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Abstract

To guide behavior, the brain extracts relevant features from high-dimensional data
streamed by sensory organs. Neuroscience experiments demonstrate that the pro-
cessing of sensory inputs by cortical neurons is modulated by instructive signals
which provide context and task-relevant information. Here, adopting a norma-
tive approach, we model these instructive signals as supervisory inputs guiding
the projection of the feedforward data. Mathematically, we start with a family
of Reduced-Rank Regression (RRR) objective functions which include Reduced
Rank (minimum) Mean Square Error (RRMSE) and Canonical Correlation Anal-
ysis (CCA), and derive novel offline and online optimization algorithms, which
we call Bio-RRR. The online algorithms can be implemented by neural networks
whose synaptic learning rules resemble calcium plateau potential dependent plas-
ticity observed in the cortex. We detail how, in our model, the calcium plateau
potential can be interpreted as a backpropagating error signal. We demonstrate
that, despite relying exclusively on biologically plausible local learning rules,
our algorithms perform competitively with existing implementations of RRMSE
and CCA.

1 Introduction

In the brain, extraction of behaviorally-relevant features from high-dimensional data streamed by
sensory organs occurs in multiple stages. Early stages of sensory processing, e.g., the retina, lack
feedback and are naturally modeled by unsupervised learning algorithms [1]. In contrast, subsequent
processing by cortical circuits is modulated by instructive signals from other cortical areas [2], which
provide context and task-related information [3], thus calling for supervised learning models.

Unsupervised models of early sensory processing, despite employing many simplifying assumptions,
have successfully bridged the salient features of biological neural networks, such as the architecture,
synaptic learning rules and receptive field structure, with computational tasks such as dimensionality
reduction, decorrelation, and whitening [4, 5, 6, 7, 8]. The success of such models was driven by
two major factors. First, following a normative framework, their synaptic learning rules, network
architecture and activity dynamics were derived by optimizing a principled objective, leading to
an analytic understanding of the circuit computation without the need for numerical simulation [9].
Second, these models went beyond purely theoretical explorations by appealing to and explaining
various experimental observations of early sensory organs available at the time [5, 8, 9].
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In contrast to early sensory processing, subsequent processing in the cortex (both neocortex [10,
2, 11, 12, 13] and hippocampus [14, 15, 16, 17]) is guided by supervisory signals. In particular, in
cortical pyramidal neurons, proximal dendrites receive and integrate feedforward inputs leading to
the generation of action potentials (i.e., the output of the neuron). The distal dendrites of the apical
tuft, in contrast, receive and integrate instructive signals resulting in local depolarization. When the
local depolarization is large relative to inhibitory currents, this generates a calcium plateau potential
that propagates throughout the entire neuron. If the calcium plateau coincides with feedforward
input, it strengthens corresponding proximal synapses, thereby providing an instructive signal in
these circuits [12, 11, 15, 16].

In this work, we model cortical processing as a projection of feedforward sensory input that is
modulated by instructive signals from other cortical areas. Inspired by the success of the normative
approach in early sensory processing, we adopt it here. Mathematically, the projections of sensory
input can be learned by minimizing the prediction error or maximizing the correlation of the pro-
jected input with the instructive signal. These correspond to two instances of the Reduced-Rank
Regression (RRR) objectives: Reduced-Rank (minimum) Mean Square Error (RRMSE) [18] and
Canonical Correlation Analysis (CCA) [19].

To serve as a viable model of brain function, an algorithm must satisfy at least the following two
criteria [9]. First, because sensory inputs are streamed to the brain and require real-time processing,
it must be modeled by an online learning algorithm that does not store any significant fraction of
the data. To satisfy this requirement, unlike standard offline formulations, which output projection
matrices, at each time step, the algorithm must compute the projection from the input of that time
step. The projection matrices are updated at each time step and can be represented in synaptic
weights. Second, a neural network implementation of such an algorithm must rely exclusively on
local synaptic learning rules. Here, locality means that the plasticity rules depend exclusively on
the variables available to the biological synapse, i.e., the physicochemical activities of the pre- and
post-synaptic neurons in the synaptic neighborhood. The Hebbian update rule is an example of local
learning, where the change of synaptic weight is proportional to the correlation between the output
activities of the pre- and post-synaptic neurons [20].

Contributions

• We derive novel algorithms for a family of RRR problems, which include RRMSE and
CCA, and implement them in biologically plausible neural networks that resemble cortical
micro-circuits.

• We demonstrate within the confines of our model how the calcium plateau potential in
cortical microcircuits encodes a backpropagating error signal.

• We show numerically on a real-world dataset that our algorithms perform competitively
compared with current state-of-the-art algorithms.

2 Related works

Our contributions are related to several lines of computational and theoretical research. One of the
earliest normative models of cortical computation is based on the predictive coding framework where
the feedback attempts to predict the feedforward input. When trained on natural images, this approach
can explain extra-classical response properties observed in the visual cortex [21, 22]. The predictive
coding framework has recently been used for the supervised training of deep networks with Hebbian
learning rules [23]. However, these models have not been mapped onto the anatomy and physiology,
especially the non-Hebbian synaptic plasticity, of cortical microcircuits [15, 16].

A prescient paper [24] proposed that supervised learning in the cortex can be implemented by
multi-compartmental pyramidal neurons with non-Hebbian learning rules driven by calcium plateau
potentials. Building on this proposal, [25, 26, 27] demonstrated possible biological implementations
of backpropagation in deep networks. Neuroscience experiments have motivated the development
of several biologically realistic models of microcircuits with multi-compartmental neurons and non-
Hebbian learning rules [28, 29, 30]. Specifically, [29, 30] showed that calcium plateau potentials,
generated in the apical tuft, can modulate the efficacy of proximal synapses. These demonstrations,
however, are limited in that they were shown analytically in a small region of parameter space or they
rely entirely on numerical simulations.
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In the context of statistical learning, multiple RRMSE [31, 32, 33, 34, 35] and CCA [36, 37, 38,
39, 40, 41] algorithms have been developed. Of these algorithms, none satisfy the minimal criteria
for biological plausibility. Biologically plausible formulations of CCA, as an unsupervised data
integration algorithm following the normative approach, were proposed using deflation [42] and fully
online in [43].

3 An objective function for reduced-rank regression problems

In this section, we review the Reduced-Rank Regression (RRR) problem which encompasses Canon-
ical Correlation Analysis (CCA) and Reduced Rank (minimum) Mean Square Error (RRMSE) as
special cases.

Notation. For positive integers m,n, let Rm denote m-dimensional Euclidean space, and let
Rm⇥n denote the set of m ⇥ n real-valued matrices. We use boldface lower-case letters (e.g., v)
to denote vectors and boldface upper-case letters (e.g., M) to denote matrices. Let Im denote the
m⇥m identity matrix.

Let {(xt,yt)}Tt=1
be a sequence of pairs of data points with xt 2 Rm, yt 2 Rn. We refer

to xt as the predictor variable and yt as the response variable. Define the data matrices X :=
[x1, . . . ,xT ] 2 Rm⇥T and Y := [y1, . . . ,yT ] 2 Rn⇥T . Let Cxx := 1

T XX>, Cyy := 1

T YY>,
and Cxy := 1

T XY> be the empirical covariance matrices. Throughout this paper, we assume that X
and Y are centered and full rank.

3.1 Problem formulation

The goal of RRR is to find a low-rank projection matrix P 2 Rn⇥m that minimizes the error between
PX and Y. The low-rank constraint favors the extraction of features that are most predictive of the
response variables, thus preventing over-fitting [18]. We can formalize this as follows:

arg min
P2Rn⇥m

1

T

��Y �PX
��2

⌃
subject to rank(P)  k, (1)

where k  min(m,n) determines the rank of the problem, ⌃ 2 Rn⇥n is a positive definite matrix,
and k · k⌃ is the ⌃-norm defined by kAk2

⌃
:= TrA>⌃A for A 2 Rn⇥T . Intuitively, the ⌃-norm is

a generalized norm that can take into account the noise statistics of the samples [44]. Two common
choices for ⌃ are ⌃ = In and ⌃ = C�1

yy . When ⌃ = In, the RRR problem reduces to minimizing
the mean square error (MSE) with a low-rank constraint. We refer to this objective as Reduced Rank
(minimum) Mean Square Error (RRMSE) [18].1 For ⌃ = C�1

yy , the objective in Eq. (1) is equivalent
to Canonical Correlation Analysis (CCA) (see Sec. A of the supplementary materials).

3.2 Parametrizing the projection matrix

The low-rank constraint, rank(P)  k, in Eq. (1) can be enforced by expressing P = ⌃�1VyV>
x ,

where Vx 2 Rm⇥k and Vy 2 Rn⇥k (the inclusion of ⌃�1 here is for convenience in the derivation
below). The matrix V>

x projects the inputs xt onto a k-dimensional subspace and the column vectors
of ⌃�1Vy span the range of the projection matrix P. Plugging into Eq. (1), we have

min
Vx2Rm⇥k

min
Vy2Rn⇥k

1

T

��Y �⌃�1VyV
>
x X

��2

⌃
. (2)

The minimum of this objective is not unique: given a solution (Vx,Vy) and any invertible matrix
M 2 Rk⇥k, (VxM>,VyM�1) is also a solution. To constrain the solution set, we impose the
whitening constraint V>

x CxxVx = Ik. Expanding the quadratic in (2), dropping terms that do not
depend on Vx or Vy , and using the whitening constraint, we arrive at

min
Vx2Rm⇥k

min
Vy2Rn⇥k

Tr(V>
y ⌃

�1Vy � 2V>
x CxyVy) subject to V>

x CxxVx = Ik. (3)

1Also referred to as reduced rank Wiener filter or simply reduced rank regression.
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The output of our algorithms will be the low-rank projection of X, which we call Z := V>
x X.

Intuitively, for RRMSE (⌃ = In), optimization of this objective would find Z which is most
informative, in terms of MSE loss, of the response variable Y. For CCA (⌃ = C�1

yy ), optimization of
this objective finds the projection Z which has the highest correlation with the response variable Y.

We parametrize the normalizing matrix by its inverse as ⌃�1 = ⌃�1

s := sCyy + (1 � s) In with
0  s  1. RRR with this normalizing matrix corresponds to a family of objectives which interpolate
between RRMSE at s = 0 and CCA at s = 1.

4 Algorithm derivation

In this section, starting from Eq. (3), we derive offline and online algorithms for the family of RRR
objectives parametrized by s.

4.1 Offline algorithms

Noting that imposing the constraint V>
x CxxVx = Ik via a Lagrange multiplier leads to non-local

update rules (see Sec. B of the supplementary materials), following [45] we impose the weaker
inequality constraint V>

x CxxVx � Ik by introducing the matrix Q 2 Rk⇥k

min
Vx2Rm⇥k

min
Vy2Rn⇥k

max
Q2Rk⇥k

TrV>
y ⌃

�1

s Vy � 2V>
x CxyVy +QQ>(V>

x CxxVx � Ik), (4)

where QQ> is the positive semi-definite Lagrange multiplier enforcing the inequality. As in [45], the
dynamics of the optimization enforce that the inequality constraint is saturated, i.e., V>

x CxxVx = Ik
is satisfied at the optimum of the objective (for a different proof see Sec. C). In the offline setting,
objective (4) can be optimized using gradient descent-ascent dynamics derived by taking partial
derivatives:

V>
x  V>

x + ⌘(V>
y Cyx �QQ>V>

x Cxx) (5)

V>
y  V>

y + ⌘(V>
x Cxy �V>

y ⌃
�1

s ) (6)

Q Q+
⌘

⌧
(V>

x CxxVx � Ik)Q, (7)

where ⌘ > 0 is the learning rate for Vx and Vy , and ⌧ > 0 is a parameter controlling the ratio of the
descent and ascent steps.

4.2 Online algorithms

In the online (or streaming) setting, the input is presented one sample at a time, and the algorithm
must find the projection without storing any significant fraction of the dataset.

To derive an online algorithm, we rewrite the objective function (4) making the dependence of the
objective on each individual sample manifest:

min
Vx

min
Vy

max
Q

1

T

TX

t=1

V>
y (syy

>+(1�s)In)Vy�2V>
x xty

>
t Vy+QQ>(V>

x xtx
>
t Vx�Ik). (8)

If we now perform stochastic gradient descent/ascent [46], i.e., perform the gradient updates with
respect to individual samples, we arrive at our online algorithm. Explicitly, at time t, we have:

V>
x  V>

x + ⌘(at �Qnt)x
>
t (9)

V>
y  V>

y + ⌘(zty
>
t � saty

>
t � (1� s)V>

y ) (10)

Q Q+
⌘

⌧
(ztn

>
t �Q). (11)

where zt := V>
x xt is the output of the algorithm, at := V>

y yt and nt := Q>zt.

Our algorithms, which we call Bio-RRR, are summarized in Alg. 1 (offline) and Alg. 2 (online).
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Algorithm 1: Offline Bio-RRR

input: X 2 Rm⇥T , Y 2 Rn⇥T

initialize Vx, Vy , and Q.
Cxx  XX>/T ; Cxy  XY>/T

⌃�1

s  sYY>/T + (1� s) In
repeat:
V>

x  V>
x + ⌘(V>

y Cyx �QQ>V>
x Cxx)

V>
y  V>

y + ⌘(V>
x Cxy �V>

y ⌃
�1

s )

Q Q+ ⌘
⌧ (V

>
x CxxVx � Ik)Q

until convergence
output: Z = V>

x X . projected predictor

Algorithm 2: Online Bio-RRR

input: xt 2 Rm, yt 2 Rn . new sample
Vx,Vy,Q . previous matrices

zt  V>
x xt; nt  Q>zt; at  V>

y yt

V>
x  V>

x + ⌘(at �Qnt)x>
t

V>
y  V>

y +⌘(zty>�saty>� (1�s)V>
y )

Q Q+ ⌘
⌧ (ztn

>
t �Q)

output: zt . projected sample
Vx,Vy,Q . updated matrices

5 Biological implementation and comparison with experiment

In this section, we introduce a biological neural circuit that implements the online RRR algorithm
and demonstrate that the details of this circuit resemble neurophysiological properties of pyramidal
cells in the neocortex and the hippocampus.

5.1 Neural circuit

The algorithm for online RRR summarized by the update rules in Eqs. (9)�(11) can be implemented
in a neural circuit with schematic shown in Fig. 1. In this circuit, the individual components of the
output of Bio-RRR, z1, . . . , zk, are represented as the outputs of k neurons. The matrices Vx and
Vy are encoded as the weights of synapses between the output neurons and the inputs of the network
(blue and pink nodes in Fig. 1). Explicitly the element V ij

x (resp. V ij
y ) is the efficacy of the synapse

connecting xi (resp. yi) to the jth output neuron zj . Because of the disjoint nature of the two inputs,
we model these as synapsing respectively onto the distal (apical tuft) and proximal (mostly basal)
dendrites of the output neurons, Fig. 1 . The quantities zt = V>

x xt and at = V>
y yt are then the

integrated dendritic currents in each dendritic compartment.

Similarly, the auxiliary variable n is represented by the activity of k interneurons with Q encoded
in the weights of synapses connecting n to z (purple nodes on the upper dendritic branch of z) and
Q> encoded in the weights of synapses from z to n (gray nodes). In a biological setting, the implied
equality of weights of synapses from z to n and the transpose of those from n to z can be guaranteed
approximately by application of the same Hebbian learning rule (see supplementary materials Sec. D).

The proximal synaptic weights, given by the elements of Vx, are updated by the product of two
factors represented in the corresponding post- and pre-synaptic neurons (Eq. 9).

�V>
x / (at �Qnt)x

>
t

The first factor (at �Qnt), is the difference between the excitatory synaptic current in the apical
tuft (at = V>

y yt) and the inhibitory current induced by interneurons synapsing onto the distal
compartment (Qnt). Biologically, this factor can be approximated by the calcium plateau potential
traveling down the apical shaft. The second factor is the input xt to the proximal dendrites. Therefore,
the synaptic weight update is proportional to quantities that are available to the synapse locally.

The synaptic learning rule for Vy (Eq. 10) also involves the products of pre- and post-synaptic
variables but weighted by the parameter s,

�V>
y /

h
zty

>
t � (1� s) V>

y � s aty
>
t

i

In the case of RRMSE (s = 0), the update is Hebbian ( zt y>
t ) with a homeostasis decay term (�V>

y ).
In the case of CCA (s = 1), the synaptic weight update is proportional to (zt � at)y>, where the
difference between the (dendritically backpropagated) output activity of the pyramidal neuron (zt)
and the total synaptic input to the distal compartment (at) can be computed in the corresponding
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Inputs to distal dendrites

Distal synaptic weights

Inputs to proximal dendrites

Proximal synaptic weights

Pyramidal-to-interneuron

synaptic weights

Interneuron-to-pyramidal

synaptic weights (inhibitory)

Total distal dendritic current

Output of pyramidal cells

Calcium plateau potentials

Output of interneurons

Figure 1: Cortical microcircuit for Bio-RRR. Pyramidal neurons (black) receive inputs x onto the dendrites
proximal to the cell bodies (black triangles) weighted by V>

x , and inputs y onto the distal dendrites weighted by
V>

y . The calcium plateau potential is the difference between the total distal dendritic current for each pyramidal
neuron, a = (a1, . . . , ak), and the corresponding component of the inhibitory input, �Qn. Output activity
of pyramidal neurons, z = (z1, . . . , zk), is fed back via inhibitory interneurons (purple). The equivalence of
the pyramidal-to-interneuron weight matrix, Q>, and the transpose of the interneuron-to-pyramidal weight
matrix, Q, follows from the operation of the local learning rules, see Sec. D of supplementary materials.

post-synaptic neuron (cf. [28]). In the intermediate cases of 0 < s < 1, the update rule for Vy

linearly interpolates between these two cases and remains local.

Finally, this circuit has the advantage of being purely feedforward in the sense that the output
computation does not require equilibration of recurrent activity in lateral connections as was the case
in e.g. [9]. This is due to the segregation between the proximal compartment that computes the output
of the neuron and the distal compartment which receives the inhibitory lateral feedback.

5.2 Comparison with neuroscience experiments

The Bio-RRR circuit derived above has many features in common with cortical microcircuits but
also deviates from them in a number of ways. Microcircuits in the cortex contain two classes of
neurons: excitatory pyramidal neurons and inhibitory interneurons.2 The pyramidal neurons can
be considered the output neurons as their axon projections leave the local circuit. Similar to the
output neurons of our circuit in Fig. 1, pyramidal neurons have two integration sites, the proximal
compartment comprised of the basal and proximal apical dendrites providing inputs to the soma,
and the distal compartment comprised of the apical dendritic tuft [49, 3]. These two compartments
receive excitatory inputs from two separate sources [50, 2].

The inputs onto the two compartments are processed differently [2, 51, 52, 49, 3]. The proximal
inputs directly drive the pyramidal neuron output by generating action potentials. If the distal inputs
are stronger than the inhibitory post-synaptic currents driven by the interneurons, they generate a
calcium plateau potential, which can also cause action potentials in the pyramidal neurons [2]. This is
in contrast to our RRR algorithms, where only the proximal input contributes to the output, z = V>

x x.
Neglecting the contribution of the apical inputs to the action potential generation can be justified by
the temporal sparsity of calcium plateau potentials. The situation where both proximal and distal
inputs contribute significantly to the generation of action potentials can be modeled by an alternative
biologically plausible implementation of CCA [43].

The calcium plateau potentials generated by the apical tuft inputs drive the plasticity of proximal
synapses [12, 14, 15, 16]. Because this update is not purely dependent on the action potentials of
the pre- and post-synaptic neurons, such plasticity is called non-Hebbian [16]. This resembles the
synaptic updates of Vx in Eq. (9). However, while the teaching signal for the proximal synapses in
Bio-RRR (i.e., at �Qnt) is signed and graded, in the cortex, these signals are generally believed to
be stereotypical [2]. Graded calcium mediated signals were recently observed in [29].

2There are multiple types of interneurons targeting pyramidal cells [47, 48]. The interneurons of Bio-RRR
most closely resemble the somatostatin-expressing interneurons, which preferentially inhibit the apical dendrites.
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Whereas the pyramidal neurons of the cortex fire all-or-nothing action potentials, Bio-RRR neurons
are analog and linear as in firing-rate models. Furthermore, the goal of the RRR objectives is to
reduce the dimensionality of the feedforward input, whereas sensory cortical processing is thought
to expand dimensionality [53, 54, 55, 56]. These two disparities between our networks and realistic
circuits are closely linked in that it is impossible to perform meaningful dimensionality expansion
with linear neurons. However, due to the analytical tractability of simplified linear models, they
provide insights that are difficult to obtain in more realistic models amenable only to numerical
simulations.

The above comparisons of our algorithm with experiment apply equally to Bio-RRR with any
0  s  1. The property which distinguishes different members of this family of algorithms is the
update rule associated with the synapses of the distal compartment Vy given in Eq. (10). There is
conflicting experimental evidence regarding the plasticity of the distal apical dendrites in different
areas of the brain. In the neocortex, the plasticity is thought to be Hebbian [11, 57], whereas in
the hippocampus, experimental evidence points to non-Hebbian plasticity [12]. As discussed in the
previous section, our online RRMSE and CCA algorithms require that distal synapses follow Hebbian
and non-Hebbian plasticity rules, respectively. For a given cortical circuit, determining whether CCA
or RRMSE or some intermediate value of s provides the best fit would require a close examination of
the plasticity rules of the distal compartment.

6 Interpretation of calcium plateau potential in Bio-RRR

Experimentally, the calcium plateau potentials act as instructive signals in cortical pyramidal neurons
by driving plasticity in the proximal dendrites [15, 16, 30]. Several prior works [24, 25, 26, 27]
have suggested that the calcium plateau potential carries the backpropagation error. Here, we
show that the calcium plateau potential plays a similar role in Bio-RRR provided the network is
close to the optimum of the objective. In the process, we will also show how Bio-RRR avoids the
weight transport problem of Artificial Neural Networks (ANNs) trained with the backpropagation
algorithm (backprop).

We first describe how a two-layer ANN trained with backprop would implement RRR. We then
compare the Bio-RRR learning rule for V>

x , which approximates the calcium plateau potential, with
that of the first layer weights of this ANN. For simplicity, we focus on the RRMSE case (s = 0), but
the interpretation of the role of the calcium plateau potential in the V>

x learning rule holds for any s.

The RRMSE objective given by

min
Vx2Rm⇥k

min
Vy2Rn⇥k

1

T

��Y �VyV
>
x X

��2
, (12)

can be implemented as a two-layer linear ANN, where V>
x and Vy are the weights of the first and

second layer of the network. We define ŷt = VyV>
x xt as the network’s prediction of the label yt

given input xt. When trained by backprop, the weight updates of this network are given by taking
derivatives of the loss with respect to the weights [46]. Specifically, the learning rule for the weights
of the first layer is given by:

�V>
x / (V>

y ✏t)x
>
t , ✏t = (yt � ŷt), (13)

where we have defined ✏t as the prediction error for the sample at time t. The update for V>
x , the

weights of the first layer of the ANN, requires the computation and backpropagation of the error
signal ✏t. A cartoon of this process is given in Fig. 2a, where the forward and backward passes
are respectively denoted in blue and red. Here, the weights Vy are used both in the forward pass
when computing the error ✏t = yt � VyV>

x xt, and also their transpose in the backward pass
when propagating the error back to the first layer (13). This symmetry between the forward and
backward weights is a general property of SGD in deep networks but is not biologically realistic and
is referred to as the “weight transport problem” [58, 59, 60]. Several solutions exist to facilitate the
backpropagation of the computed error in a biologically plausible manner [61, 62, 63, 64].

Next, we show how Bio-RRR circumvents the weight transport problem. Comparing the above
procedure for computing the Vx weight updates to that of Bio-RRR given by:

�V>
x / (at �Qnt)x

>
t (14)
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forward pass

backward pass

(a) Two-layer artificial neural network (b) Bio-RRR algorithm

Figure 2: Schematic of a two-layer ANN implementation of RRR (left) and Bio-RRR (right), demonstrating
the computation of the learning rule for V>

x (for ⌃ = In). The blue and red arrows respectively denote the
forward and backward passes. In Bio-RRR, at �Qnt (encoded in the calcium plateau potential) replaces the
backpropagated error V>

y ✏t in the V>
x learning rule.

we see that the backpropagated error term in Eq. (13) is now replaced by the term (at �Qnt) which
emulates the calcium plateau potential. A diagram showing how this quantity is computed is given in
Fig. 2b. We see that, unlike in the backprop computation depicted in Fig. 2a, in Bio-RRR no weights
are reused and therefore weight transport problem is circumvented. This is because the Bio-RRR
algorithm does not require the computation of the inferred value ŷt and the error signal ✏t = yt � ŷt.

Although Bio-RRR does not explicitly compute prediction error, the update for V>
x can still be

interpreted in the context of error backpropagation. To this end, we look at the optimum of the
objective where, from Eq. (5), we have

QQ>V>
x = V>

y CyxC
�1

xx ) Qnt = QQ>V>
x xt = V>

y CyxC
�1

xxxt = V>
y ỹt,

where we have used nt = Q>zt and zt = V>
x xt, and we have defined ỹt := CyxC�1

xxxt. As
CyxC�1

xx = arg minWkY �WXk2⌃ is the optimum of the rank-unconstrained regression objective,
ỹt is the best estimate of yt given the samples received thus far. Using these quantities and the
definition of at = V>

y yt, we can rewrite the quantity at �Qnt and the V>
x update in Eq. (9) as

at �Qnt = V>
y (yt � ỹt) ) V>

x  V>
x + ⌘

h
V>

y ( yt � ỹt| {z }
prediction error

)
i
x>
t . (15)

Therefore, while the error term yt� ỹt and backpropagation are not present explicitly in Bio-RRR, at
the optimum, the calcium plateau potential is equal to a backpropagated error signal, and the update
of V>

x is proportional to the covariance of this backpropagated error signal and the input x>
t .

7 Numerical experiments

In this section, we report the results of numerical simulations for our algorithms with s = 0 denoted
as Bio-RRMSE and s = 1 denoted as Bio-CCA, and compare with current non-biologically plausible
algorithms. For our experiments, we use the MediaMill dataset [65], a commonly used real-world
benchmark consisting of T = 2⇥104 samples of video data and text annotations. For our experiments,
we take the predictor variables X to be the 100-dimensional textual features and the response variable
to be the 120-dimensional visual features extracted from representative video frames.

RRMSE. The performance of our RRMSE algorithm on MediaMill is given in Fig. 3a in terms of
the objective function in Eq. (3) with ⌃ = In. For ranks k 2 {1, 2, 4}, we plot this both as a function
of iteration (top) and as a function of the CPU runtime (bottom). Here, the black dashed line denotes
the value of the objective at its global minimum. For comparison, we provide the performance of
the iterative quadratic minimum distance (IQMD) algorithm [32] and the 2-layer ANN discussed
in Sec. 6. We see that IQMD is the most sample efficient, and ANN and Bio-RRMSE are within
variance of each other and match the performance of IQMD in runtime. For plots of these algorithms
in the offline (batch) setting, see Sec. E.
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Figure 3: Comparisons of RRR algorithms for (a) RRMSE (s = 0) and (b) CCA (s = 1) in terms of the
objective value Eq. (3) vs. iteration and runtime. Mean ± standard deviation over 5 runs of the experiment.

CCA. We evaluate the performance of our CCA algorithm on the MediaMill dataset and compare
with CCALin [66] and SAA [67], which are offline algorithms, and MSG-CCA [36] which is online.
In Fig. 3b, we plot the performance of the different algorithms for CCA projection dimensions
k 2 {1, 2, 4} in terms of the objective function given in Eq. (3). We see that on this dataset, our
offline algorithm (Bio-CCA - offline) is the most sample efficient and our online algorithm (Bio-CCA
- online) is fastest in terms of CPU runtime.

For further details, including the choice of hyperparameters and plots of convergence of the RRR
constraint, see supplementary materials Sec. E. For experiments comparing the performance of
RRMSE and backprop on a number of standard image classification datasets, see Sec. F.

8 Conclusion

Employing a normative approach, we derived new offline and online algorithms for a family of
optimization objectives, which include CCA and RRMSE as special cases. We implemented these
algorithms in biologically plausible neural networks and discussed how they resemble recent exper-
imentally observed plasticity rules in the hippocampus and the neocortex. We elaborated on how
this algorithm circumvents the weight transport problem of backprop and how the teaching signal is
encoded in a quantity that resembles the calcium plateau potential. Determining which algorithm,
CCA or RRMSE, more closely resembles cortical processing would require a careful examination of
synaptic plasticity in the distal compartment of pyramidal neurons.

Broader impact

Understanding the inner workings of the brain has the potential of having a tremendous impact on
society. On the one hand, this can lead to better performing machine learning algorithms and better
artificial intelligent agents. On the other, understanding how the brain works can pave the way for

9



better treatments of psychological and neurological disorders. While this paper does not tackle these
lofty broad societal goals directly, it is a small step in clarifying how information is processed in the
brain.
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