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Thank you to all the reviewers for the feedback! R2 and R5 are positive about the paper and gave very helpful
suggestions. We believe that R4 may have a misunderstanding about the algorithm and analysis, and we have tried to
clarify it below. We hope that R4 will reconsider and increase their score to recommend acceptance. Thanks again!

[R4] Does FedNova decrease the stepsize of each client and slow down the
convergence speed? FedNova does not degrade the convergence speed of
FedAvg, as we justify next. Firstly, when clients perform local updates, they use
the same step size 7) as FedAvg and not a scaled one 7¢7/7;. Secondly, the dif-
ference between FedNova and FedAvg is the aggregation weights w;, which only
control the direction, and not the magnitude of the accumulated global update.
The magnitude is determined by 7.g, which is the same in FedAvg and FedNova.
For example, observe in Figurethat the solid green vector (:c&jl\}(’,gz —zt0)

has roughly the same magnitude as the FedAvg update (:cg:/iv’g) — zt0)),

(t+1,0)
[R4 & R2] What if we force all clients to run the same local steps (e.g., the FedNova
minimum of local steps across clients)? It is true that forcing all clients to Novel Generalized Update Rule
perform 7 = min; 7; local steps (let us call this algorithm FedAvg-min) can also (t41,0) _ (.0) )
ensure objective consistency. However, its convergence rate is provably worse z =T T"“Z wi - 1d;
than FedNova. This is because, in each round, FedAvg-min will go over less o

data samples than FedNova (mbmy;, versus b Z:ll 7; where b is the mini-batch Optimizes F(z) = Z wiFy(x)
size). Using theorem 2, one can show that the convergence rate of FedAvg-min i=1

is 1/y/mT min; 7;, which is slower than the rate of FedNova 1//T' Y ;" | 7;.
Empirically, we evaluate the performance of FedAvg-min and FedNova on the
synthetic dataset in Figure[2] Observe that FedNova achieves lower loss value
than FedAvg-min at any round. Another drawback of a fixed 7 algorithm like
FedAvg-min is that faster nodes would remain idle in each round while waiting

Figure 1: The difference between
FedAvg and FedNova is the aggre-
gation weights w;, which only con-
trols the direction of the solid green

for slower nodes. FedNova avoids such straggling delays by allowing nodes to ~ 2ITOW:
make different numbers of local updates. 2.25
n 2.001 —— FedAvg

[R4] Do we need to know 7 in order to choose a suitable 7 in Theorem 3? 3 1;5) ‘:\\~ Y i gjﬁ‘és'am‘”
We do not need to know 7 or 7; beforehand. It is worth noting that m77T = 215

m T—1 (t) . .. 51004 '\\ \
D ic1 21— T; is actually the total number of processed mini-batches across [ty HATIS SO
all clients after 7" rounds. Once we have a budget on the total mini-matches K = 0.501 Nt Uy

+ 1 — -t — 2 0 50 100 150 200
m7T to be processed, we can set the learning rate as n = \/’ITL/TT = \/m /K, Commiunication rounds
then the optimization error is guaranteed to be bounded by O(1/v K). As for the
upper bound on learning rate, it is only used for theoretical analysis. In practice, Figure 2: FedAvg-min.

one always needs to tune the learning rate.

[R4] Is the general analysis framework a marginal contribution? We believe that the analytical framework proposed
in Section 4 is an important and impactful contribution, perhaps even more critical than Section 5. This is because:
1) we identify the objective inconsistency problem in FedAvg by showing that performing the same number of local
epochs at clients with heterogeneous sizes datasets optimizes a mismatched objective and 2) we provide the first (to
the best of our knowledge) rigorous understanding of the objective inconsistency problem in federated learning by
quantifying the non-vanishing gap caused by incorrect weighted aggregation of heterogeneously updated models.

[R4] Extending our theorems to strongly convex case. We focus on the non-convex case since it is the most practical
and challenging setting. It is straightforward to extend our analysis to convex or strongly convex cases. For instance,
one can directly apply Polyak-Lojasiewicz condition to Eqn. (89) in the appendix and obtain an improved rate.

[R2] Is the bias-correction necessary when using local momentum? Yes, it is necessary because without bias-
correction, the algorithm will converge to a stationary point of a mismatched objective, the analytical form of which can
be derived using our framework. We will add some experiments in appendix to further validate this.

[RS5] Clarifications on FedProx: hyper-parameters and differences to FedNova. On the synthetic dataset, we use
the same model and hyper-parameters as the FedProx paper. We set ;1 = 1 because this is the best value reported in that
paper. On the CIFAR-10 dataset, we tuned the value of  from {0.0005,0.001,0.005,0.01} as stated in the Appendix.
FedNova with proximal updates is same as FedProx in terms of the local updates, but the aggregation weights w; and
effective steps 7. are set differently. In our framework (4), the weights and 7.¢ used in FedProx are given by Eqn. (6)
while FedNova uses w; = p; and Ter = D .o | P;iTi.

[R5] Avoiding confusions on the algorithm name. Thanks for the suggestion! We will avoid using the term
‘normalized gradient’ and clearly state the meaning of normalization in our paper, or even use another term.



