
A Proofs

A.1 Proposition 3.5

u∗i (σ−i)− ui(σ) ≤ β∗i (σ−i)− αi(σ) ≤ ε.

A.2 Proposition 4.1

By definition, it is impossible to reach any pseudoterminal node of G̃ by changing only a single
player’s strategy. Thus, for any player i, we have β∗i (σ−i)− α(σ) ≤ u∗i (σ−i)− u(σ) ≤ ε. (the first
inequality may not be an equality, because the best response β∗i (σ−i) is taken in the pseudogame,
and u∗i is taken in the full game, where there is more flexibility.

A.3 Theorem 4.5

Lemma A.1. In every ε-NE of G, the entropy of P1’s strategy is at least T (1− 2ε) bits.

Proof. Let σ1 be any P1 strategy in ε-equilibrium, and let HT be the entropy over terminal nodes
when P1 plays σ1 and P2 plays uniformly at random. Let UT be the number of rounds that P2 loses if
she best responds to P1. Since σ1 is an ε-NE strategy, we have UT ≥ T (1/2− ε). We will show that
HT ≥ 2UT + T , which will complete the proof.

Proceed by induction on T . For T = 1, the claim follows from the inequality h(p) ≥ 2 min(p, 1−p),
which is true for all p ∈ [0, 1], where h is the binary entropy function.

In the inductive case, suppose that, at the top information set, P1 plays strategy x = [p, q] (i.e. heads
with probability p, and tails with probability q. Let H ′ ∈ R2×2 be the matrix whose ij-entry is the
conditional entropy over terminal nodes after P1 plays i and P2 plays j in the root information set.
Similarly, let U ′ be the matrix of conditional remaining expected number of rounds lost, not including
this round, for player 2. Note that the utility matrix of the overall game, assuming that P2 plays
correctly in later rounds, is A := U ′ + I . By IH, H ′ ≥ 2U ′ + T − 1 element-wise. Further, P2’s
move in this information set does not affect the future of the game, since P1 does not learn P2’s move,
and P2’s move does not otherwise affect her future optimal decisions. That is, U ′y is the same for
all (normalized) y. Let y be the uniform random strategy for player 1, and y∗ be a best response for
player 1. Then we have:

H = 1 + h(p) + xTH ′y

≥ T + h(p) + 2xTU ′y

= T + h(p) + 2xTU ′y∗

= T + h(p) + 2xTAy∗ − 2xT y∗

= T + h(p) + 2xTAy∗ − 2 min(p, 1− p)

and we are once again done by the inequality h(p) ≥ 2 min(p, 1− p).

The restriction on P2’s strategy is necessary: indeed, since P1 has only 2T pure strategies, there are
sparse ε-NE strategies for P2 supported on only O(T/ε2) pure strategies.

Somewhat surprisingly, this proposition becomes false if P1 learns what P2 played in each round.
Indeed, the P1 strategy “play heads if your number of losses minus number of wins is εT , and
uniformly at random otherwise” is (for large T ) an ε-equilibrium with basically T bits of entropy,
since if P2 plays uniformly at random, with very good probability their score delta will never exceed
εT . However, despite having low entropy, this strategy has a very large support over terminal nodes.

Corollary A.2. In every ε-NE of this game, for every t ≥ T/2, the first t rounds of P1’s strategy
have at least t(1− 4ε) bits of entropy.

Corollary A.3. Let ε ≤ 1/16. In every ε-NE of this game, for every t ≥ T/2, P1’s strategy assigns
probability at least 2−t to at least half of her pure strategies at round t.
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Proof. Let Z be a random variable for P1’s selected strategy, and E be the event that Z is among the
half least likely pure strategies to be picked.

H(Z) = H(Z,E) = Pr[E]H(Z|E) + Pr[¬E]H(Z|¬E) +H(E) ≤ 2tp

2

t

2
+
t

2
whereH is the entropy. We know from above thatH(Z) ≥ t(1−4ε), so the claim follows by solving
for p.

We now prove Theorem 4.5. The proof acts like a partial converse to Proposition 4.1 for this game.
Let ((G̃, α, β), σ) be an ε-certificate, and let Z ′ be the set of terminal nodes in G̃. Let u be the
assignment of utilities induced by P2 playing uniform random at every decision point outside G̃ (it
does not matter at this point how P1 plays). Let σ′i be the uniform random strategy for player i. Then:

β2(σ1, σ
′
2) ≤ β∗2(σ1) ≤ u2(σ) + ε ≤ u2(σ′1, σ2) + 2ε = u2(σ1, σ

′
2) + 2ε. (A.4)

For simplicity of notation, for any terminal node z of G̃, let r(z) be the number of rounds remaining
in the game. Then note that β(z)− u(z) = r(z)/2T for every z. Now suppose for contradiction that
G̃ has fewer than n := 22T (1−16ε)−2 terminal nodes. Consider the level of the game tree after both
players have made t := (1 − 16ε)T moves; in other words, the level at which r(z) = 16εT . This
level has 4n nodes, so certainly G̃ must contain at most 1/4 of the nodes at this level. Let S be a set
of half of the nodes of G at level t to which P1 assigns probability at least 2−t. Then G̃ contains at
most half the nodes in S. Now observe that

β2(σ1, σ
′
2)− u2(σ1, σ

∗
2) =

1

2T
E
z
r(z)

≥ 1

2T

∑
z∈S\G̃

σ1(z)σ∗2(z)r(z)

≥ 1

2T

1

2
22t2−t2−tr(z) = 4ε

which contradicts (A.4).

A.4 Theorem 4.2

We first introduce some terminology that will be useful in this section. The realization plan corre-
sponding to a strategy σi is the vector of reach probabilities σi(s) for each sequence s for player i.
The constraints on valid realization plans are linear, and the payoff of a two-player zero-sum game
can be expressed as a bilinear form xTAy, where x and y are the realization plan vectors for the two
players, and A is a payoff matrix depending only on the terminal node values [20]. This bilinear
program is known as the sequence form of a game.
Lemma A.5. Let x be any P1 strategy. Let x̂ be a strategy profile defined by mixing uniformly at
random over a multiset of k independent sampled pure strategies from x, where

k ≥ D2

2ε2
log

2N

δ
.

and D is the maximum support size over terminal sequences of any P2 pure strategy. Then with
probability 1− δ, for any strategy profile y, we have |u2(x̂, y)− u2(x, y)| ≤ ε.

Proof. We follow basically the same idea as the proof in [26]. Let A be the P2 sequence-form payoff
matrix, restricted to those rows and columns corresponding to terminal sequences. By Hoeffding, we
have

Pr
[
|(Ax̂)i − (Ax)i| ≥

ε

D

]
≤ 2e−2kε

2/D2

≤ δ

N
by picking k as above. Taking a union bound over the at most N sequences for P2, we have
‖Ax̂−Ax‖∞ ≤ ε/D with probability 1 − δ. Now select an x′ for which this is true. Then by
Hölder’s inequality, for any pure realization plan y, we have∣∣yTAx̂− yTAx∣∣ ≤ ‖y‖1‖Ax̂−Ax‖∞ ≤ ε.
where the last inequality follows because ‖y‖1 ≤ D. Now since

∣∣yTAx̂− yTAx∣∣ is convex in y, and
the pure realization plans are the vertices of the polytope of all realization plans, we are done.
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Theorem 4.2 now follows by applying the lemma to an equilibrium strategy x with any δ < 1.

A.5 Theorem 5.1

Sampling this number of samples at each nature node h is at least as good as sampling
(D2/2ε2) log(2N/δ) pure nature strategies. The proposition now follows by applying Lemma A.5 to
the game in which the game tree is the same as G, P1 is nature, P2 controls every actual player in G
(and thus has perfect information), and the P2 utility function is u.

A.6 Corollary 5.2

By a union bound over the |P| players and the two utility functions αi and βi for each
player, we have that with probability at least 1 − 2δ|P |, for every i and every deviation σ′i,

|α̂i(σ′i, σ−i)− αi(σ′i, σ−i)| ≤ ε and
∣∣∣β̂i(σ′i, σ−i)− βi(σ′i, σ−i)∣∣∣ ≤ ε.

Let α̂i(σ) and β̂i(σ) for a given strategy σ be the utilities of σ under the approximated version of G̃.
Let σ̂∗i be a best response for player i in the approximated version of G̃, and let σ∗i be a best response
in G̃ itself. Then we have:

β∗i (σ−i) ≤ β̂i(σ∗i , σ−i) + ε ≤ β̂∗i (σ−i) + ε ≤ α̂(σ) + ε+ ε′ ≤ α(σ) + 2ε+ ε′

for every player i.

A.7 Proposition 6.3

Let (x, y) be an ε-NE in the sense of Definition 6.2. Then

β∗(y)− α(x, y) ≤ β∗(y)− α∗(x) ≤ ε and β(x, y)− α∗(x) ≤ β∗(y)− α∗(x) ≤ ε.

A.8 Proposition 6.4

Let (x, y) be an ε-NE in the sense of Definition 3.2. Then

β∗(y)− α∗(x) ≤ β∗(y)− α(x, y) + β(x, y)− α∗(x) ≤ 2ε.

A.9 Theorem 6.5

We reduce from the SET-COVER problem, which is known to be NP-hard to better than a Θ(log n)
factor [29]. In SET-COVER, we are given a universe U = {1, . . . , n} and a collection of m sets
S = {S1, . . . , Sm} whose union is U , and our task is to find the smallest subset of S whose union is
still U .

Consider the following game: P2 starts by choosing to either play or leave. If P2 leaves, then the game
immediately terminates, and P1 gets value 1/2m. If P2 chooses to play, then P1 chooses an index
i = 1, . . . ,m. Then, P1 is given m consecutive opportunities to leave the game (and immediately
lose), should they choose. (The sole purpose of this is to inflate the size of the certificate.) After this,
P2, without knowing the i, chooses an element u ∈ U . P1 gets value 1 if u ∈ Si, and 0 otherwise.

This game has poly(m,n) nodes, and its value (for P1) is exactly 1/2m, since P1 can force P2 to
leave by playing uniformly at random (and not choosing to lose). We now claim that, for ε < 1/2m,
finding an ε-certificate of size Θ((m + n)k) is equivalent to finding a set cover of size k, which
completes the proof.

If R ⊆ S is a set cover of size k, then consider the trunk created by expanding exactly those P2
decision nodes where P1 has played some set Si ∈ R. This creates a trunk of size Θ((m + n)k).
Even pessimistically, P1 can gain value 1/k ≥ 1/m by randomizing uniformly overR in this trunk;
thus, P2 is forced to leave, and this is a 0-certificate.

Conversely, suppose we had an ε-certificate, for ε < 1/2m, constructed from some tree G̃. LetR be
the collection of sets Si ∈ S for which P2’s decision node after P1 plays Si has been expanded, and
let k = |R|. Then the trunk has size at least Ω((m+ n)k). IfR is not a set cover, then there is some
u ∈ U outside the union of sets inR. If P1 plays u, then she gains optimistic value 0. Thus, since
ε < 1/2m,R must be a set cover.
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A.10 Theorem 6.6

Consider the family of two-player games in which there is a target string x ∈ {0, 1}n, and play
proceeds as follows: Player 1 chooses, bit-by-bit, a string y ∈ {0, 1}n. If x = y, then Player 1
wins; otherwise, Player 2 chooses whether to win or lose. The smallest certificate in this game has
size Θ(n), and consists of the path of play to y. However, there is no algorithm, randomized or
deterministic, that will find the correct node y without first expanding Ω(2n) other nodes.

A.11 Theorem 6.8

(⇐) Suppose G̃ has no 0-certificate. Let (x∗, y∗) be an optimistic profile. Then

α(x∗, y∗) ≤ α∗(y∗) < β∗(x∗) ≤ β(x∗, y∗).

where the middle inequality is strict since G̃ has no 0-certificate, But then α(x∗, y∗) 6= β(x∗, y∗);
i.e., there is some uncertainty as to the value of the strategy profile (x∗, y∗); i.e., there is a nonzero
probability that a pseudoterminal node is reached.

(⇒) Now suppose G̃ has a 0-certificate, and call it (x∗, y
∗). Clearly, (x∗, y

∗) cannot contain in its
support any pseudoterminal node. We claim that (x∗, y

∗) is also an optimistic profile of G̃, which
completes the proof. Indeed, we have

α∗(x∗) ≤ β∗(x∗) ≤ β∗(y∗) and α∗(x∗) ≤ α∗(x∗) ≤ β∗(y∗)

But all of these must actually be equalities, since α∗(x∗) = β∗(y∗) for a 0-certificate. Thus, x∗ is a
Nash equilibrium strategy in (G̃, β), and y∗ is a Nash equilibrium strategy in (G̃, α), which is what
we needed to show.

A.12 Theorem 6.10

(⇐) The correction algorithm adds infinitesimal amounts to sequences such that P2 is then forced to
never play to any bad sequence that could be used to achieve value better than V (I). Thus, corrected
equilibrium is actually an ε-equilibrium for infinitesimal ε, and the proof of Appendix A.11 applies
verbatim.

(⇒) A pessimistic strategy will never be corrected, since a pessimistic player never has a terminal
node of utility +∞. Thus, again, the proof of Appendix A.11 applies verbatim.
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