
Supplementary Material:
Swapping Autoencoder for Deep Image Manipulation

Here, we discuss the implementation details, provide details on the factorization of our representation,
and show additional results.

1 Results and Comparisons

1.1 Additional visual results

In Figure 1, 4, and 7 of the main paper, we have shown our results of swapping the texture and structure
codes, and manipulation results of the latent space. Here we show more swapping and editing results.
Swapping. Here we show additional results of swapping on FFHQ (Figure 1), Mountains (Figure 4), and
LSUN Church and Bedroom (Figure 6) dataset. For test images, the input images for the models trained
on FFHQ (Figure 1, 2, and 3) and Mountains (Figure 4 and 5) are separately downloaded from pixabay.
com using relevant keywords. The results on LSUN (Figure 6) are from the validation sets (18).
Editing. The latent space of our method can be used for image editing. For example, in Figure 3
and 5, we show the result of editing the texture code using an interactive UI that performs vector
arithmetic using the PCA components. Editing the texture code results in changing global attributes
like age, wearing glasses, lighting, and background in the FFHQ dataset (Figure 3), and time of day
and grayscale in the Mountains dataset (Figure 5). On the other hand, editing the structure code can
manipulate locally isolated attributes such as eye shape, gaze direction (Figure 2), or texture of the
grass field (Figure 5). These results are generated by performing vector arithmetic in the latent space
of the flattened structure code, masked by the region specified by the user in the UI (region editing
of Figure 8 of the main paper). In addition, the pond of Figure 5 is created by overwriting the structure
code with the code of a lake from another image. More editing results of using the interactive UI can
be found on our project webpage: https://taesungp.github.io/SwappingAutoencoder.
User-guided image translation. In Figure 8, we show the results of user-guided image translation,
trained on Portrait2FFHQ and Animal Faces HQ (2). For each dataset, the results are produced using
the model trained on the mix of all domains and hence without any domain labels. By adjusting the
gains on the principal components of the texture code with the interactive UI, the user controls the
magnitude and style of translation. Interestingly, we found that the first principal axis of the texture
code largely corresponds to the domain translation vector in the case of Portrait2FFHQ and AFHQ
dataset, with the subsequent vectors controlling more fine-grained styles. Therefore, our model is
suitable for the inherent multi-modal nature of image translation. For example, in Figure 8, the input
cat and dog images are translated into six different plausible outputs.

1.2 Additional comparison to existing methods

In Table 1, we report the FIDs of the swapping results of our model and baselines on LSUN Church,
FFHQ, and Waterfall datasets using the validation set. Additional visual comparison results are in
Figure 7. Note that using FID to evaluate the results of this task is not sufficient, as it does not capture
the relationship to input content and style images. For example, a low FID can be achieved simply by
not making large changes to the input content image. Our model achieves the second-best FID, behind
the photorealistic style transfer method WCT2 (17). However, the visual results of Figure 7 and human
perceptual study of the main paper reveal that our method better captures the details of the reference
style. In Table 2, we compare the FIDs of swapping on the training set with unconditionally generated
StyleGAN and StyleGAN2 outputs. Note that randomly sampled images of StyleGAN and StyleGAN2
are not suitable for image editing, as it ignores the input image. The FID of swap-generated images of
our method is placed between the FID of unconditionally generated StyleGAN and StyleGAN2 images.
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Method Church FFHQ Waterfall Mean
Swap Autoencoder (Ours) 52.34 59.83 50.90 54.36

Im2StyleGAN (1; 8) 219.50 123.13 267.25 203.29
StyleGAN2 (9) 57.54 81.44 57.46 65.48
STROTSS (11) 70.22 92.19 108.41 83.36

WCT2 (17) 35.65 39.02 35.88 36.85

Table 1: FID of swapping on the validation set. We compare the FIDs of content-style mixing on the validation
sets. Note the utility of FID is limited in our setting, since it does not capture the quality of embedding or
disentanglement. Our method achieves second-lowest FID, behind WCT2 (17), a photorealistic style transfer
method. Note that the values are not directly comparable to different datasets or to the training splits (Table 2),
since the number of samples are different. Please see Figure 7 for visual results.

Method Church FFHQ Waterfall
Swap Autoencoder (Ours) 3.91 3.48 3.04

StyleGAN (8) 4.21 4.40∗ 6.09
StyleGAN2 (9) 3.86∗ 2.84∗ 2.67

Table 2: FID of swapping on the training set, in the context of unconditional GAN. We compute the FID of
swapped images on the training set, and compare it with FIDs of unconditionally generated images of StyleGAN (8)
and StyleGAN2 (9). The result conveys how much realism the swap-generated images convey. Note that randomly
sampled images of StyleGAN (8) and StyleGAN2 (9) models are not suitable for image editing. Asterisk(∗)
denotes FIDs reported in the original papers.
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Figure 1: Swapping results of our FFHQ model. The input photographs are collected from pixabay.com.
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Figure 2: Region editing. The results are generated by performing vector arithmetic on the structure code. The
vectors are discovered by a user with our UI, with each goal in mind.
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Figure 3: Global editing. The results are generated using vector arithmetic on the texture code. The vectors are
discovered by a user with our UI, with each goal in mind.
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Figure 4: Swapping results of our method trained on Flickr Mountains. The model is trained and tested at
512px height.
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Figure 5: User editing results of our method trained on Flickr Mountains. For the input image in red, the top
and bottom rows show examples of editing the structure and texture code, respectively. Please refer to Figure ?? on
how editing is performed. The image is of 1536×1020 resolution, using a model trained at 512px resolution.
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Figure 6: Swapping results of LSUN Churches (top) and Bedrooms (bottom) validation set. The model is trained
with 256px-by-256px crops and tested at 256px resolution on the shorter side, keeping the aspect ratio.
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Figure 7: Comparison to existing methods. Random results on LSUN Churches and Flickr Waterfall are shown.
In each block, we show both the reconstruction and swapping for ours, Im2StyleGAN (1; 8), and StyleGAN2 (9),
as well as the style transfer results of STROTSS (11) and WCT2 (17). Im2StyleGAN has a low reconstruction
error but performs poorly on the swapping task. StyleGAN2 generates realistic swappings, but fails to capture the
input images faithfully. Both style transfer methods makes small changes to the input structure images.
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Figure 8: User-guided image translation. Using the interactive UI, the user controls the magnitude and style
of the translated image. We show the edit results of turning paintings into photo (top) on the model trained on
the Portrait2FFHQ dataset, and translating within the Animal Faces HQ dataset (bottom). The input images are
marked in red. For the animal image translation, 6 different outputs are shown for the same input image.

1.3 Corruption study of Self-Similarity Distance and SIFID

In Figure 9, we validate our usage of Self-Similarity Matrix Distance (11) and Single-Image FID
(SIFID) (14) as automated metrics for measuring distance in structure and style. Following FID (5), we
study the change in both metrics under predefined corruptions. We find that the self-similarity distance
shows a larger variation for image translation and rotation than blurring or adding white noise. In
contrast, SIFID is more sensitive to blurring or white noise than translation or rotation. This confirms
that the self-similarity captures structure, and SIFID captures style.

Figure 9: Validating the Self-Similarity Matrix Distance and Single-Image FID. We apply different types of
corruptions and study the variation in the Self-Similarity Distance (11) and Single-Image FID (14). SIFID shows
higher sensitivity to overall style changes, such as Gaussian noise or blurring, than structural changes, such as
shift and rotation. On the other hand, Self-Similarity Distance shows higher variation for structural changes. This
empirically confirms our usage of the two metrics as measuring distance in structure and style.
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2 Implementation details

We show our architecture designs, additional training details, and provide information about our
datasets.

2.1 Architecture

The encoder maps the input image to structure and texture codes, as shown in Figure 10 (left). For
the structure code, the network consists of 4 downsampling residual blocks (4), followed by two
convolution layers. For the texture code, the network branches off and adds 2 convolutional layers,
followed by an average pooling (to completely remove spatial dimensions) and a dense layer. The
asymmetry of the code shapes is designed to impose an inductive bias and encourage decomposition into
orthogonal tensor dimensions. Given an 256× 256 image, the structure code is of dimension 16×16×8
(large spatial dimension), and texture code is of dimension 1×1×2048 (large channel dimension).

The texture code is designed to be agnostic to positional information by using reflection padding or no
padding (“valid”) in the convolutional layers (rather than zero padding) followed by average pooling.
On the other hand, each location of the structure code has a strong inductive bias to encode information
in its neighborhood, due to its fully convolutional architecture and limited receptive field.

The generator maps the codes back to an image, as shown in Figure 10 (right). The network uses the
structure code in the main branch, which consists of 4 residual blocks and 4 upsampling residual blocks.
The texture code is injected using the weight modulation/demodulation layer from StyleGAN2 (9).
We generate the output image by applying a convolutional layer at the end of the residual blocks. This
is different from the default setting of StyleGAN2, which uses an output skip, but more similar to
the residual net setting of StyleGAN2 discriminator. Lastly, to enable isolated local editing, we avoid
normalizations such as instance or batch normalization (15; 6).

The discriminator architecture is identical to StyleGAN2, except with no minibatch discrimination,
to enable easier fine-tuning at higher resolutions with smaller batch sizes.

The co-occurrence patch discriminator architecture is shown in Figure 11 and is designed to
determine if a patch in question (“real/fake patch”) is from the same image as a set of reference patches.
Each patch is first independently encoded with 5 downsampling residual blocks, 1 residual block,
and 1 convolutional layer. The representations for the reference patches are averaged together and
concatenated with the representation of the real/fake patch. The classification applies 3 dense layers
to output the final prediction.

The detailed design choices of the layers in all the networks follow StyleGAN2 (9), including weight
demodulation, antialiased bilinear down/upsampling (19), equalized learning rate, noise injection at
every layer, adjusting variance of residual blocks by the division of

√
2, and leaky ReLU with slope 0.2.

2.2 Training details

At each iteration, we sample a minibatch of size N and produce N/2 reconstructed images and
N/2 hybrid images. The reconstruction loss is computed usingN/2 reconstructed images. The loss
for the image discriminator is computed on the real, reconstructed, and hybrid images, using the
adversarial loss E [−log(D(x))]+E [−log(1−D(xfake))], where x and xfake are real and generated
(both reconstructed and hybrid) images, respectively. For the details of the GAN loss, we follow the
setting of StyleGAN2 (9), including the non-saturating GAN loss (3) and lazy R1 regularization (13; 9).
In particular, R1 regularization is also applied to the co-occurrence patch discriminator. The weight
for R1 regularization was 10.0 for the image discriminator (following the setting of (13; 9)) and 1.0
for the co-occurrence discriminator. Lastly, the co-occurrence patch discriminator loss is computed
on random crops of the real and swapped images. The size of the crops are randomly chosen between
1/8 and 1/4 of the image dimensions for each side, and are then resized to 1/4 of the original image.
For each image (real or fake), 8 crops are made. For the query image (the first argument toDpatch), each
crop is used to predict co-occurrence, producing 8N predictions at each iteration. For the reference
image (the second argument toDpatch), the feature outputs are averaged before concatenated with the
query feature. Both discriminators use the binary cross-entropy GAN loss.

We use ADAM (10) with 0.002 learning rate, β1 = 0.0 and β2 = 0.99. We use the maximum batch
size that fits in memory on 8 16GB Titan V100 GPUs: 64 for images of 256×256 resolution, 16 for
512×512 resolution, and 16 for 1024×1024 resolution (with smaller network capacity). Note that only
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Figure 10: Encoder and generator architecture. The encoder network first applies 4 downsampling residual
blocks (4) to produce an intermediate tensor, which is then passed to two separate branches, producing the structure
code and texture code. The structure code is produced by applying 1-by-1 convolutions to the intermediate tensor.
The texture code is produced by applying strided convolutions, average pooling, and then a dense layer. Given
an H×H image, the shapes of the two codes are H/16×H/16×8, and 1×1×2048, respectively. The case
for a 512×512 image is shown. To prevent the texture code from encoding positional information, we apply
reflection padding for the residual blocks, and then no padding for the conv blocks. The generator consists of 4
residual blocks and then 4 upsampling residual blocks, followed by 1-by-1 convolution to produce an RGB image.
The structure code is given in the beginning of the network, and the texture code is provided at every layer as
modulation parameters. We use zero padding for the generator. The detailed architecture follows StyleGAN2 (9),
including weight demodulation, bilinear upsampling, equalized learning rate, noise injection at every layer,
adjusting variance of residual blocks by the division of

√
2, and leaky ReLU with slope 0.2.
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Figure 11: Co-occurrence patch
discriminator architecture. The co-
occurrence patch discriminator consists
of the feature extractor, which applies 5
downsampling residual blocks, 1 residual
block, and 1 convolutional layer with
valid padding to each input patch, and the
classifier, which concatenates the flattened
features in channel dimension and then
applies 3 dense layers to output the final
prediction. Since the patches have random
sizes, they are upscaled to the same
size before passed to the co-occurrence
discriminator. All convolutions use kernel
size 3×3. Residual blocks use the same
design as those of the image discriminator.
For the reference patches, more than one
patch is used, so the extracted features
are averaged over the batch dimension to
capture the aggregated distribution of the
reference texture.

the FFHQ dataset was trained at 1024×1024 resolution; for the landscape datasets, we take advantage
of the fully convolutional architecture and train with cropped images of size 512×512, and test on
the full image. The weights on each loss term are simply set to be all 1.0 among the reconstruction,
image GAN, and co-occurrence GAN loss.

2.3 Datasets

Here we describe our datasets in more detail.
LSUN Church (18) consists of 126,227 images of outdoor churches. The images are in the dataset
are 256px on the short side. During training, 256×256 cropped images are used. A separate validation
set of 300 images is used for comparisons against baselines.
LSUN Bedroom (18) consists of 3,033,042 images of indoor bedrooms. Like LSUN Church, the
images are trained at 256×256 resolution. The results are shown with the validation set.
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Flickr Faces HQ (8) consists of 70,000 high resolution aligned face images from flickr.com.
Our model is initially trained at 512×512 resolution, and finetuned at 1024 resolution. The dataset
designated 10,000 images for validation, but we train our model on the entire 70,000 images, following
the practice of StyleGAN (8) and StyleGAN2 (9). For evaluation, we used randomly selected 200
images from the validation set, although the models are trained with these images.
Animal Faces HQ (2) contains a total of 15,000 images equally split between cats, dogs, and a wildlife
category. Our method is trained at 256×256 resolution on the combined dataset without domain labels.
The results are shown with a separate validation set.
Portrait2FFHQ consists of FFHQ (8) and a newly collected 19,863 portrait painting images from
wikiart.org. The model is trained at 512×512 resolution on the combined dataset. The results of the
paper are generated from separately collected sample paintings. We did not check if the same painting
belongs in the training set. The test photographs are from CelebA (12). All images are aligned to match
the facial landmarks of FFHQ dataset.
Flickr Waterfall is a newly collected dataset of 90,345 waterfall images. The images are downloaded
from the user group “Waterfalls around the world” on flickr.com. The validation set is 399 images
collected from the user group “*Waterfalls*”. Our model is trained at 256×256 resolution.
Flickr Mountains is a newly collected dataset of 517,980 mountain images from Flickr. The images
are downloaded from the user group “Mountains Anywhere” on flickr.com. For testing, separately
downloaded sample images were used. Our model is trained at 512×512 resolution.

3 Detectability of Generated Images
To partially mitigate the concern of misusing our method as a tool for generating deceiving images,
we see if a fake image detector can be applied to the images produced by our method. We run the
off-the-shelf detector from (16), specifically, the Blur+JPEG(0.5) variant on the full, uncropped result
images from this paper, and evaluate whether they are correctly classified as “synthesized”. The results
are shown in Table 3. For the most sensitive category, FFHQ faces, both previous generative models
and our method have high detectability. We observe similar behavior, albeit with some drop-off on
less sensitive categories of “church” and “waterfall”.

Method Task Dataset

Church FFHQ Waterfall Average

Im2StyleGAN (1; 8) reconstruct 99.3 100.0 92.4 97.2
swap 100.0 100.0 97.7 99.2

StyleGAN2 (9) reconstruct 99.7 100.0 94.4 98.0
swap 99.8 100.0 96.6 98.8

Swap Autoencoder (Ours) reconstruct 93.6 95.6 73.9 87.7
swap 96.6 94.7 80.4 90.5

Table 3: Detectability. We run the CNN-generated image detector from Wang et al. (16) and report average
precision (AP); chance is 50%. The CNN classifier is trained from ProGAN (7), the predecessor to StyleGAN (8).
Because our method shares architectural components, a classifier trained to detect a different method can also
generalize to ours, with some dropoff, especially for the waterfall class. Notably, the performance on FFHQ faces
remains high. However, performance is not reliably at 100% across all methods, indicating that future detection
methods could potentially benefit from training on our method.
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