
A Supplementary Material for Interior Point Solving for LP-based
prediction+optimisation

A.1 Solution of Newton Equation System of Eq. (11)

Here we discuss how we solve an equation system of Eq (11), for more detail you can refer to[4].
Consider the following system with a generic R.H.S-−X−1T A> −c

A 0 −b
−c> b> κ/τ

[x1x2
x3

]
=

[
r1
r2
r3

]
(13)

If we write:

W
.
=

[
−X−1T A>

A 0

]
(14)

then, observe W is nonsingular provided A is full row rank. So it is possible to solve the following
system of equations-

W

[
p
q

]
=

[
c
b

]
W

[
u
v

]
=

[
r1
r2

] (15)

Once we find p, q, u, v finally we compute x3 as:

x3 =
r3 + u>c− v>b
−c>p+ b>q + κ

τ

; (16)

And finally

x1 = u+ px3 (17)
x2 = v + qx3 (18)

To solve equation of the form

W

[
u
v

]
=

[
−X−1T A>

A 0

] [
u
v

]
=

[
r1
r2

]

Notice we can reduce it to Mv = AT−1Xr1 + r2 (where M = AT−1XA>). As M is positive
definite for a full row-rankA, we obtain v by Cholesky decomposition and finally u = T−1X(A>v−
r1).

A.2 Differentiation of HSD formulation in Eq. (9)

We differentiate Eq. (9) with respect to c:

∂(Ax)

∂c
− ∂(bτ)

∂c
= 0

∂(A>y)

∂c
+
∂t

∂c
− ∂(cτ)

∂c
= 0

−∂(c>x)

∂c
+
∂(b>y)

∂c
− ∂κ

∂c
= 0

∂t

∂c
=
∂(λX−1e)

∂c

∂κ

∂c
=
∂(λτ )

∂c

(19)
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Applying the product rule we can further rewrite this into:

A
∂x

∂c
− b∂τ

∂c
= 0

A>
∂y

∂c
+
∂t

∂c
− (c

∂τ

∂c
+ τI) = 0

−(c>
∂x

∂c
+ x>) + b>

∂y

∂c
− ∂κ

∂c
= 0

∂t

∂c
= −λX−2 ∂x

∂c
∂κ

∂c
= − λ

τ2
∂τ

∂c

(20)

Using t = λX−1e↔ λe = XTe we can rewrite the fourth equation to ∂t
∂c = −X−1T ∂x

∂c . Similarly
we use κ = λ

τ ↔ λ = κ× τ and rewrite the fifth equation to ∂κ
∂c = −κτ

∂τ
∂c . Substituting these into

the first three we obtain:

A
∂x

∂c
− b∂τ

∂c
= 0

A>
∂y

∂c
−X−1T ∂x

∂c
− c∂τ

∂c
− τI = 0

−c> ∂x
∂c
− x> + b>

∂y

∂c
+
κ

τ

∂τ

∂c
= 0

(21)

This formulation is written in matrix form in Eq. (12).

A.3 LP formulation of the Experiments

A.3.1 Details on Knapsack formulation of real estate investments

In this problem, H is the set of housings under consideration. For each housing h, ch is the known
construction cost of the housing and ph is the (predicted) sales price. With the limited budget B, the
constraint is ∑

h∈H

chxh = B, xh ∈ 0, 1

where xh is 1 only if the investor invests in housing h. The objective function is to maximize the
following profit function

max
xh

∑
h∈H

phxh

A.3.2 Details on Energy-cost aware scheduling

In this problem J is the set of tasks to be scheduled on M number of machines maintaining resource
requirement of R resources. The tasks must be scheduled over T set of equal length time periods.
Each task j is specified by its duration dj , earliest start time ej , latest end time lj , power usage pj .ujr
is the resource usage of task j for resource r and cmr is the capacity of machine m for resource r.
Let xjmt be a binary variable which possesses 1 only if task j starts at time t on machine m. The
first constraint ensures each task is scheduled and only once.∑

m∈M

∑
t∈T

xjmt = 1 ,∀j∈J

The next constraints ensure the task scheduling abides by earliest start time and latest end time
constraints.

xjmt = 0 ∀j∈J∀m∈M∀t<ej
xjmt = 0 ∀j∈J∀m∈M∀t+dj>lj

Finally the resource requirement constraint:∑
j∈J

∑
t−dj<t′≤t

xjmt′ujr ≤ cmr,∀m∈M∀r∈R∀t∈T
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If ct is the (predicted) energy price at time t, the objective is to minimize the energy cost of running
all tasks, given by:

min
xjmt

∑
j∈J

∑
m∈M

∑
t∈T

xjmt

( ∑
t≤t′<t+dj

pjct′
)

A.3.3 Details on Shortest path problem

In this problem, we consider a directed graph specified by node-set N and edge-set E. Let A be the
|N | × |E| incidence matrix, where for an edge e that goes from n1 to n2, the (n1, e)

th entry is 1 and
(n2, e)

th entry is -1 and the rest of entries in column e are 0. In order to, traverse from source node s
to destination node d, the following constraint must be satisfied:

Ax = b

where x is |E| dimensional binary vector whose entries would be 1 only if corresponding edge is
selected for traversal and b is |N | dimensional vector whose sth entry is 1 and dth entry is -1; and rest
are 0. With respect to the (predicted) cost vector c ∈ R|E|, the objective is to minimize the cost

min
x
c>x

A.4 Additional Knapsack Experiments

This knapsack experiment is taken from [18], where the knapsack instances are created from the
energy price dataset 15. The 48 half-hour slots are considered as 48 knapsack items and a random
cost is assigned to each slot. The energy price of a slot is considered as the profit-value and the
objective is to select a set of slots which maximizes the profit ensuring the total cost of the selected
slots remains below a fixed budget. We also added the approach of Blackbox [25], which also deals
with a combinatorial optimization problem with a linear objective.

Budget Two-
stage

QPTL SPO Blackbox IntOpt

60 1042 (3) 579 (3) 624 (3) 533 (40) 570 (58)
120 1098 (5) 380 (2) 425 (4) 383 (14) 406 (71)

A.5 Hyperparameters of the experiments 2

A.5.1 Knapsack formulation of real estate investments

Model Hyperaprameters*
Two-stage • optimizer: optim.Adam; learning rate: 10−3

SPO • optimizer: optim.Adam; learning rate: 10−3

QPTL • optimizer: optim.Adam; learning rate: 10−3; τ (quadratic regularizer): 10−5

IntOpt • optimizer: optim.Adam; learning rate: 10−2; λ-cut-off: 10−4; damping factor α: 10−3

* for all experiments embedding size: 7 number of layers:1,hidden layer size: 2

A.5.2 Energy-cost aware scheduling

Model Hyperaprameters
Two-stage • optimizer: optim.SGD; learning rate: 0.1
SPO • optimizer: optim.Adam; learning rate: 0.7
QPTL • optimizer: optim.Adam; learning rate: 0.1; τ (quadratic regularizer): 10−5

IntOpt • optimizer: optim.Adam; learning rate: 0.7; λ-cut-off: 0.1; damping factor α: 10−6

2For more details refer to https://github.com/JayMan91/NeurIPSIntopt
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A.5.3 Shortest path problem

Model Hyperaprameters*

Two-stage 1-layer • optimizer: optim.Adam; learning rate: 0.01
2-layer • optimizer: optim.Adam; learning rate: 10−4

SPO 1-layer • optimizer: optim.Adam; learning rate: 10−3

2-layer • optimizer: optim.Adam; learning rate: 10−3

QPTL 1-layer • optimizer: optim.Adam; learning rate: 0.7; τ (quadratic regularizer): 10−1

2-layer • optimizer: optim.Adam; learning rate: 0.7; τ (quadratic regularizer): 10−1

IntOpt 1-layer • optimizer: optim.Adam; learning rate: 0.7; λ-cut-off: 0.1; damping factor α: 10−2

2-layer • optimizer: optim.Adam; learning rate: 0.7; λ-cut-off: 0.1; damping factor α: 10−2

* for all experiments hidden layer size: 100

A.6 Learning Curves

(a) Energy-cost aware scheduling (b) Shortest path problem

Figure 2: IntOpt Learning Curve
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