A Supplementary Material for Interior Point Solving for LP-based prediction+optimisation

A. 1 Solution of Newton Equation System of Eq. 11)

Here we discuss how we solve an equation system of Eq (11), for more detail you can refer to [4]. Consider the following system with a generic R.H.S-

$$
\left[\begin{array}{ccc}
-X^{-1} T & A^{\top} & -c \tag{13}\\
A & 0 & -b \\
-c^{\top} & b^{\top} & \kappa / \tau
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
r_{1} \\
r_{2} \\
r_{3}
\end{array}\right]
$$

If we write:

$$
W \doteq\left[\begin{array}{cc}
-X^{-1} T & A^{\top} \tag{14}\\
A & 0
\end{array}\right]
$$

then, observe W is nonsingular provided A is full row rank. So it is possible to solve the following system of equations-

$$
\begin{align*}
W\left[\begin{array}{l}
p \\
q
\end{array}\right] & =\left[\begin{array}{l}
c \\
b
\end{array}\right] \tag{15}\\
W\left[\begin{array}{l}
u \\
v
\end{array}\right] & =\left[\begin{array}{l}
r_{1} \\
r_{2}
\end{array}\right]
\end{align*}
$$

Once we find p, q, u, v finally we compute x_{3} as:

$$
\begin{equation*}
x_{3}=\frac{r_{3}+u^{\top} c-v^{\top} b}{-c^{\top} p+b^{\top} q+\frac{\kappa}{\tau}} ; \tag{16}
\end{equation*}
$$

And finally

$$
\begin{align*}
& x_{1}=u+p x_{3} \tag{17}\\
& x_{2}=v+q x_{3} \tag{18}
\end{align*}
$$

To solve equation of the form

$$
W\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{cc}
-X^{-1} T & A^{\top} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=\left[\begin{array}{l}
r_{1} \\
r_{2}
\end{array}\right]
$$

Notice we can reduce it to $M v=A T^{-1} X r_{1}+r_{2}$ (where $M=A T^{-1} X A^{\top}$). As M is positive definite for a full row-rank A, we obtain v by Cholesky decomposition and finally $u=T^{-1} X\left(A^{\top} v-\right.$ $\left.r_{1}\right)$.

A. 2 Differentiation of HSD formulation in Eq. (9)

We differentiate Eq. (9) with respect to c :

$$
\begin{align*}
\frac{\partial(A x)}{\partial c}-\frac{\partial(b \tau)}{\partial c} & =0 \\
\frac{\partial\left(A^{\top} y\right)}{\partial c}+\frac{\partial t}{\partial c}-\frac{\partial(c \tau)}{\partial c} & =0 \\
-\frac{\partial\left(c^{\top} x\right)}{\partial c}+\frac{\partial\left(b^{\top} y\right)}{\partial c}-\frac{\partial \kappa}{\partial c} & =0 \tag{19}\\
\frac{\partial t}{\partial c} & =\frac{\partial\left(\lambda X^{-1} e\right)}{\partial c} \\
\frac{\partial \kappa}{\partial c} & =\frac{\partial\left(\frac{\lambda}{\tau}\right)}{\partial c}
\end{align*}
$$

Applying the product rule we can further rewrite this into:

$$
\begin{align*}
& A \frac{\partial x}{\partial c}-b \frac{\partial \tau}{\partial c}=0 \\
& A^{\top} \frac{\partial y}{\partial c}+\frac{\partial t}{\partial c}-\left(c \frac{\partial \tau}{\partial c}+\tau I\right)=0 \\
&-\left(c^{\top} \frac{\partial x}{\partial c}+x^{\top}\right)+b^{\top} \frac{\partial y}{\partial c}-\frac{\partial \kappa}{\partial c}=0 \tag{20}\\
& \frac{\partial t}{\partial c}=-\lambda X^{-2} \frac{\partial x}{\partial c} \\
& \frac{\partial \kappa}{\partial c}=-\frac{\lambda}{\tau^{2}} \frac{\partial \tau}{\partial c}
\end{align*}
$$

Using $t=\lambda X^{-1} e \leftrightarrow \lambda e=X T e$ we can rewrite the fourth equation to $\frac{\partial t}{\partial c}=-X^{-1} T \frac{\partial x}{\partial c}$. Similarly we use $\kappa=\frac{\lambda}{\tau} \leftrightarrow \lambda=\kappa \times \tau$ and rewrite the fifth equation to $\frac{\partial \kappa}{\partial c}=-\frac{\kappa}{\tau} \frac{\partial \tau}{\partial c}$. Substituting these into the first three we obtain:

$$
\begin{align*}
A \frac{\partial x}{\partial c}-b \frac{\partial \tau}{\partial c} & =0 \\
A^{\top} \frac{\partial y}{\partial c}-X^{-1} T \frac{\partial x}{\partial c}-c \frac{\partial \tau}{\partial c}-\tau I & =0 \tag{21}\\
-c^{\top} \frac{\partial x}{\partial c}-x^{\top}+b^{\top} \frac{\partial y}{\partial c}+\frac{\kappa}{\tau} \frac{\partial \tau}{\partial c} & =0
\end{align*}
$$

This formulation is written in matrix form in Eq. (12).

A. 3 LP formulation of the Experiments

A.3.1 Details on Knapsack formulation of real estate investments

In this problem, H is the set of housings under consideration. For each housing h, c_{h} is the known construction cost of the housing and p_{h} is the (predicted) sales price. With the limited budget B, the constraint is

$$
\sum_{h \in H} c_{h} x_{h}=B, x_{h} \in 0,1
$$

where x_{h} is 1 only if the investor invests in housing h. The objective function is to maximize the following profit function

$$
\max _{x_{h}} \sum_{h \in H} p_{h} x_{h}
$$

A.3.2 Details on Energy-cost aware scheduling

In this problem J is the set of tasks to be scheduled on M number of machines maintaining resource requirement of R resources. The tasks must be scheduled over T set of equal length time periods. Each task j is specified by its duration d_{j}, earliest start time e_{j}, latest end time l_{j}, power usage $p_{j} . u_{j r}$ is the resource usage of task j for resource r and $c_{m r}$ is the capacity of machine m for resource r. Let $x_{j m t}$ be a binary variable which possesses 1 only if task j starts at time t on machine m. The first constraint ensures each task is scheduled and only once.

$$
\sum_{m \in M} \sum_{t \in T} x_{j m t}=1, \forall_{j \in J}
$$

The next constraints ensure the task scheduling abides by earliest start time and latest end time constraints.

$$
\begin{gathered}
x_{j m t}=0 \quad \forall_{j \in J} \forall_{m \in M} \forall_{t<e_{j}} \\
x_{j m t}=0 \quad \forall_{j \in J} \forall_{m \in M} \forall_{t+d_{j}>l_{j}}
\end{gathered}
$$

Finally the resource requirement constraint:

$$
\sum_{j \in J} \sum_{t-d_{j}<t^{\prime} \leq t} x_{j m t^{\prime}} u_{j r} \leq c_{m r}, \forall_{m \in M} \forall_{r \in R} \forall_{t \in T}
$$

If c_{t} is the (predicted) energy price at time t, the objective is to minimize the energy cost of running all tasks, given by:

$$
\min _{x_{j m t}} \sum_{j \in J} \sum_{m \in M} \sum_{t \in T} x_{j m t}\left(\sum_{t \leq t^{\prime}<t+d_{j}} p_{j} c_{t^{\prime}}\right)
$$

A.3.3 Details on Shortest path problem

In this problem, we consider a directed graph specified by node-set N and edge-set E. Let A be the $|N| \times|E|$ incidence matrix, where for an edge e that goes from n_{1} to n_{2}, the $\left(n_{1}, e\right)^{\text {th }}$ entry is 1 and $\left(n_{2}, e\right)^{\text {th }}$ entry is -1 and the rest of entries in column e are 0 . In order to, traverse from source node s to destination node d, the following constraint must be satisfied:

$$
A x=b
$$

where x is $|E|$ dimensional binary vector whose entries would be 1 only if corresponding edge is selected for traversal and b is $|N|$ dimensional vector whose $s^{\text {th }}$ entry is 1 and $d^{\text {th }}$ entry is -1 ; and rest are 0 . With respect to the (predicted) cost vector $c \in \mathbb{R}^{|E|}$, the objective is to minimize the cost

$$
\min _{x} c^{\top} x
$$

A. 4 Additional Knapsack Experiments

This knapsack experiment is taken from [18], where the knapsack instances are created from the energy price dataset 15 . The 48 half-hour slots are considered as 48 knapsack items and a random cost is assigned to each slot. The energy price of a slot is considered as the profit-value and the objective is to select a set of slots which maximizes the profit ensuring the total cost of the selected slots remains below a fixed budget. We also added the approach of Blackbox [25], which also deals with a combinatorial optimization problem with a linear objective.

Budget	Two- stage	QPTL	SPO	Blackbox	IntOpt
60	$1042(3)$	$579(3)$	$624(3)$	$533(40)$	$570(58)$
120	$1098(5)$	$380(2)$	$425(4)$	$383(14)$	$406(71)$

A. 5 Hyperparameters of the experiments ${ }^{2}$

A.5.1 Knapsack formulation of real estate investments

Model	Hyperaprameters*
Two-stage	\bullet optimizer: optim.Adam; learning rate: 10^{-3}
SPO	\bullet optimizer: optim.Adam; learning rate: 10^{-3}
QPTL	\bullet optimizer: optim.Adam; learning rate: $10^{-3} ; \tau$ (quadratic regularizer): 10^{-5}
IntOpt	\bullet optimizer: optim.Adam; learning rate: $10^{-2} ; \lambda$-cut-off: $10^{-4} ;$ damping factor $\alpha: 10^{-3}$

* for all experiments embedding size: 7 number of layers:1,hidden layer size: 2

A.5.2 Energy-cost aware scheduling

Model	Hyperaprameters
Two-stage	• optimizer: optim.SGD; learning rate: 0.1
SPO	• optimizer: optim.Adam; learning rate: 0.7
QPTL	• optimizer: optim.Adam; learning rate: $0.1 ; \tau$ (quadratic regularizer): 10^{-5}
IntOpt	• optimizer: optim.Adam; learning rate: $0.7 ; \lambda$-cut-off: $0.1 ;$ damping factor $\alpha: 10^{-6}$

[^0]
A.5.3 Shortest path problem

Model	Hyperaprameters*	
Two-stage	1-layer	\bullet optimizer: optim.Adam; learning rate: 0.01
	2-layer	\bullet optimizer: optim.Adam; learning rate: 10^{-4}
SPO	1-layer	\bullet optimizer: optim.Adam; learning rate: 10^{-3}
	2-layer	\bullet optimizer: optim.Adam; learning rate: 10^{-3}
QPTL	1-layer	\bullet optimizer: optim.Adam; learning rate: $0.7 ; \tau$ (quadratic regularizer): 10^{-1}
	2-layer	\bullet optimizer: optim.Adam; learning rate: $0.7 ; \tau$ (quadratic regularizer): 10^{-1}
IntOpt	1-layer	\bullet optimizer: optim.Adam; learning rate: $0.7 ; \lambda$-cut-off: $0.1 ;$ damping factor $\alpha: 10^{-2}$
	2-layer	\bullet optimizer: optim.Adam; learning rate: $0.7 ; \lambda$-cut-off: $0.1 ;$ damping factor $\alpha: 10^{-2}$

* for all experiments hidden layer size: 100

A. 6 Learning Curves

Figure 2: IntOpt Learning Curve

[^0]: ${ }^{2}$ For more details refer to https://github.com/JayMan91/NeurIPSIntopt

