

K

∑K−1
k=0 ‖wk − wk?‖,

1
K

∑K−1
k=0 ‖wk‖2, and 1

KEs∼dπ?ρ [KL (π?(· | s)||πθ0(· | s))],
where wk? = F−1(θk)∇J(θk) is the exact NPG update direction at θk.

Let us take η =
µ2
F

4G2LJ
and apply SGD as in Procedure 1 to obtain a wk that satisfies

E[‖wk − wk?‖2] ≤ min
{ ε

12Mη
,

(
1

G

ε

3

)2

,
ε

12Mη3
µ2
F

2

η
2G2 − LJη

2

µ2
F

G2

2η + LJ

}
. (L.1)

From Proposition G.1, we know that this requires sampling O
(

1
(1−γ)4ε2

)
trajectories at each

iteration.

• Bounding 1
K

∑K−1
k=0 ‖wk − wk?‖.

Recall that the update direction wk ≈ wk? = F−1(θk)∇J(θk) is obtained by solving the
subproblem

wk ≈ argmin
w∈Rd

Lνπθ (w; θk)

= argmin
w∈Rd

E(s,a)∼νπθk
[
Aπθk (s, a)− (1− γ)w>∇θ log πθk(a | s)

]2
.

By (L.1) and Jensen’s inequality, we can write(
1

K

K−1∑
k=0

E[‖wk − wk?‖]

)2

≤ 1

K

K−1∑
k=0

E[‖wk − wk?‖2] ≤
(

1

G

ε

3

)2

. (L.2)

On the other hand, by replacing (G.1) with (L.1), the stationary convergence of NPG stated
in (G.3) becomes

1

K

K−1∑
k=0

E[‖∇J(θk)‖2] ≤
J?−J(θ0)

K + ε
12Mη

µ2
F

2

(
η

2G2 − LJη
2

µ2
F

)
η

2G2 − LJη2

µ2
F
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• Bounding 1
K

∑K−1
k=0 ‖wk‖2.

Taking η =
µ2
F

4G2LJ
and

K ≥ 24(J? − J(θ0))Mη

µ2
F

(
η

2G2 − LJη2

µ2
F

)
ε

(L.3)

gives us

1

K

K−1∑
k=0

E[‖∇J(θk)‖2] ≤ µ2
F ε

12Mη
.

(L.1) and the above inequality yields

1

K

K−1∑
k=0

E[‖wk‖2] ≤ 2

K

K−1∑
k=0

E[‖wk − wk?‖2] +
1

µ2
F

2

K

K−1∑
k=0

E[‖∇J(θk)‖2]

≤ 2ε

12Mη
+

2

µ2
F

· µ
2
F ε

12Mη
=

ε

3Mη
.

(L.4)

• Bounding 1
KEs∼dπ?ρ [KL (π?(· | s)||πθ0(· | s))].

Let us also set

K ≥
3Es∼dπ?ρ [KL (π?(· | s)||πθ0(· | s))]

ηε
, (L.5)

so that

1

ηK
Es∼dπ?ρ [KL (π?(· | s)||πθ0(· | s))] ≤ ε

3
. (L.6)

In summary, we require K to satisfy (L.3) and (L.5), which leads to

K = O
(

1

(1− γ)2ε

)
By combining (L.2), (L.4), (L.6) and (J.2), we can conclude that

J(π?)− 1

K

K−1∑
k=0

J(θk) ≤
√
εbias

1− γ
+ ε.

Since at each iteration, SGD needs to sample O
(

1
(1−γ)4ε2

)
trajectories so that (L.1) is satisfied,

NPG requires to sample O
(

1
(1−γ)6ε3

)
trajectories in total.

M Proof of Theorem 4.11

Let us take wj+1
t as the update direction of SRVR-PG and apply Proposition 4.5. To this end, we

need to upper bound 1
Sm

∑S−1
s=0

∑m−1
t=0 ‖w

j+1
t − wj+1

t,? ‖, 1
Sm

∑S−1
s=0

∑m−1
t=0 ‖w

j+1
t ‖2, and

1
SmEs∼dπ?ρ [KL (π?(· | s)||πθ0(· | s))], where wj+1

t,? = F−1(θj+1
t )∇J(θj+1

t ) is the exact NPG update

direction at θj+1
t .

• Bounding 1
Sm

∑S−1
s=0

∑m−1
t=0 ‖w

j+1
t − wj+1

t,? ‖.
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Since wj+1
t = uj+1

t and wj+1
t,? = F−1(θj+1

t )∇J(θj+1
t ), we have from Lemmas I.1 and B.1

that
E[‖wj+1

t − wj+1
t,? ‖2]

≤ 2E[‖uj+1
t −∇J(θj+1

t )‖2] + 2E[‖∇J(θj+1
t )− F−1(θj+1

t )∇J(θj+1
t )‖2]

≤ 2E[‖uj+1
t −∇JH(θj+1

t )‖2] + 2(1 +
1

µF
)2E[‖∇J(θj+1

t )‖2]

+ 2G2R2

(
H + 1

1− γ
+

γ

(1− γ)2

)2

γ2H

≤ 2

(
Cγ
B

t∑
l=1

E[‖θj+1
l − θj+1

l−1 ‖
2] +

σ2

N

)
+ 2(1 +

1

µF
)2E[‖∇J(θj+1

t )‖2]

+ 2G2R2

(
H + 1

1− γ
+

γ

(1− γ)2

)2

γ2H

≤ 2

(
Cγ
B

m−1∑
t=0

E[‖θj+1
t+1 − θ

j+1
t ‖2] +

σ2

N

)
+ 2(1 +

1

µF
)2E[‖∇J(θj+1

t )‖2]

+ 2G2R2

(
H + 1

1− γ
+

γ

(1− γ)2

)2

γ2H ,

where we have applied Lemma B.1 and Assumption 2.1 in the second inequality, and Lemma
I.1 in the third one.
Telescoping this over s = 0, 1, .., S − 1, t = 0, 1,m− 1 and dividing by Sm gives

1

Sm

S−1∑
s=0

m−1∑
t=0

E[‖wj+1
t − wj+1

t,? ‖2]

≤ 2(1 +
1

µF
)2

1

Sm

S−1∑
s=0

m−1∑
t=0

E[‖∇J(θj+1
t )‖2]

+ 2

(
Cγm

B

1

Sm

S−1∑
s=0

m−1∑
t=0

E[‖θj+1
t+1 − θ

j+1
t ‖2] +

σ2

N

)

+ 2G2R2

(
H + 1

1− γ
+

γ

(1− γ)2

)2

γ2H .

(M.1)

On the other hand, from Equation (B.14) of [21] we know that(
2

η2
− 4LJ

η
− 12mCγ

B

)
1

Sm

S−1∑
s=0

m−1∑
t=0

E[‖θj+1
t+1 − θ

j+1
t ‖2]

+
1

Sm

S−1∑
s=0

m−1∑
t=0

E[‖∇JH(θj+1
t )‖2]

≤ 8(JH,? − JH(θ0))

ηSm
+

6σ2

N
.

(M.2)

By the definition of Cγ in Lemma I.1, we have

B =
3ηCγm

LJ
=

72ηRG(2G2 +M)(W + 1)γ

LJ(1− γ)5
m (M.3)

Therefore, (M.2) becomes(
2

η2
− 8LJ

η

)
1

Sm

S−1∑
s=0

m−1∑
t=0

E[‖θj+1
t+1 − θ

j+1
t ‖2] +

1

Sm

S−1∑
s=0

m−1∑
t=0

E[‖∇JH(θj+1
t )‖2]

≤ 8(JH,? − JH(θ0))

ηSm
+

6σ2

N
,
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Since η = 1
8LJ

, we further have

1

Sm

S−1∑
s=0

m−1∑
t=0

E[‖θj+1
t+1 − θ

j+1
t ‖2] ≤ JH,? − JH(θ0)

LJSm
+

6σ2

64L2
JN

,

1

Sm

S−1∑
s=0

m−1∑
t=0

E[‖∇JH(θj+1
t )‖2] ≤ 64LJ(JH,? − JH(θ0))

Sm
+

6σ2

N
.

(M.4)

Putting these inequalities back into (M.1) yields

1

Sm

S−1∑
s=0

m−1∑
t=0

E[‖wj+1
t − wj+1

t,? ‖2] ≤ 2(1 +
1

µF
)2
(

64LJ(JH,? − JH(θ0))

Sm
+

6σ2

N

)
+ 2

(
8L2

J

3

(
JH,? − JH(θ0)

LJSm
+

6σ2

64L2
JN

)
+
σ2

N

)
+ 2G2R2

(
H + 1

1− γ
+

γ

(1− γ)2

)2

γ2H .

Let us set

1

3

( ε

3G

)2
≥ 2G2R2

(
H + 1

1− γ
+

γ

(1− γ)2

)2

γ2H ,

N ≥

(
12(1 + 1

µF
)2 + 2.5

)
σ2

1
3

(
ε
3G

)2 ,

Sm ≥

(
128(1 + 1

µF
)2 + 16

3

)
LJ(JH,? − JH(θ0))

1
3

(
ε
3G

)2 ,

(M.5)

so that

1

Sm

S−1∑
s=0

m−1∑
t=0

E[‖wj+1
t − wj+1

t,? ‖2] ≤
(

1

G

ε

3

)2

By Jensen’s inequality, we further have

.

(
1

Sm

S−1∑
s=0

m−1∑
t=0

E[‖wj+1
t − wj+1

t,? ‖]

)2

≤ 1

Sm

S−1∑
s=0

m−1∑
t=0

(
E[‖wj+1

t − wj+1
t,? ‖]

)2
≤ 1

Sm

S−1∑
s=0

m−1∑
t=0

E[‖wj+1
t − wj+1

t,? ‖2]

≤
(

1

G

ε

3

)2

.

(M.6)

where we have also applied
(
E[‖wj+1

t − wj+1
t,? ‖]

)2
≤ E[‖wj+1

t − wj+1
t,? ‖2].

• Bounding 1
Sm

∑S−1
s=0

∑m−1
t=0 ‖w

j+1
t ‖2
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Since E[wj+1
t ] = E[uj+1

t ] = ∇JH(θj+1
t ), by Lemma I.1 we have

1

Sm

S−1∑
s=0

m−1∑
t=0

E[‖wj+1
t ‖2]

=
1

Sm

S−1∑
s=0

m−1∑
t=0

E[‖uj+1
t −∇JH(θj+1

t )‖2] +
1

Sm

S−1∑
s=0

m−1∑
t=0

E[‖∇JH(θj+1
t )‖2]

≤ 1

Sm

S−1∑
s=0

m−1∑
t=0

(
Cγ
B

t∑
l=1

E[‖θj+1
l − θj+1

l−1 ‖
2] +

σ2

N

)

+
1

Sm

S−1∑
s=0

m−1∑
t=0

E[‖∇JH(θj+1
t )‖2]

≤ Cγm

B
· 1

Sm

S−1∑
s=0

m−1∑
t=0

E[‖θj+1
t+1 − θ

j+1
t ‖2] +

σ2

N
+

1

Sm

S−1∑
s=0

m−1∑
t=0

E[‖∇JH(θj+1
t )‖2].

By setting η = 1
8LJ

and applying (M.3) and (M.4), we further have

1

Sm

S−1∑
s=0

m−1∑
t=0

E[‖wj+1
t ‖2]

≤ 8L2
J

3
·
(
JH,? − JH(θ0)

LJSm
+

6σ2

64L2
JN

)
+
σ2

N
+

64LJ(JH,? − JH(θ0))

Sm
+

6σ2

N

Therefore, we can set

N ≥ 174Mσ2

32LJε
,

Sm ≥ 50M(JH,? − JH(θ0))

ε
,

(M.7)

so that

1

Sm

S−1∑
s=0

m−1∑
t=0

E‖wj+1
t ‖2 ≤ ε

3Mη
. (M.8)

• Bounding 1
SmEs∼dπ?ρ [KL (π?(· | s)||πθ0(· | s))].

Let us set

Sm ≥
3Es∼dπ?ρ [KL (π?(· | s)||πθ0(· | s))]

ηε
(M.9)

so that
1

ηSm
Es∼dπ?ρ [KL (π?(· | s)||πθ0(· | s))] ≤ ε

3
. (M.10)

By combining (M.6), (M.8), (M.10) and (J.2), we can conclude that

J(π?)− 1

K

K−1∑
k=0

J(θk) ≤
√
εbias

1− γ
+ ε.

To achieve this, we require Sm and N to satisfy (M.5), (M.7), and (M.9), which leads to

Sm = O
(

1

(1− γ)2ε2

)
, N = O

(
σ2

ε2

)
, H = O

(
log(

1

(1− γ)ε
)

)
.

By (M.3), we know that B = O(W (1− γ)−1m).
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Therefore, by taking S = O
(

1
(1−γ)2.5ε

)
and m = O

(
1

(1−γ)−0.5ε

)
, the sample complexity of

SRVR-PG is

S(N +mB) = O
(

σ2

(1− γ)2.5ε3
+

W

(1− γ)2.5ε3

)
= O

(
W + σ2

(1− γ)2.5ε3

)
.

N Proof of Theorem 4.13

Let us take wj+1
t as the update direction of SRVR-NPG and apply Proposition 4.5. To this end, we

need to upper bound 1
Sm

∑S−1
s=0

∑m−1
t=0 ‖w

j+1
t − wj+1

t,? ‖, 1
Sm

∑S−1
s=0

∑m−1
t=0 ‖w

j+1
t ‖2, and

1
SmEs∼dπ?ρ [KL (π?(· | s)||πθ0(· | s))], where wj+1

t,? = F−1(θj+1
t )∇J(θj+1

t ) is the exact NPG update

direction at θj+1
t .

Let us take η = µF
16LJ

and apply SGD as in Procedure 2 to obtain a wj+1
t that satisfies

E[‖wj+1
t − F−1(θj+1

t )uj+1
t ‖2] ≤ min

{ 1
4

(
1
G
ε
3

)2
2 + G2µF+G4

µ2
F

· µF
4G2+µF

,
64η2L2

J

µF (µF +G2)
· ε

9Mη

}
.

(N.1)

In order to apply Proposition I.2, let assume the following so that its assumptions are satisfied:

σ2

N
≤
(

GR

(1− γ)2

)2

,

min
{ 1

4

(
1−γ
G

ε
3

)2
2 + G2µF+G4

µ2
F

· µF
4G2+µF

,
64η2L2

J

µF (µF +G2)
· (1− γ)ε

9Mη

}
≤ 2

µ2
F

(
GR

(1− γ)2

)2

Cγm

B
2η2 ≤ 1

3
µ2
F .

(N.2)

At the end of this proof, we will see that these assumptions are indeed satisfied for small ε.

From Proposition I.2, we know that this requires samplingO
(

1
(1−γ)4ε2

)
trajectories at each iteration.

• Bounding 1
Sm

∑S−1
s=0

∑m−1
t=0 ‖w

j+1
t − wj+1

t,? ‖.
First of all, we have

E[‖wj+1
t − wj+1

t,? ‖2]

≤ 2E[‖wj+1
t − F−1(θj+1

t )uj+1
t ‖2] + 2E[‖F−1(θj+1

t )uj+1
t − F−1(θj+1

t )∇J(θj+1
t )‖2]

≤ 2E[‖wj+1
t − F−1(θj+1

t )uj+1
t ‖2] + 2

1

µ2
F

E[‖uj+1
t −∇J(θj+1

t )‖2]

≤ 2E[‖wj+1
t − F−1(θj+1

t )uj+1
t ‖2] + 4

1

µ2
F

(
Cγ
B

t∑
l=1

E[‖θj+1
l − θj+1

l−1 ‖
2] +

σ2

N

)

+ 4G2R2

(
H + 1

1− γ
+

γ

(1− γ)2

)2

γ2H

≤ 2E[‖wj+1
t − F−1(θj+1

t )uj+1
t ‖2] + 4

1

µ2
F

(
Cγ
B

m−1∑
t=0

E[‖θj+1
t+1 − θ

j+1
t ‖2] +

σ2

N

)

+ 4G2R2

(
H + 1

1− γ
+

γ

(1− γ)2

)2

γ2H ,

where we have applied Assumption 2.1 in the second inequality, and Lemmas I.1 and B.1 in
the third one.
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Telescoping this over s = 0, 1, .., S − 1, t = 0, 1,m− 1 and dividing by Sm gives
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(N.3)

On the other hand, from (I.5) we know that

8G2

η

(
µF
8η
− LJ

2
−
(
η

µF
+

η

4G2

)
Cγm

B

)
1

Sm

S−1∑
s=0

m−1∑
t=0

E‖θj+1
t+1 − θ

j+1
t ‖2

+
1

Sm

S−1∑
s=0

m−1∑
t=0

E‖∇JH(θj+1
t )‖2

≤ 8G2

η

JH,? − JH(θ0)

Sm

+

(
8G2

µF
+ 2

)
σ2

N
+

(
8G2µF

4
+

8G4

4

)
1

Sm

S−1∑
s=0

m−1∑
t=0

E‖F−1(θj+1
t )uj+1

t − wj+1
t ‖2.

(N.4)

Let us set
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Since η = µF
16LJ

, (N.4) becomes
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from which we have
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Putting these inequalities back into (N.3) and applying (N.1) yields
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From (N.5) we know that
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which gives us
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where we have applied (N.1) in the first equality.
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Let us set
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so that
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where we have also applied
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• Bounding 1
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where we have applied (N.6) in the first inequality, and (N.1) in the last step.
We can set

N ≥
9MµF ( 8G2

µF
+ 2)σ2

128G2ηL2
Jε

,

Sm ≥ 9M(J? − J(θ0))

LJηε
,

(N.9)

so that

1

Sm

S−1∑
s=0

m−1∑
t=0

E‖wj+1
t ‖2 ≤ ε

3Mη
. (N.10)

40



• Bounding 1
SmEs∼dπ?ρ [KL (π?(· | s)||πθ0(· | s))].

Let us set
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By combining (N.8), (N.10), (N.12) and (J.2), we can conclude that
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To achieve this, we require Sm, B, and N to satisfy (N.5), (N.7), (N.9), and (N.11), which leads to
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By Proposition I.2, we know that in order to achieve (N.1), SGD requires sampling O
(

1
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trajectories per iteration.

Therefore, by taking S = O
(
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It is straightforward to verify that the requirements listed in (N.2) are also satisfied as long as ε is
small enough.

O Implementation Details

In this section, we provide additional details on the implementation of PG, NPG, SRVR-PG and
SRVR-NPG.

1. For NPG, we use the default implementation provided by rllab1, which actually implements
the trust region policy optimization(TRPO) algorithm [5]. For cartplole, we sample 200
trajectories at each iteration to solve the subproblem of TRPO. For mountain car, we sample
120 trajectories at each iteration.

2. We found that the naive implementation of PG and SRVR-PG typically do not work for our
tests. For example, PG and SRVR-PG often give an average reward around −90 for the
mountain-car test, despite of our best efforts.

3. As in [19] and [21], we found that it is necessary to apply Adagrad [62] or Adam [63] type
of averaging to improve their performances.

4. In our experiments, we apply Adagrad type of averaging for PG and SRVR-PG, which results
in much better performances. As for SRVR-NPG, we apply Adam type of averaging, which
gives an approximation of the Fisher information matrix at each iteration (see section 11.2
of [53]). We leave the implementation of a better approximation of the Fisher information
matrix to the future work.

1https://github.com/rll/rllab

41

https://github.com/rll/rllab

	Introduction
	Preliminaries
	Markov Decision Processes
	(Natural) Policy Gradient Methods

	Variance-Reduced Policy Gradient Methods
	Theoretical Results
	A General Framework for Global Convergence
	Global Convergence Results

	Numerical Experiments
	Concluding Remarks
	Derivation of Previous Complexity Bounds
	Helper Lemmas
	Properties of PG Estimator
	On the Positive Definiteness of F()

	SGD and Sampling Procedures
	SGD for Solving the Subproblems of NPG and SRVR-NPG
	Sampling Procedures

	SRVR-PG Algorithm
	Stationary Convergence
	Proof of Theorem E.1
	Proof of Theorem E.2
	Proof of Theorem E.3
	Proof of Theorem E.4
	Proof of Proposition 4.5
	Proof of Theorem 4.6
	Proof of Theorem 4.9
	Proof of Theorem 4.11
	Proof of Theorem 4.13
	Implementation Details

