
A Appendix

A.1 Scaling of χl,gt and χl,out

Figure A.1-a shows the overlap with the ground truth χl,gt (top) and with the output activations χl,out

(bottom) in ResNet152, for the same subset of 90,000 examples from ILSVRC2012 analysed in the
paper. In our experiments we empirically set k = 30 i.e. one tenth of the number of images per class.
Figure A.1-a shows that the trend of χl,gt and χl,out is rather robust over a wide range of k-values.
Only when k is very large (k = 300) the transition in the last layers of the network is not detected
very clearly.

In Figure A.1-b we plot how χl,gt (top) and χl,out (bottom) vary with the dataset size N . As the
number of examples N increases we keep the ratio between the number of classes and images per
class constant. This shows that the results are also robust with respect to N .
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Figure A.1: (a:) Profiles of the overlap with the ground truth labels (top) and with the output layer
(bottom) as a function of the neighbor size. (b:) Profiles of the overlap with the ground truth labels
(top) and with the output layer (bottom) as a function of the total number N of images.

A.2 Overlaps vs relative depth

Figure A.2 shows the profiles of χl,gt (top panels) and χl,out (bottom panels) for ten deep neural
networks. The number of layers of each architecture can be inferred from the name with the sole
exception of GoogLeNet which has 22 layers.

All the profiles increase significantly only close to the output. The left panels also show that both
χl,gt and χl,out tend to increase more abruptly and closer to the output layer the deeper is the network.
The profiles show a monotonic increasing trend with the exception of the DensNet layers in a dense
block [1]. Within a dense block all the layers are connected with subsequent ones. Feature maps are
therefore markovian only between the transition layers at the end of the blocks. In the main text we
have considered only markovian feature maps: in this case χl,gt and χl,out are always monotonic
increasing functions of the layer depth.
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Figure A.2: Profiles of χl,gt (top panels) and χl,out (bottom panels) for a subset of layers of ten deep
neural networks. The layers that downsample the channels (checkpoints) are represented with dots.
On the x-axis of the left panels we rescale the layer depths by the network size, on the x-axis of the
right panels we instead display the checkpoints uniformly spaced.

A.3 Overlap with the checkpoint layers

Figure A.3 shows the overlap of the representations with respect to the representation at tree layers
l = 25, l = 88 and l = 148, belonging to tree distinct ResNet152 blocks. On average the number of
layers required to change half of the neighbors is ∼ 20 in conv3 and ∼ 30 in conv4, while in conv5
where the nucleation takes place the same change occurs in just one layer. Indeed, the rate at which
neighbors are reshuffled grows dramatically when the ordered clusters appear (see Sec. 2.1). The
neighborhood composition changes significantly also between two blocks when the channels are
downsampled.
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Figure A.3: Overlap with layers 25, 88, 148 in ResNet152. Different background colors indicate
different ResNet blocks
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A.4 Central kernel alignment vs overlap

Central kernel alignment (CKA) is the normalized squared Hilbert-Schmidt norm of the cross
covariance operator between representations [2]. Like the neighborhood overlap it is invariant under
orthogonal transformations and isotropic scaling but not to an arbitrary invertible linear transformation.
This has been argued to be too a limitation for a similarity index between representations [2]. Gaussian
CKA probes the local similarity between representations and can seen as a kernel smoothing of the
neighborhood overlap presented in Sec. 2.1. In figure A.4-a we show the gaussian CKA (orange)
and the overlap (green) with the output layer setting the kernel bandwidth to 0.2 times the average
distance with the first nearest neighbor. Linear CKA is equivalent to a CCA between representations
in which the canonical variates are weighted by the corresponding eigenvalues [2]. Linear CKA
steadily increases already in the early layers of the network (see Fig. A.4-a blu profile).

Figure A.4-b shows how the gaussian CKA with the output is affected by different choices of the
kernel bandwidth σ. The smaller is σ the sharper is the transition measured by the index.
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Figure A.4: (a:) Linear CKA (blu), overlap χl,out (green) and gaussian CKA (orange) with the output
layer in ResNet152 for a subset of 5000 ILSVRC2012 images. We kept 50 classes and 100 images per
class and set the kernel bandwidth σ to 0.2 times the average distance with the first nearest neighbor
d1 . (b:) Gaussian CKA with the output layer as a function of the kernel badwidth σ: σ = 0.1d1
(blu), σ = 0.2d1 (orange), σ = 0.5d1 (green), σ = d1 (red), σ = 2d1 (pink).
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A.5 Overlap and intrinsic dimension profiles in different datasets
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Figure A.5: Overlap with the ground truth
labels (Top) and intrinsic dimension profiles
(Bottom) in ResNet152 for different datasets:
MNIST (red), CIFAR10 (orange), modM-
NIST (green), ImageNet (blue).

In this section we compare the overlap with the ground
truth labels χl,gt and the intrinsic dimension (ID) pro-
files of different dataset of inceasing complexity in
ResNet152.

The top panel of figure A.5 shows χl,gt for a
ResNet152 architecture trained on MNIST [3] modM-
NIST, CIFAR-10 [4] and ImageNet [5]. To generate
the modMNIST dataset we resize the dimension of
the MNIST digits by a factor ranging from 0.2 to 0.4
and moved them in a random location of the image.
We finally scale up the size of the images to 224x224
pixels. We trained MNIST and modMNIST for 10
and 20 epochs respectively using Adam optimizer [6]
with default parameters (lr=0,001, betas=(0,9; 0,999));
we trained CIFAR10 for 120 epochs with stochastic
gradient descent with momentum (lr = 0.1, momen-
tum = 0.9), decreasing the learning rate by a factor
10 after 60 epochs; we used the PyTorch pre-trained
ResNet152 model for ImageNet.

MNIST can be directly classified with high accuracy
with a k-NN estimator. Consistently already in the
input layer χl,gt ≈ 0.78 and reaches one from conv3
onwards. In modMNIST and CIFAR-10 the categories
are only 10, therefore the initial values of χl,gt are
larger, the lag phase is shorter the one of ImageNet.
While qualitatively, χl,gt behaves similarly in modMNIST, CIFAR-10 and ILSVRC2012, the transi-
tion of χl,gt seems to be sharp only for the ILSVRC2012 dataset, and is therefore likely related to the
complexity of the prediction task.

Bottom panel shows the intrinsic dimension (ID) for the same datasets across the checkpoints layers
of ResNets152. The higher the complexity of the dataset the more are the factors of variations
encoded in the embedding manifold, the higher is the ID. For complex datasets like ImageNet the ID
has the hunchback shape reported in [7], while for MNIST and modMNIST it is almost constant, and
it takes much smaller values, uncorrelated with χl,gt . This supports the hypothesis that the transition
observed in the value of the neighborhood overlap is not necessarily related with a sharp change of
the intrinsic dimension of the representation.

A.6 Details of density peaks appearing between layer 142 and 148

In figure A.6 we report a visualisation of the the density peaks appearing during the "nucleation
transition" of Resnet 152. In particular, the image shows the size and approximate composition of
the peaks present in the layers 142, 145, and 148. As discussed in Section 3.3, in layer 142 the data
density is dominated by two large peaks composed of images of animals and artifacts respectively.
This structure is visible in panel (a), in which one can easily identify the two large peaks. In the
subsequent layers, the animal and artifact peaks break down into small peaks containing images
of the same class. The process happens in a hierarchical fashion: peaks corresponding to multiple
classes sharing a lot of semantic similarities appear first, and subsequently break down into smaller
peaks corresponding to the single classes. This phenomenon can be observed in panels (b) and (c).
For instance, in layer 145 (panel (b)) one can clearly identify peaks corresponding to certain kinds of
arachnids (wolf spider, harvestman, tick, ...), insects (black and gold spider, leaf beetle, barn spiders)
4-wheel means of transportation (beach wagon, convertible, minivan), dogs (Samoyed, keeshond,
chow), and so on. In layer 148 (panel (c)) this process continues and one finds many more peaks,
corresponding either to single classes (e.g., iPod, piggy bank and beer bottle) or to groups of similar
classes. At the end of the nucleation process described, from layer 152 (not shown here) one finds
approximately one peak corresponding to each class label.

4



Figure A.6: Composition of density peaks in layers 142 (a), 145 (b) and 148 (c). The x-axis indicates
the size of the peak, the y-axis reports the categories represented with more than 150 points in the
peak. Consecutive dots ("...") indicate that more than three categories are well represented in the
peak. The peaks are ordered from the smallest to the largest from top to bottom.
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