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Abstract

In this supplementary material, Section 1 provides the proofs of Theorems 3.1, 3.4, 3.8, and Corollary
3.9. The proofs of technical lemmas are collected in Section 2. Section 3 presents the additional
experimental results.

1 Proofs of Theorems

This section contains the proofs of Theorems 3.1, 3.4, 3.8, and Corollary 3.9. Before starting to prove the
theorems, we first present some definitions and technical lemmas.

Recall that the optimization problem we aim to solve is

min
w≥0
− log det(Lw + J) + tr (SLw) +

∑
i

hλ(wi). (1)

Let F (w) = − log det(Lw + J) + tr (SLw) +
∑
i hλ(wi). The feasible set of (1) is Sw = {w |w ≥ 0,w ∈

dom(F )}, where dom(F ) denotes the domain of the function F . One can verify that

dom(F ) = {w ∈ Rp(p−1)/2 | det(Lw + J) > 0}. (2)

The set Sw can be equivalently written as

Sw = {w ∈ Rp(p−1)/2 |w ≥ 0, (Lw + J) ∈ Sp++}, (3)

which is due to the reason that Lw+ J must be positive semi-definite, because Lw is positive semi-definite
for any w ≥ 0 following from (27), while the matrix J is rank one, and the nonzero eigenvalue of J is 1
whose eigenvector is orthogonal to the row and column spaces of Lw. The condition det(Lw+J) > 0 in (2)
implies that Lw+J is non-singular. The non-singularity and positive semi-definiteness of Lw+J together
lead to (Lw + J) ∈ Sp++.

Next, we will show that Sw is a convex set. For any x1,x2 ∈ Sw, define xt = tx1 + (1− t)x2, t ∈ [0, 1].
It is clear that xt ≥ 0. Since Sp++ is a convex cone, one has

Lxt + J = t(Lx1 + J) + (1− t)(Lx2 + J) ∈ Sp++, (4)

indicating that xt ∈ Sw and thus Sw is convex.
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Recall that the sequence {ŵ(k)}k≥1 is established by solving

ŵ(k) = arg min
w≥0
− log det(Lw + J) + tr (SLw) +

∑
i

z
(k−1)
i wi, (5)

where z
(k−1)
i = h′λ(ŵi

(k−1)), i ∈ [p(p − 1)/2], and hλ satisfies the conditions in Assumption 3.5. Let
‖x‖max = maxi |xi| and ‖x‖min = mini |xi|. We present the technical lemmas in Section 1.1 for establishing
the theorems.

1.1 Technical Lemmas

Lemma 1.1. Let f(w) = − log det(Lw + J), with w ∈ Rp(p−1)/2. Then for any x ∈ Rp(p−1)/2, we have

x>∇2f(w)x = vec(Lx)>
(

(Lw + J)
−1 ⊗ (Lw + J)

−1
)

vec(Lx).

Lemma 1.2. For any given w ∈ Rp(p−1)/2 satisfying (Lw + J) ∈ Sp++, there must exist an unique x ∈
Rp(p−1)/2 such that

Lx+
1

b
J = (Lw + bJ)

−1
(6)

holds for any b 6= 0, where J = 1
p1p×p, in which 1p×p ∈ Rp×p with each element equals 1.

Lemma 1.3. Let G = L∗L : Rp(p−1)/2 → Rp(p−1)/2, x 7→ L∗Lx. For any x ∈ Rp(p−1)/2, Gx = Mx with

M ∈ R
p(p−1)

2 × p(p−1)
2 satisfying

Mkl =


4 l = k,

1 l ∈ (Ωi ∪ Ωj) \k,
0 Otherwise,

where i, j ∈ [p] satisfying k = i− j + j−1
2 (2p− j) and i > j, and Ωt is an index set defined by

Ωt :=

{
l ∈ [p(p− 1)/2] |[Lx]tt =

∑
l

xl

}
, t ∈ [p].

Furthermore, we have λmin(M) = 2 and λmax(M) = 2p.

Lemma 1.4. Take λ =
√

4αc−1
0 log p/n and suppose n ≥ 94αc−1

0 λ2
max(Lw?)s log p for some α > 2, where

c0 is a constant defined in Lemma 1.8. Let

ŵ = arg min
w≥0
− log det(Lw + J) + tr (LwS) + z>w,

where z obeys 0 ≤ zi ≤ λ for i ∈ [p(p− 1)/2]. If
∥∥L∗( (Lw? + J)

−1 − S
)∥∥

max
≤ λ/2 ≤ ‖zEc‖min holds with

the set E satisfying S? ⊆ E and |E| ≤ 2s, then ŵ obeys

‖Lŵ − Lw?‖F ≤ 2
√

2λ2
max(Lw?)

(
‖zS?‖+

∥∥(L∗( (Lw? + J)
−1 − S

))
E

∥∥) ≤ 2(1 +
√

2)λ2
max(Lw?)

√
sλ,

where S? is the support of w?.
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Lemma 1.5. Under Assumption 3.5, take λ =
√

4αc−1
0 log p/n and suppose n ≥ 94αc−1

0 λ2
max(Lw?)s log p

for some α > 2, where c0 is a constant defined in Lemma 1.8. Define the set E(k) by

E(k) = {S? ∪ S(k)}, with S(k) = {i ∈ [p(p− 1)/2] |ŵ(k−1)
i ≥ b}, (7)

where ŵ(k) for k ≥ 1 is defined in (5), S? is the support of w? with |S?| ≤ s and b = (2 +
√

2)λ2
max(Lw?)λ

is a constant. If
∥∥L∗( (Lw? + J)

−1 − S
)∥∥

max
≤ λ/2 holds and ŵ(0) satisfies |supp+(ŵ(0))| ≤ s, then E(k)

obeys |E(k)| ≤ 2s, for any k ≥ 1.

Lemma 1.6. Under Assumptions 3.5 and 3.6, take λ =
√

4αc−1
0 log p/n and suppose n ≥ 94αc−1

0 λ2
max(Lw?)s log p

for some α > 2, where c0 is a constant defined in Lemma 1.8. If
∥∥L∗( (Lw? + J)

−1 − S
)∥∥

max
≤ λ/2 holds

and ŵ(0) satisfies |supp+(ŵ(0))| ≤ s, then for any k ≥ 1, ŵ(k) defined in (5) obeys∥∥∥ŵ(k) −w?
∥∥∥ ≤ 2λ2

max(Lw?)
∥∥∥(L∗( (Lw? + J)

−1 − S
))
S?

∥∥∥+
3

2 +
√

2

∥∥ŵ(k−1) −w?
∥∥,

and ∥∥Lŵ(k) − Lw?
∥∥

F
≤ 2
√

2λ2
max(Lw?)

∥∥∥(L∗( (Lw? + J)
−1 − S

))
S?

∥∥∥+
3

2 +
√

2

∥∥Lŵ(k−1) − Lw?
∥∥

F
.

Lemma 1.7. Take λ =
√

4αc−1
0 log p/n and suppose n ≥ 8α log p for some α > 2, where c0 is a constant

defined in Lemma 1.8. Then one has

P
[∥∥L∗( (Lw? + J)

−1 − S
)∥∥

max
≤ λ/2

]
≥ 1− 1/pα−2.

Lemma 1.8. Consider a zero-mean random vector X = [X1, . . . , Xp]
> ∈ Rp is a LGMRF with precision

matrix Lw? ∈ SL. Given n i.i.d samples X(1), . . . ,X(n), the associated sample covariance matrix S =
1
n

∑n
k=1X

(k)X(k)T satisfies, for t ∈ [0, t0],

P
[ ∣∣[L∗S]i −

(
L∗(Lw? + J)−1

)
i

∣∣ ≥ t] ≤ 2 exp(−c0nt2), for i = 1, . . . , p(p− 1)/2,

where t0 =
∥∥L∗(Lw? + J)−1

∥∥
max

and c0 = 1/
(
8
∥∥L∗(Lw? + J)−1

∥∥2

max

)
are two constants.

Lemma 1.9. Let f(w) = − log det(Lw + J). Define a local region of w? by

BM (w?; r) = {w|w ∈ BM (w?; r) ∩ Sw}.

where BM (w?; r) = {w ∈ Rp(p−1)/2 | ‖w −w?‖M ≤ r}, and Sw = {w |w ≥ 0, (Lw + J) ∈ Sp++}. Then for
any w1,w2 ∈ BM (w?; r), we have

〈∇f(w1)−∇f(w2),w1 −w2〉 ≥ (‖Lw?‖2 + r)
−2 ‖Lw1 − Lw2‖2F .

Lemma 1.10. [7] Suppose a positive matrix A ∈ Rp×p is diagonally scaled such that Aii = 1, i = 1, . . . , p,
and 0 < Aij < 1, i 6= j. Let y and x be the lower and upper bounds satisfying

0 < y ≤ Aij ≤ x < 1, ∀ i 6= j,

and define s by

x2 = sy + (1− s)y2.

Then the inverse matrix of A exists and A is an inverse M -matrix if s−1 ≥ p− 2 with p > 3.

Lemma 1.11. [6] (Sub-exponential tail bound) Suppose X is sub-exponential with parameters (υ, α). Then

P[X − µ ≥ t] ≤

{
e−

t2

2υ2 t ∈ [0, υ
2

α ],

e−
t

2α t ∈ (υ
2

α ,+∞).
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1.2 Proof of Theorem 3.1

Proof. The `1-norm regularized maximum likelihood estimation under the Laplacian constrained Gaussian
graphical model can be formulated as

min
Θ∈SL

− log det(Θ + J) + tr (ΘS) + λ
∑
i>j

|Θij |, (8)

where S is the sample covariance matrix with the samples generated from LGMRF. As a result of Theorem
3.4, the optimization (8) can be equivalently written as

min
w≥0
− log det(Lw + J) + tr (LwS) + λ ‖w‖1 . (9)

Due to the non-negativity constraint w ≥ 0, (9) can be further rewritten as

min
w≥0
− log det(Lw + J) + 〈L∗S + λ1,w〉, (10)

where 1 = [1, . . . , 1]>.
We first prove that the optimization (10) has one global minimizer if λ > 0. Let f(w) = − log det(Lw+

J) + 〈L∗S + λ1,w〉. The feasible set of (10) is Sw = {w ∈ Rp(p−1)/2 |w ≥ 0, (Lw + J) ∈ Sp++}, which is
the same with the feasible set of (1). For any w ∈ Sw, the minimum eigenvalue of ∇2f(w) can be lower
bounded by

λmin

(
∇2f(w)

)
= inf
‖x‖=1

x>∇2f(w)x

= inf
‖x‖=1

(vec(Lx))
>
(

(Lw + J)
−1 ⊗ (Lw + J)

−1
)

vec(Lx)

≥ inf
‖x‖=1

(vec(Lx))
> (

(Lw + J)−1 ⊗ (Lw + J)−1
)

vec(Lx)

(vec(Lx))
>

vec(Lx)
· inf
‖x‖=1

‖Lx‖2F

≥ λmin

(
(Lw + J)−1 ⊗ (Lw + J)−1

)
· inf
‖x‖=1

‖Lx‖2F

= λmin

(
(Lw + J)−1 ⊗ (Lw + J)−1

)
· inf
‖x‖=1

x>Mx

= 2λmin

(
(Lw + J)−1

)2
> 0,

where the second equality is due to Lemma 1.1; the third equality follows from Lemma 1.3; the last equality
follows from the property of Kronecker product that the eigenvalues of A⊗B are λiµj for i, j ∈ [p], where
λi and µj are the eigenvalues of A ∈ Rp×p and B ∈ Rp×p, respectively, and λmin(M) = 2 following from
Lemma 1.3; the last inequality follows from (3). Therefore, the optimization (10) is strictly convex, and thus
(10) has at most one global minimizer.

The existence of minimizers of (10) can be guaranteed by the coercivity of f(w). The function f(w) can
be lower bounded by

f(w) = − log

(
p∏
i=1

λi(Lw + J)

)
+ 〈L∗S + λ1,w〉

= − log

(
p∏
i=2

λi(Lw)

)
+ 〈L∗S + λ1,w〉

≥ −(p− 1) log

(
p∑
i=1

λi(Lw)

)
+ 〈L∗S + λ1,w〉+ (p− 1) log(p− 1)
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= −(p− 1) log

(
p∑
i=1

[Lw]ii

)
+ 〈L∗S + λ1,w〉+ (p− 1) log(p− 1)

= −(p− 1) log

2

p(p−1)/2∑
t=1

wt

+ 〈L∗S + λ1,w〉+ (p− 1) log(p− 1)

≥ −(p− 1) log

p(p−1)/2∑
t=1

wt

+ λ

p(p−1)/2∑
t=1

wt + (p− 1) log
p− 1

2
, (11)

where the second equality follows from (34) with b = 1; the forth equality follows from Lw · 1 = 0; the last
inequality holds because w ≥ 0, and L∗S ≥ 0, which follows from (70); the first inequality holds because
the smallest eigenvalue λ1(Lw) = 0 and

a1 + a2 + . . .+ an
n

≥ n
√
a1 · a2 · · · an

holds for any non-negative real numbers of a1, . . . , an. A function g : Ω→ R ∪ {+∞} is called coercive over
Ω, if every sequence xk ∈ Ω with ‖xk‖ → +∞ obeys limk→∞ g(xk) = +∞, where Ω ⊂ Rn. Let

h(z) = −(p− 1) log z + λz + (p− 1) log
p− 1

2
.

A simple calculation yields limz→+∞ h(z) = +∞ if λ > 0. For any sequence wk ∈ cl(Sw) with ‖wk‖ → +∞,

where cl(Sw) is the closure of Sw, one has
∑p(p−1)/2
t=1 [wk]t → +∞, because

∑p(p−1)/2
t=1 [wk]t ≥ ‖wk‖. Then

one obtains

lim
k→∞

f(wk) ≥ lim
k→∞

h

p(p−1)/2∑
t=1

[wk]t

 = lim
z→+∞

h(z) = +∞,

where the first inequality follows from (11). Hence, f(w) is coercive over cl(Sw). Following from the Extreme
Value Theorem in [1], if Ω ⊂ Rn is non-empty and closed, and g : Ω→ R∪{+∞} is lower semi-continuous and
coercive, then the optimization minx∈Ω g(x) has at least one global minimizer. Therefore, by the coercivity
of f(w), (10) has at least one global minimizer in cl(Sw).

Let ΩA = {w ∈ Rp(p−1)/2 |w ≥ 0} and ΩB = {w ∈ Rp(p−1)/2 |(Lw + J) ∈ Sp++}. ΩA is a closed set and
ΩB is an open set. Then Sw can be rewritten as Sw = ΩA∩ΩB . Consider the set V := cl(Sw)\Sw, we have

V ⊆
{

cl(ΩA) ∩ cl(ΩB)
}
\
{

ΩA ∩ ΩB

}
= ΩA ∩ ∂ΩB , (12)

where ∂ΩB is the boundary of ΩB . Notice that every matrix on the boundary of the set of positive definite
matrices is positive semi-definite and has zero determinant. Hence, one has ∂ΩB = {w ∈ Rp(p−1)/2 |(Lw +
J) ∈ Sp+, det(Lw + J) = 0}. As a result, for any wb ∈ cl(Sw) \ Sw, f(wb) = +∞. Therefore, (10) has
at least one global minimizer and the minimizer must belong to the set Sw. On the other hand, by the
strict convexity of f(w), (10) has at most one global minimizer in Sw. Totally, we conclude that (10) has
an unique global minimizer in Sw if λ > 0.

We prove the theorem through the KKT conditions. The Lagrangian of the optimization (10) is

L(w,υ) = − log det(Lw + J) + 〈L∗S + λ1,w〉 − υ>w,

where υ is a KKT multiplier. Let (ŵ, υ̂) be any pair of points that satisfies the KKT conditions. Then we
have

−L∗
(
(Lŵ + J)−1

)
+ L∗S + λ1− υ̂ = 0; (13)

ŵiυ̂i = 0, for i = 1, . . . , p(p− 1)/2; (14)

ŵ ≥ 0, υ̂ ≥ 0; (15)
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As we know, for any convex optimization with differentiable objective and constraint functions, any point
that satisfies the KKT conditions (under Slater’s constraint qualification) must be primal and dual optimal.
Therefore, ŵ must obey ŵ = arg minw≥0 f(w). Note that the pair of points (ŵ, υ̂) that satisfies the KKT
conditions is unique. To prove the optimal solution ŵ > 0 holds for (10), we can equivalently prove that the
KKT conditions (13)-(15) hold for (ŵ > 0, υ̂ = 0). It is further equivalent to prove that

L∗
(
(Lŵ + J)−1

)
= L∗S + λ1. (16)

holds for ŵ > 0. Following from Lemma 1.2 with the fact that ŵ ∈ Sw, there must exist an unique x such
that

Lx+
1

b
J = (Lŵ + bJ)−1 (17)

holds for any b 6= 0. Thus one has

L∗
(
(Lŵ + J)−1

)
= L∗ (Lx+ J) = L∗Lx, (18)

where the first equality follows from (17) with b = 1; the second equality holds because J ∈ N (L∗) where
N (L∗) is the null space of L∗ defined by N (L∗) := {X ∈ Rp×p | L∗X = 0}. Combining (16) and (18) yields

x = (L∗L)−1(L∗S + λ1), (19)

where L∗L is invertible according to Lemma 1.3. Recall that S is the sample covariance matrix defined by

S =

n∑
k=1

X(k)
(
X(k)

)>
,

where X(1), . . . ,X(n) are the samples independently drawn from the LGMRF in Definition 2.1. According
to the density function of LGMRF, we get 1>X(k) = 0 for k = 1, . . . , n. Therefore, S is symmetric
and obeys S · 1 = 0. It is easy to verify that S ∈ R(L), where R(L) is the range space of L defined
by R(L) := {Ly | y ∈ Rp(p−1)/2}. Hence, there must exist a y ∈ Rp(p−1)/2 such that S = Ly. Thus
L∗S = L∗Ly. One further obtains

y = (L∗L)−1L∗S.

Then a simple calculation yields

L(L∗L)−1L∗S = Ly = S. (20)

Next, we construct a matrix X = Lx+ aJ with a > 0 and have

Lx+ aJ = L(L∗L)−1(L∗S + λ1) + aJ

= S + λL(L∗L)−11 + aJ

= S +
λ

2p
L1 + aJ , (21)

where the first equality follows from (19); the second equality follows from (20); the third equality holds
because L∗L1 = 2p1 and then one has (L∗L)−11 = 1

2p1.

Let X̂ = D−
1
2XD−

1
2 be the normalized matrix of X, where D is a diagonal matrix containing the

diagonals of X. Notice that each diagonal element of X̂ is 1. Next, we will prove that, under some
conditions, X̂ is an inverse M -matrix, that is, (X̂)−1 is a M -matrix. We say A ∈ Rp×p is an M -matrix if

A = sI −B, (22)
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where B ∈ Rp×p is an element-wise non-negative matrix and s > ρ(B), the spectral radius of B. According
to (21), one has

Xij = Sij −
λ

2p
+
a

p
, for i 6= j,

and

Xii = Sii +
p− 1

2p
λ+

a

p
, i = 1, . . . , p.

Define S̃ij = maxi 6=j Sij , S̄ij = mini 6=j Sij , S̃kk = maxk Skk and S̄kk = mink Skk. By the definition of X̂,

the lower bound y and upper bound x of the elements off the diagonal of X̂ can be obtained as below,

X̂ij =
Xij√
XiiXjj

=
Sij − λ

2p + a
p√

Sii + p−1
2p λ+ a

p ·
√
Sjj + p−1

2p λ+ a
p

≥
S̄ij − λ

2p + a
p

S̃kk + p−1
2p λ+ a

p

=: y, ∀ i 6= j. (23)

and

X̂ij ≤
S̃ij − λ

2p + a
p

S̄kk + p−1
2p λ+ a

p

=: x, ∀ i 6= j. (24)

Define s by x2 = sy + (1 − s)y2. According to Lemma 1.10, if 0 < y ≤ x < 1 and s−1 ≥ p − 2 with p > 3,

then X̂ is an inverse M -matrix. We can see, provided that y = 1
p+1 and the inequalities

0 < y ≤ x ≤
√

2y < 1, (25)

hold, then one has

s−1 =
y − y2

x2 − y2
≥ 1− y

y
> p− 2,

where the first inequality follows from x ≤
√

2y. Therefore, if y = 1
p+1 and (25) holds, then X̂ is an inverse

M -matrix.
Next, we prove that if a = S̃kk − (p+ 1)S̄ij + λ with λ ≥ 2(

√
2 + 1)(p+ 1)(S̃kk − S̄ij), then y = 1

p+1 and

(25) holds. Substituting a = S̃kk − (p+ 1)S̄ij + λ into (23) yields y = 1
p+1 . Then it is clear that y > 0 and√

2y < 1. Comparing x and y defined in (23) and (24), respectively, one has y ≤ x. A simple algebra yields

x =
S̃ij − λ

2p + a
p

S̄kk + p−1
2p λ+ a

p

≤
pS̃kk − λ

2 + a

pS̄ij + p−1
2 λ+ a

=
(p+ 1)(S̃kk − S̄ij) + λ

2

S̃kk − S̄ij + (p+1)λ
2

≤
√

2

p+ 1
=
√

2y,

where the first inequality follows from S̃ij ≤ S̃kk and S̄kk ≥ S̄ij because S ∈ Sp+ and S · 1 = 0. It is easy to

verify that λ ≥ 2(
√

2 + 1)(p+ 1)(S̃kk − S̄ij) is large enough to establish the second inequality. Therefore, all
the inequalities in (25) hold.

Consequently, by Lemma 1.10, we conclude that X̂ is an inverse M -matrix when a = S̃kk− (p+1)S̄ij +λ

with λ ≥ 2(
√

2 + 1)(p + 1)(S̃kk − S̄ij). Therefore, X̂−1 = D
1
2X−1D

1
2 is an M -matrix. Notice that the
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elements off the diagonal of an M -matrix are non-positive according to (22). As a result, the elements off

the diagonal of D
1
2X−1D

1
2 are non-positive, implying that the elements off the diagonal of X−1 are also

non-positive, because X = Lx + aJ is positive definite and thus the diagonal elements of D are positive.
The application of (17) with b = 1

a yields

X−1 = [Lx+ aJ ]−1 = Lŵ +
1

a
J .

One further obtains

[Lŵ +
1

a
J ]ij = −ŵk +

1

ap
≤ 0, ∀ i 6= j,

where k = i− j + j−1
2 (2p− j). Therefore, we establish

ŵk ≥
1

ap
=

1

(S̃kk − (p+ 1)S̄ij + λ)p
> 0, ∀ k,

concluding that (16) holds for ŵ > 0. Note that a = S̃kk − (p + 1)S̄ij + λ > 0 because S̃kk > 0, λ > 0,
and S̄ij ≤ 0, where S̄ij ≤ 0 following from S · 1 = 0 and each diagonal element Sii ≥ 0 since S is positive
semi-definite.

1.3 Proofs of Theorem 3.4

Proof. Let x ∈ Rp(p−1)/2. According to the definition of L, Lx must obey [Lx]ij = [Lx]ji, for any i 6= j and
(Lx) · 1 = 0.

Next, we will show that Lx is positive semi-definite for any x ≥ 0 by the Gershgorin circle theorem [5].
Given a matrix X ∈ Rp×p with entries Xij . Let Ri(X) =

∑
j 6=i |Xij | be the sum of the absolute values of

the non-diagonal entries in the i-th row. Then a Gershgorin disc is the disc D(Xii, Ri(X)) centered at Xii

on the complex plane with radius Ri(X). Gershgorin circle theorem [3] shows that each eigenvalue of X
lies within at least one of the Gershgorin discs. For any x ≥ 0, Ri(Lx) = [Lx]ii holds for each i because
(Lx) · 1 = 0 and [Lx]ij ≤ 0 for any i 6= j. For any given eigenvalue λ of Lx, by Gershgorin circle theorem,
there must exist one Gershgorin disc D([Lx]ii, Ri(Lx)) such that

|λ− [Lx]ii| ≤ Ri(X) = [Lx]ii, (26)

indicating that λ ≥ 0. Note that the eigenvalues of Lx are real since Lx is symmetric. Therefore, one has

Lx ∈ Sp+, ∀x ≥ 0. (27)

Finally, we will prove that rank(Lx) = p − 1 ⇔ (Lx + J) ∈ Sp++, for any x ≥ 0. On one hand, if
rank(Lx) = p − 1, then Lx + J admits the eigenvalue decomposition UΛU>, where U = [Us

1√
p1] and

Λ is a diagonal matrix with the diagonal elements [λ2, . . . , λp, 1]. Here λpi=2 are the nonzero eigenvalues of
Lx and Us is a p× (p− 1) matrix whose columns are the corresponding eigenvectors of Lx. Note that the
nonzero eigenvalue λpi=2 > 0 because Lx ∈ Sp+. Therefore, one has (Lx+ J) ∈ Sp++. On the other hand, if
(Lx+J) ∈ Sp++, then rank(Lx) ≥ rank(Lx+J)− rank(J) = p−1 because Lx+J is full rank and J is rank
one. Furthermore, rank(Lx) ≤ p− 1 because (Lx) · 1 = 0. Therefore, we conclude that rank(Lx) = p− 1,
completing the proof.

1.4 Proofs of Theorem 3.8 and Corollary 3.9

Proof. We first prove Theorem 3.8. Take the regularization parameter λ =
√

4αc−1
0 log p/n for some α > 2,

and the sample size

n ≥ max
(
94αc−1

0 λ2
max(Lw?)s log p, 8α log p

)
, (28)
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where c0 is a constant defined in Lemma 1.8. Notice that the sample size n in (28) satisfies the conditions
on the number of samples in Lemmas 1.4, 1.5, 1.6 and 1.7. We choose the initial point ŵ(0) of Algorithm 1
satisfying |supp+(ŵ(0))| ≤ s.

Define an event J =
{∥∥L∗( (Lw? + J)

−1−S
)∥∥

max
≤ λ/2

}
. According to Lemma 1.7,

∥∥L∗( (Lw? + J)
−1−

S
)∥∥

max
≤ λ/2 holds with probability at least 1 − 1/pα−2. Under the event J , one applies Lemma 1.6 and

obtains, for any k ≥ 1,∥∥∥ŵ(k) −w?
∥∥∥ ≤ 2λ2

max(Lw?)
∥∥(L∗( (Lw? + J)

−1 − S
))
S?
∥∥+

3

2 +
√

2

∥∥ŵ(k−1) −w?
∥∥,

By induction, if dk ≤ a0 + ρdk−1 for any k ≥ 1 with ρ ∈ [0, 1), then

dk ≤
1− ρk

1− ρ
a0 + ρkd0. (29)

Taking a0 = 2λ2
max(Lw?)‖

(
L∗
(

(Lw? + J)
−1 − S

))
S?
∥∥, ρ = 3

2+
√

2
and dk =

∥∥ŵ(k) −w?
∥∥, one obtains

∥∥ŵ(k) −w?
∥∥ ≤ 2

√
2(
√

2 + 1)2λ2
max(Lw?)‖

(
L∗
(

(Lw? + J)
−1 − S

))
S?
∥∥+

( 3

2 +
√

2

)k∥∥ŵ(0) −w?
∥∥.

Under the event J ,
∥∥(L∗( (Lw? + J)

−1 − S
))
S?
∥∥ can be bounded by

∥∥(L∗( (Lw? + J)
−1 − S

))
S?
∥∥ ≤ √sλ/2 ≤√αc−1

0 s log p/n. (30)

Therefore, under the event J , which holds with probability at least 1− 1/pα−2, one has∥∥ŵ(k) −w?
∥∥ ≤ 2(3

√
2 + 4)λ2

max(Lw?)

√
αc−1

0 s log p/n+
( 3

2 +
√

2

)k∥∥ŵ(0) −w?
∥∥.

Next, we prove Corollary 3.9. Under the event J , one applies Lemma 1.6 and obtains,∥∥Lŵ(k) − Lw?
∥∥

F
≤ 2
√

2λ2
max(Lw?)

∥∥(L∗( (Lw? + J)
−1 − S

))
S?
∥∥+

3

2 +
√

2

∥∥Lŵ(k−1) − Lw?
∥∥

F
(31)

holds for any k ≥ 1. Taking a0 = 2
√

2λ2
max(Lw?)

∥∥(L∗( (Lw? + J)
−1 − S

))
S?
∥∥, ρ = 3

2+
√

2
and dk =∥∥Lŵ(k) − Lw?

∥∥
F

, by (29) one has

∥∥Lŵ(k) − Lw?
∥∥

F
≤ 4(
√

2 + 1)2λ2
max(Lw?)

∥∥(L∗( (Lw? + J)
−1 − S

))
S?
∥∥+

( 3

2 +
√

2

)k∥∥Lŵ(0) − Lw?
∥∥

F
.

Similarly, according to (30), one obtains∥∥Lŵ(k) − Lw?
∥∥

F
≤ 4(3 + 2

√
2)λ2

max(Lw?)

√
αc−1

0 s log p/n+
( 3

2 +
√

2

)k∥∥Lŵ(0) − Lw?
∥∥

F

holds at least 1− 1/pα−2.
Alternative to (29), one obtains

dk ≤
1− ρk−1

1− ρ
a0 + ρk−1d1,

and correspondingly establishes∥∥Lŵ(k) − Lw?
∥∥

F
≤ 4(3 + 2

√
2)λ2

max(Lw?)

√
αc−1

0 s log s/n+
( 3

2 +
√

2

)k−1∥∥Lŵ(1) − Lw?
∥∥

F
. (32)
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To apply Lemma 1.4, we first check the necessary conditions of the lemma. Let z(0) satisfy z
(0)
i =

h′λ(ŵi
(0)), i ∈ [p(p− 1)/2]. Notice that z

(0)
i ∈ [0, λ] for i ∈ [p(p− 1)/2] by Assumption 3.5. According to (7),

E(1) = {S? ∪ S(1)}, where S(1) = {i ∈ [p(p− 1)/2] |w(0)
i ≥ b}. For any i ∈

{
S(1)

}c
, one has

z
(0)
i = h′λ(ŵ

(0)
i ) ≥ h′λ(b) ≥ λ

2
,

where the first inequality holds because ŵ
(0)
i < b for any i ∈

{
S(1)

}c
, and h′λ is non-increasing according to

Assumption 3.5; the second inequality directly follows from Assumption 3.5. Hence one has∥∥∥z(0)

{E(1)}c
∥∥∥

min
≥
∥∥∥z(0)

{S(1)}c
∥∥∥

min
≥ λ/2.

One also obtains |E(1)| < 2s by Lemma 1.5, and S? ⊆ E(1) by the definition of E(1). Therefore, one can apply
Lemma 1.4 with E = E(1) and z = z(0) and obtains∥∥Lŵ(1) − Lw?

∥∥
F
≤ 2(1 +

√
2)λ2

max(Lw?)
√
sλ.

If t ≥ log 2+
√

2
3

(λ
√
n/ log p) = log

(√
4αc−1

0

)
/ log 2+

√
2

3 , a simple algebra yields

( 3

2 +
√

2

)t−1∥∥Lŵ(1) − Lw?
∥∥

F
≤ 2(3

√
2 + 4)

3
(λ
√
n/ log p)−1λ2

max(Lw?)
√
sλ .

√
s log p/n. (33)

Taking k ≥ d4 log(4αc−1
0 )e ≥ log

(√
4αc−1

0

)
/ log 2+

√
2

3 , and combining (32) and (33) together, we can

conclude that ∥∥Lŵ(k) − Lw?
∥∥

F
.
√
s log p/n,

completing the proof.

2 Proof of Technical Lemmas

This section contains the proofs of technical lemmas used in Section 1.

2.1 Proof of Lemma 1.1

Proof. The gradient of f(w) is ∇f(w) = −L∗(Lw + J)−1 and its Hessian matrix is ∇2f(w) with the k-th
column being

[
∇2f(w)

]
:,k

=
∂(∇f(w))

∂wk
= −L∗

(
∂(Lw + J)−1

∂wk

)
= L∗

(
(Lw + J)−1 ∂(Lw + J)

∂wk
(Lw + J)−1

)
= L∗

(
(Lw + J)−1Ak(Lw + J)−1

)
,

where Ak ∈ Rp×p is a matrix with [Ak]ii = [Ak]jj = 1, [Ak]ij = [Ak]ji = −1 and zeros for the other
elements, in which i, j ∈ Z+ obeying k = i− j+ j−1

2 (2p− j) and i > j. Therefore, ∇2f(w) can be written as

∇2f(w) = [L∗B1,L∗B2, . . . ,L∗Bp(p−1)/2],

10



where Bk = (Lw + J)−1Ak(Lw + J)−1, for k = 1, 2, . . . , p(p− 1)/2. Then one has

x>∇2f(w)x = x>[L∗B1,L∗B2, . . . ,L∗Bp(p−1)/2]x

= x>L∗
p(p−1)/2∑

k=1

xkBk


= x>L∗

(Lw + J)−1

p(p−1)/2∑
k=1

xkAk

 (Lw + J)−1


= x>L∗

(
(Lw + J)−1Lx(Lw + J)−1

)
=
〈
Lx, (Lw + J)−1Lx(Lw + J)−1

〉
= vec(Lx)>vec

(
(Lw + J)−1Lx(Lw + J)−1

)
= vec(Lx)>

(
(Lw + J)

−1 ⊗ (Lw + J)
−1
)

vec(Lx),

where the forth equality follows from the definition of L, and the last equality follows from the property of
Kronecker product that vec(ABC) =

(
C> ⊗A

)
vec(B).

2.2 Proof of Lemma 1.2

Proof. Let X = Lw + bJ with any b 6= 0 and any given w ∈ Rp(p−1)/2 obeying (Lw + J) ∈ Sp++. It is easy
to verify that the column spaces as well as row spaces of Lw and J are orthogonal with each other. Hence
X admits the eigenvalue decomposition

X = Lw + bJ =
[
U u

] [ Λ 0
0 b

] [
U u

]>
, (34)

where Lw = UΛU> and bJ = buu> with u = 1√
p1p, in which 1p ∈ Rp with each element equal to 1.

Notice that Λ is non-singular. X−1 admits the eigenvalue decomposition

X−1 =
[
U u

] [ Λ−1 0
0 1

b

] [
U u

]>
= UΛ−1U> +

1

b
J ,

It is easy to check that UΛ−1U> is symmetric and UΛ−1U> ·1p = 0. Therefore, there must exist a x such
that Lx = UΛ−1U>. One further obtains xk = [UΛ−1U>]ij , for k = 1, . . . , p(p − 1)/2, where i, j ∈ Z+

satisfying k = i− j + j−1
2 (2p− j) and i > j. Hence such x is fixed and unique for a given w. Note that x is

independent of b, and thus Lx+ 1
bJ = (Lw + bJ)

−1
holds for any b 6= 0, completing the proof.

2.3 Proof of Lemma 1.3

Proof. Define an index set Ωt by

Ωt :=

{
l ∈ [p(p− 1)/2] |[Lx]tt =

∑
l

xl

}
, t ∈ [p]. (35)

According to the definition of L, for any x ∈ Rp(p−1)/2, one obtains that Lx ∈ Rp×p obeys

[Lx]ij =


−xk i > j,

[Lx]ji i < j,∑
l∈Ωi

xl i = j,

(36)
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where k = i− j + j−1
2 (2p− j). By the definition of L∗, one further obtains that L∗Lx ∈ Rp(p−1)/2 satisfies

[L∗Lx]k = [Lx]ii + [Lx]jj + 2xk =
∑

l∈Ωi∪Ωj

xl + 2xk =
∑

l∈Ωi∪Ωj\k

xl + 4xk, (37)

where i, j ∈ [p] satisfying k = i− j + j−1
2 (2p− j) and i > j. The last equality holds because∑

l∈Ωi∪Ωj

xl = [Lx]ii + [Lx]jj = −
∑
m 6=i

[Lx]im −
∑
m6=j

[Lx]jm = 2xk −
∑
m 6=i,j

[Lx]im −
∑
m 6=i,j

[Lx]jm,

where the last equality follows from [Lx]ij = −xk according to (36).

According to (37), we conclude that there exists a matrix M ∈ R
p(p−1)

2 × p(p−1)
2 such that L∗Lx = Mx

for any x ∈ Rp(p−1)/2, and M obeys

Mkl =


4 l = k,

1 l ∈ (Ωi ∪ Ωj) \k,
0 Otherwise,

(38)

where i, j ∈ [p] satisfying k = i−j+ j−1
2 (2p−j) and i > j. Note that we use the fact that {Ωi\k}∩{Ωj\k} = ∅

with k = i− j + j−1
2 (2p− j).

Finally, we will compute the minimum and maximum eigenvalues of M . To compute the minimum
eigenvalue of M , one has

λmin(M) = inf
x 6=0

x>Mx

‖x‖2
= inf

x6=0

‖Lx‖2F
‖x‖2

= inf
x 6=0

2
∑p(p−1)/2
k=1 x2

k +
∑p
i=1([Lx]ii)

2

‖x‖2
≥ 2.

with equality when [Lx]11 = . . . = [Lx]pp = 0, which can be written as Qx = 0 with Q ∈ Rp×
p(p−1)

2 .
Obviously, there must exist a nonzero solution to Qx = 0, and thus λmin(M) = 2. To compute the
maximum eigenvalue of M , one has

λmax(M) = sup
x 6=0

x>Mx

‖x‖2
= sup

x6=0

2
∑p(p−1)/2
k=1 x2

k +
∑p
t=1([Lx]tt)

2

‖x‖2

= sup
x 6=0

4
∑p(p−1)/2
k=1 x2

k +
∑p
t=1

∑
i,j∈Ωt, i 6=j xixj

‖x‖2

≤ sup
x 6=0

4
∑p(p−1)/2
k=1 x2

k + 1
2

∑p
t=1

∑
i,j∈Ωt, i 6=j(x

2
i + x2

j )

‖x‖2

= sup
x 6=0

4
∑p(p−1)/2
k=1 x2

k +
∑p
t=1(|Ωt| − 1)

∑
i∈Ωt

x2
i

‖x‖2

= sup
x 6=0

4
∑p(p−1)/2
k=1 x2

k + (p− 2)
∑p
t=1

∑
i∈Ωt

x2
i

‖x‖2

= 2p,

with equality when each element of x is equal with each other, and thus λmax(M) = 2p. The last second
equality is obtained by plugging |Ωt| = p−1 with t ∈ [p], which is easy to verify according to the definition of

Ωt in (35); the last equality follows from
∑p
t=1

∑
i∈Ωt

x2
i = 2

∑p(p−1)/2
k=1 x2

k, because for any k ∈ [p(p− 1)/2],

k ∈ Ωt only holds with t = {i, j}, where i, j ∈ [p] obeying k = i− j + j−1
2 (2p− j) and i > j.
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2.4 Proof of Lemma 1.4

Proof. Take λ =
√

4αc−1
0 log p/n and n ≥ 94αc−1

0 λ2
max(Lw?)s log p. Define a local region

BM (w?;λmax(Lw?)) = {w |w ∈ BM (w?;λmax(Lw?)) ∩ Sw},

where BM (w?; r) = {w ∈ Rp(p−1)/2 | ‖w −w?‖M ≤ r}, in which ‖x‖2M = 〈x,Mx〉 = ‖Lx‖2F with M � 0
defined in Lemma 1.3, and Sw = {w ∈ Rp(p−1)/2 |w ≥ 0, (Lw + J) ∈ Sp++}. It is easy to check that
w? ∈ BM (w?;λmax(Lw?)).

Recall that ŵ minimizes the optimization

min
w≥0
− log det(Lw + J) + tr (LwS) + z>w, (39)

where 0 ≤ zi ≤ λ for i ∈ [p(p − 1)/2]. We can see the optimization problems (1) and (39) have the same
feasible set. Therefore, Sw is also the feasible set of (39) and thus ŵ ∈ Sw must hold.

Next, we will prove that ŵ ∈ BM (w?;λmax(Lw?)). We first construct an intermediate estimator,

wt = w? + t(ŵ −w?), (40)

where t is taken such that ‖wt −w?‖M = λmax(Lw?) if ‖ŵ −w?‖M > λmax(Lw?), and t = 1 otherwise.
Hence ‖wt −w?‖M ≤ λmax(Lw?) always holds and t ∈ [0, 1]. One further has wt ∈ Sw because both
w?, ŵ ∈ Sw and Sw is a convex set as shown in (4). Therefore, we conclude that wt ∈ BM (w?;λmax(Lw?)).
Applying Lemma 1.9 with w1 = wt, w2 = w∗ and r = λmax(Lw?) yields

t〈−L∗ (Lwt + J)
−1

+ L∗ (Lw? + J)
−1
, ŵ −w∗〉 ≥ (2λmax(Lw?))

−2 ‖Lwt − Lw∗‖2F . (41)

Let q(a) = − log det
(
L
(
w? + a(ŵ −w?)

)
+ J

)
+ a〈L∗(Lw? + J)−1, ŵ −w?〉 and a ∈ [0, 1]. One has

q′(a) = 〈−L∗ (Lwa + J)
−1

+ L∗ (Lw? + J)
−1
, ŵ −w?〉, (42)

and

q′′(a) =
〈
L∗
(

(Lwa + J)
−1

(Lŵ − Lw?) (Lwa + J)
−1
)
, ŵ −w?

〉
= tr (ABAB) ,

where wa = w? + a(ŵ − w?), A = (Lwa + J)−1 and B = (Lŵ − Lw?). Note that A is symmetric and
positive definite because wt ∈ Sw and B is symmetric. Let C = AB. According to Theorem 1 in [2], all the
eigenvalues of a matrix X ∈ Rp×p are real if there exists a symmetric and positive definite matrix Y ∈ Rp×p
such that XY are symmetric. It is easy to check that the matrix CA is symmetric with A symmetric
and positive definite, and thus all the eigenvalues of C are real. Suppose λ1, . . . , λp are the eigenvalues of
C. Then the eigenvalues of CC are λ2

1, . . . , λ
2
p. Therefore, q′′(a) =

∑p
i=1 λ

2
i ≥ 0, implying that q′(a) is

non-decreasing with the increase of a. Then one obtains

t〈L∗ (Lw? + J)
−1 − L∗ (Lŵ + J)

−1
, ŵ −w?〉 = tq′(1) ≥ tq′(t) ≥ (2λmax(Lw?))−2 ‖Lwt − Lw∗‖2F . (43)

where the first inequality holds because q′(a) is non-decreasing and t ≤ 1, and the second inequality follows
from (41).

The Lagrangian of the optimization (39) is

L(w,ν) = − log det(Lw + J) + tr (LwS) + z>w − υ>w,

where υ is a KKT multiplier. Let (ŵ, υ̂) be the primal and dual optimal point. Then (ŵ, υ̂) must satisfy
the KKT conditions as below

−L∗
(
(Lŵ + J)−1

)
+ L∗S + z − υ̂ = 0; (44)

ŵiυ̂i = 0, for i = 1, . . . , p(p− 1)/2; (45)

ŵ ≥ 0, υ̂ ≥ 0; (46)
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According to (44), one has〈
− L∗

(
Lŵ + J

)−1
+ L∗S, ŵ −w?

〉
= 〈υ̂ − z, ŵ −w?〉 . (47)

Substituting (47) into (43) yields

‖Lwt − Lw?‖2F ≤ 4tλ2
max(Lw?)

(
〈υ̂ − z, ŵ −w?〉+

〈
L∗
(

(Lw? + J)
−1 − S

)
, ŵ −w?

〉)
= 4tλ2

max(Lw?)
(
〈υ̂, ŵ −w?〉︸ ︷︷ ︸

term I

−〈z, ŵ −w?〉︸ ︷︷ ︸
term II

+
〈
L∗
(

(Lw? + J)
−1 − S

)
, ŵ −w?

〉︸ ︷︷ ︸
term III

)
. (48)

Next we will bound term I, II and III, respectively. The term I can be directly bounded by

〈υ̂, ŵ −w?〉 = −〈υ̂,w?〉 ≤ 0. (49)

where the equality follows from (45) and the inequality follows from υ̂ ≥ 0 in (46) and w? ≥ 0.
For term II, we separate the support of z into two parts, S? and its complementary set {S?}c, where S?

is the support of w? with |S?| ≤ s. Take a set E satisfying S? ⊆ E and |E| ≤ 2s. A simple algebra yields

〈z, ŵ −w?〉 = 〈zS? , (ŵ −w?)S?〉+
〈
z{S?}c , (ŵ −w?){S?}c

〉
= 〈zS? , (ŵ −w?)S?〉+

〈
z{S?}c , ŵ{S?}c

〉
≥ −‖zS?‖ ‖(ŵ −w?)S?‖+

〈
z{S?}c , ŵ{S?}c

〉
≥ −‖zS?‖ ‖(ŵ −w?)S?‖+ 〈zEc , ŵEc〉 , (50)

where the first inequality follows from Cauchy–Schwarz inequality and the second inequality follows from
z ≥ 0, ŵ ≥ 0 and Ec ⊆ {S?}c.

For term III, we separate the support of L∗
(
(Lw? + J)−1 − S

)
into parts, E and Ec. Then one has〈

L∗
(
(Lw? + J)−1 − S

)
, ŵ −w?

〉
=
〈(
L∗
(

(Lw? + J)
−1 − S

))
E , (ŵ −w

?)E
〉

+
〈(
L∗
(
(Lw? + J)−1 − S

))
Ec , (ŵ −w

?)Ec
〉

≤
∥∥∥(L∗((Lw? + J)−1 − S

))
E

∥∥∥∥∥ (ŵ −w?)E
∥∥

+
〈(
L∗
(
(Lw? + J)−1 − S

))
Ec , ŵEc

〉
. (51)

Substituting (49), (50) and (51) into (48) yields

‖Lwt − Lw?‖2F ≤4tλ2
max(Lw?)

(∥∥∥(L∗((Lw? + J)−1 − S
))
E

∥∥∥∥∥ (ŵ −w?)E
∥∥ (52)〈(

L∗
(
(Lw? + J)−1 − S

))
Ec − zEc , ŵEc

〉
+ ‖zS?‖ ‖(ŵ −w?)S?‖

)
.

Notice that the inequality 〈(
L∗
(
(Lw? + J)−1 − S

))
Ec − zEc , ŵEc

〉
≤ 0, (53)

holds because ŵ ≥ 0, ‖zEc‖min ≥ λ/2 and∥∥(L∗ ((Lw? + J)−1 − S
))
Ec
∥∥

max
≤
∥∥L∗ ((Lw? + J)−1 − S

)∥∥
max
≤ λ

2
,

where the last inequality follows from the conditions in Lemma 1.4. Combining (52) and (53) together yields

‖Lwt − Lw?‖2F ≤ 4tλ2
max(Lw?)

(
‖zS?‖ ‖(ŵ −w?)S?‖+

∥∥(L∗( (Lw? + J)
−1 − S

))
E

∥∥ ‖(ŵ −w?)E‖
)

≤ 4tλ2
max(Lw?)

(
‖zS?‖+

∥∥(L∗( (Lw? + J)
−1 − S

))
E

∥∥) ‖ŵ −w?‖ , (54)
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where the last inequality follows from ‖ŵ −w?‖ ≥ ‖(ŵ −w?)E‖ ≥ ‖(ŵ −w?)S?‖.
On the other hand, one has

‖Lwt − Lw?‖F = t ‖Lŵ − Lw?‖F ≥ t
(∑
i 6=j

(
[Lŵ − Lw?]ij

)2) 1
2

=
√

2t ‖ŵ −w?‖ . (55)

Combining (54) and (55) together yields

‖Lwt − Lw?‖F ≤ 2
√

2λ2
max(Lw?)

(
‖zS?‖+

∥∥(L∗( (Lw? + J)
−1 − S

))
E

∥∥). (56)

Recall that ‖z‖max ≤ λ and |S?| ≤ s. Thus one has

‖zS?‖ ≤
√
sλ. (57)

One also has ∥∥(L∗( (Lw? + J)
−1 − S

))
E

∥∥ ≤ (|E| ∥∥L∗( (Lw? + J)
−1 − S

)∥∥2

max

) 1
2 ≤
√

2

2

√
sλ. (58)

Substituting (57) and (58) into (56) yields

‖Lwt − Lw?‖F ≤ 2(
√

2 + 1)λ2
max(Lw?)

√
sλ < λmax(Lw?), (59)

which implies that t = 1 in (40), i.e., wt = ŵ. The last inequality is established by plugging λ =√
4αc−1

0 log p/n with n ≥ 94αc−1
0 λ2

max(Lw?)s log p. Therefore, we conclude that

‖Lŵ − Lw?‖F ≤ 2
√

2λ2
max(Lw?)

(
‖zS?‖+

∥∥(L∗( (Lw? + J)
−1 − S

))
E

∥∥) ≤ 2(1 +
√

2)λ2
max(Lw?)

√
sλ,

where the first inequality is established by (56) with t = 1, and the second inequality is established by
plugging (57) and (58).

2.5 Proof of Lemma 1.5

Proof. Recall that E(k) = {S?∪S(k)} and S(k) = {i ∈ [p(p−1)/2] |ŵ(k−1)
i ≥ b} with b = (2+

√
2)λ2

max(Lw?)λ.

We prove |E(k)| ≤ 2s holds by induction. For k = 1, ∀i /∈ supp+(ŵ(0)), i.e., w
(0)
i ≤ 0, one has w

(0)
i < b,

implying that i /∈ S(1). In other words, S(1) ⊆ supp+(ŵ(0)). Then one has

|E(1)| = |S? ∪ S(1)| ≤ |S? ∪ supp+(ŵ(0))| ≤ s+ s = 2s.

Therefore, |E(k)| ≤ 2s holds for k = 1.
Assume |E(k−1)| ≤ 2s holds for some k ≥ 2. We separate the set E(k) into two parts, S? and S(k)\S?.

For any i ∈ S(k)\S?, one has ŵ
(k−1)
i ≥ b, and further obtains

√
|S(k)\S?| ≤

√√√√ ∑
i∈S(k)\S?

(
ŵ

(k−1)
i

b

)2

=

∥∥ŵ(k−1)

S(k)\S?
∥∥

b
=

∥∥(ŵ(k−1) −w?
)
S(k)\S?

∥∥
b

≤
∥∥ŵ(k−1)

E(k) −w
?
∥∥

b
≤
∥∥ŵ(k−1) −w?

∥∥
b

. (60)

Let z(k−2) satisfy z
(k−2)
i = h′λ(ŵi

(k−2)), i ∈ [p(p − 1)/2]. By Assumption 3.5, one has z
(k−2)
i ∈ [0, λ] for

i ∈ [p(p− 1)/2]. For any i ∈
{
S(k−1)

}c
, one further has

z
(k−2)
i = h′λ(ŵ

(k−2)
i ) ≥ h′λ(b) ≥ λ

2
, (61)
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where the first inequality holds because ŵ
(k−2)
i < b for any i ∈

{
S(k−1)

}c
by the definition of S(k−1), and

h′λ is non-increasing by Assumption 3.5; the second inequality follows from Assumption 3.5. Therefore, one
obtains ∥∥∥z(k−2)

{E(k−1)}c
∥∥∥

min
≥
∥∥∥z(k−2)

{S(k−1)}c
∥∥∥

min
≥ λ/2,

where the first inequality follows from
{
E(k−1)

}c ⊆ {S(k−1)
}c

and the second inequality follows from (61).

One also has |E(k−1)| ≤ 2s and S? ⊆ E(k−1). Hence we can apply Lemma 1.4 with E = E(k−1) and z = z(k−2)

and obtain ∥∥ŵ(k−1) −w?
∥∥ ≤ √2

2

∥∥Lŵ(k−1) − Lw?
∥∥

F
≤ (2 +

√
2)λ2

max(Lw?)
√
sλ, (62)

where the first inequality holds with the proof similar to (69). Combining (60) and (62) together yields√
|S(k)\S?| ≤ (2 +

√
2)λ2

max(Lw?)
√
sλ

b
=
√
s,

where the last equality follows from b = (2 +
√

2)λ2
max(Lw?)λ. Therefore, one gets

|E(k)| = |S? ∪ S(k)\S?| = |S?|+ |S(k)\S?| ≤ s+ s = 2s,

completing the induction.

2.6 Proof of Lemma 1.6

Proof. For any k ≥ 1, one has |E(k)| ≤ 2s by Lemma 1.5. According to the definition of E(k) in (7), one

has S? ⊆ E(k). Let z
(k−1)
i = h′λ(ŵi

(k−1)), i ∈ [p(p − 1)/2]. By Assumption 3.5, one has z
(k−1)
i ∈ [0, λ] for

i ∈ [p(p− 1)/2]. For any i ∈
{
S(k)

}c
, one has

z
(k−1)
i = h′λ(ŵ

(k−1)
i ) ≥ h′λ(b) ≥ λ

2
,

where the first inequality holds because ŵ
(k−1)
i < b for any i ∈

{
S(k)

}c
by the definition of S(k) in (7),

and h′λ is non-increasing by Assumption 3.5; the second inequality follows from Assumption 3.5. Therefore,∥∥∥z(k−1)

{E(k)}c
∥∥∥

min
≥
∥∥∥z(k−1)

{S(k)}c
∥∥∥

min
≥ λ/2. Applying Lemma 1.4 with E = E(k) and z = z(k−1) yields

∥∥Lŵ(k) − Lw?
∥∥

F
≤ 2
√

2λ2
max(Lw?)

(∥∥z(k−1)
S?

∥∥+
∥∥(L∗( (Lw? + J)

−1 − S
))
E(k)
∥∥). (63)

We will show that the term
∥∥z(k−1)
S?

∥∥ in (63) can be bounded in terms of
∥∥ŵ(k−1) −w?

∥∥. For any given

w ∈ Rp(p−1)/2, if |w?i − wi| ≥ b, then one has

0 ≤ h′λ(wi) ≤ λ ≤ λb−1|w?i − wi|,

where b = (2 +
√

2)λ2
max(Lw?)λ, and the first two inequalities follows from Assumption 3.5. Otherwise, one

has w?i − wi ≤ |w?i − wi| ≤ b, then 0 ≤ h′λ(wi) ≤ h′λ(w?i − b) because h′λ is non-increasing. Totally, one has

h′λ(wi) ≤ λb−1|w?i − wi|+ h′λ(w?i − b), ∀i ∈ [p(p− 1)/2]. (64)

Collecting the indices i ∈ S? together and applying (64) with w = ŵ(k−1) yields∥∥z(k−1)
S?

∥∥ =
∥∥∥h′λ(ŵ

(k−1)
S? )

∥∥∥ ≤ λ

b

∥∥ŵ(k−1)
S? −w?

S?‖+
∥∥h′λ(w?

S? − b)
∥∥ ≤ λ

b

∥∥ŵ(k−1) −w?
∥∥+

∥∥h′λ(w?
S? − b)

∥∥,
(65)
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where h′λ(ŵ
(k−1)
S? ) = (h′λ(ŵ

(k−1)
i ))i∈S? , and b = [b, . . . , b]> is a constant vector. Combining (63) and (65)

together yields∥∥Lŵ(k) − Lw?
∥∥

F
≤ 2
√

2λ2
max(Lw?)

(∥∥(L∗( (Lw? + J)
−1 − S

))
E(k)
∥∥+

∥∥h′λ(w?
S? − b)

∥∥)
+ 2
√

2
λ

b
λ2

max(Lw?)
∥∥ŵ(k−1) −w?

∥∥. (66)

By separating the set E(k) into two parts, S? and S(k)\S?, one has∥∥(L∗( (Lw? + J)
−1 − S

))
E(k)
∥∥ ≤ ∥∥(L∗( (Lw? + J)

−1 − S
))
S?
∥∥+

∥∥(L∗( (Lw? + J)
−1 − S

))
S(k)\S?

∥∥.
We will show that the term

∥∥(L∗( (Lw? + J)
−1 − S

))
S(k)\S?

∥∥ can be bounded in terms of
∥∥ŵ(k−1) −w?

∥∥.

∥∥(L∗( (Lw? + J)
−1 − S

))
S(k)\S?

∥∥ ≤√|E(k)\S?|
∥∥(L∗( (Lw? + J)

−1 − S
))
S(k)\S?

∥∥
max

≤
√
|E(k)\S?|

∥∥L∗( (Lw? + J)
−1 − S

)∥∥
max

≤ 1

b

∥∥ŵ(k−1) −w?
∥∥∥∥L∗( (Lw? + J)

−1 − S
)∥∥

max

≤ λ

2b

∥∥ŵ(k−1) −w?
∥∥,

where the last second equality follows from (60). Thus one has

∥∥(L∗( (Lw? + J)
−1 − S

))
E(k)
∥∥ ≤ ∥∥(L∗( (Lw? + J)

−1 − S
))
S?
∥∥+

λ

2b

∥∥ŵ(k−1) −w?
∥∥. (67)

Substituting (67) into (66) yields∥∥Lŵ(k) − Lw?
∥∥

F
≤ 2
√

2λ2
max(Lw?)

(∥∥(L∗( (Lw? + J)
−1 − S

))
S?
∥∥+

∥∥h′λ(w?
S? − b)

∥∥)
+ 3
√

2
λ

b
λ2

max(Lw?)
∥∥ŵ(k−1) −w?

∥∥
= 2
√

2λ2
max(Lw?)

∥∥(L∗( (Lw? + J)
−1 − S

))
S?
∥∥+

3
√

2

2 +
√

2

∥∥ŵ(k−1) −w?
∥∥

≤ 2
√

2λ2
max(Lw?)

∥∥(L∗( (Lw? + J)
−1 − S

))
S?
∥∥+

3

2 +
√

2

∥∥Lŵ(k−1) − Lw?
∥∥

F
, (68)

where the equality is established by plugging b = (2+
√

2)λ2
max(Lw?)λ and following from

∥∥h′λ(w?
S?−b)

∥∥ = 0
because ‖w?

S?‖min− b ≥ γλ and h′λ(x) = 0 for any x ≥ γλ following from Assumption 3.6; the last inequality
follows from

∥∥∥Lŵ(k) − Lw?
∥∥∥

F
=
(

2

p(p−1)/2∑
i=1

(ŵ
(k)
i − w

?
i )2 +

p∑
j=1

([Lŵ(k) − Lw?]jj)
2
) 1

2 ≥
√

2
∥∥∥ŵ(k) −w?

∥∥∥ . (69)

Similarly, one also obtains∥∥∥ŵ(k) −w?
∥∥∥ ≤ √2

2

∥∥Lŵ(k) − Lw?
∥∥

F

≤ 2λ2
max(Lw?)

∥∥(L∗( (Lw? + J)
−1 − S

))
S?
∥∥+

3

2 +
√

2

∥∥ŵ(k−1) −w?
∥∥.
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2.7 Proof of Lemma 1.7

Proof. We apply Lemma 1.8 with t = λ/2 and union sum bound, then get

P
[∥∥L∗( (Lw? + J)

−1 − S
)∥∥

max
≥ λ/2

]
≤ p(p− 1) exp(−1

4
c0nλ

2) ≤ p2 exp(−1

4
c0nλ

2),

for any λ ≤ 2t0, where t0 =
∥∥L∗(Lw? + J)−1

∥∥
max

and c0 = 1/
(
8
∥∥L∗(Lw? + J)−1

∥∥2

max

)
. Take λ =√

4αc−1
0 log p/n for some α > 2. To guarantee λ ≤ 2t0, one takes n ≥ 8α log p. By calculation, we establish

P
[∥∥L∗( (Lw? + J)

−1 − S
)∥∥

max
≤ λ/2

]
≥ 1− p2 exp(−1

4
c0nλ

2) ≥ 1− 1/pα−2,

completing the proof.

2.8 Proof of Lemma 1.8

Proof. The LGMRF is a constrained GMRF model with 1>X = 0 and we can follow the method called
conditioning by Kriging [4] to sample LGMRF. More specifically, to sample X for LGMRF with precision
matrix Lw?,we could first sample from a unconstrained GMRF X̃ ∼ N(0, (Lw? + J)−1) and then correct
for the constraint 1>X = 0 by

X(k) = X̃(k) − 1

p
11>X̃(k), for k = 1, . . . , n.

For any i ∈ [p(p− 1)/2], one has

[L∗S]i = [L∗
( 1

n

n∑
k=1

X(k)X(k)T
)
]i =

1

n

n∑
k=1

[L∗
(
X(k)X(k)T

)
]i =

1

n

n∑
k=1

(
X(k)
a −X(k)

b

)2
=

1

n

n∑
k=1

((
X̃(k)
a − (

1

p
11>X̃(k))a

)
−
(
X̃

(k)
b − (

1

p
11>X̃(k))b

))2

=
1

n

n∑
k=1

(
X̃(k)
a − X̃(k)

b

)2
, (70)

where the indices a and b obey i = a− b+ (b− 1)(2p− b)/2 and a > b.
Let Σ̃ = (Lw? + J)−1 and thus X̃ ∼ N(0, Σ̃). We first introduce two auxiliary random variables

Yk,i := X̃
(k)
a − X̃(k)

b and Zk,i := Y 2
k,i. Together with (70), one has

1

n

n∑
k=1

Zk,i = [L∗S]i. (71)

We can see Yk,i ∼ N(0, σ2
i ) because of the fact that any linear combination of p components in X̃ has a

univariate normal distribution. The variance of Yk,i is

σ2
i = E

[
(Yk,i − E(Yk,i))

2
]

= E
[
(X̃(k)

a − X̃(k)
b )2

]
= Σ̃aa + Σ̃bb − Σ̃ab − Σ̃ba =

(
L∗Σ̃

)
i
. (72)

Therefore Zk,i/σ
2
i ∼ χ2(1) and E[Zk,i/σ

2
i ] = 1. We say a random variable X is sub-exponential if there are

non-negative parameters (υ, α) such that

E
[

exp
(
λ(X − E[X])

)]
≤ exp(

υ2λ2

2
), for all |λ| < 1

α
. (73)

18



By checking the condition in (73), one can conclude that Zk,i/σ
2
i is is sub-exponential with parameters (2, 4).

Furthermore, if random variables {Yk}nk=1 are independent and sub-exponential with parameters (υk, αk),
then

∑n
k=1 Yk is still sub-exponential with parameters (υ∗, α∗) where

υ∗ :=

√√√√ n∑
k=1

υ2
k and α∗ := max

k=1,...,n
αk.

Thus,
∑n
k=1 Zk,i/σ

2
i is sub-exponential with parameters (2

√
n, 4). The application of the sub-exponential

tail bound in Lemma 1.11 yields

P
[∣∣∣ n∑
k=1

Zk,i/σ
2
i − n

∣∣∣ ≥ t0] ≤ 2 exp
(
− t20

8n

)
, for t0 ∈ [0, n].

By taking t0 = nt/maxi σ
2
i , one has

P
[∣∣∣ 1
n

n∑
k=1

Zk,i − σ2
i

∣∣∣ ≥ t] = P
[∣∣∣ n∑
k=1

Zk,i/σ
2
i − n

∣∣∣ ≥ nt

σ2
i

]
≤ P

[∣∣∣ n∑
k=1

Zk,i/σ
2
i − n

∣∣∣ ≥ nt

maxi σ2
i

]
≤ 2 exp

(
− nt2

8 (maxi σ2
i )

2

)
(74)

holds for t ∈ [0,maxi σ
2
i ]. Notice that σ2

i =
(
L∗(Lw?+J)−1

)
i

according to (72). Substituting (71) into (74)
yields

P
[ ∣∣[L∗S]i −

(
L∗(Lw? + J)−1

)
i

∣∣ ≥ t] ≤ 2 exp(−c0nt2), for t ∈ [0, t0]. (75)

where t0 =
∥∥L∗(Lw? + J)−1

∥∥
max

and c0 = 1/
(
8
∥∥L∗(Lw? + J)−1

∥∥2

max

)
, completing the proof.

2.9 Proof of Lemma 1.9

Proof. Recall that BM (w?; r) = {w ∈ Rp(p−1)/2 | ‖w −w?‖M ≤ r}, where ‖x‖2M = 〈x,Mx〉 = ‖Lx‖2F with
M � 0 defined in Lemma 1.3, and Sw = {w |w ≥ 0, (Lw + J) ∈ Sp++} We can see BM (w?; r) is a convex
set because both BM (w?; r) and Sw are convex. It is easy to check that Sw is convex (See (4) for more
details). For any w1, w2 ∈ BM (w?; r), by Mean Value Theorem, one obtains

f(w2) = f(w1) + 〈∇f(w1),w2 −w1〉+
1

2
〈w2 −w1,∇2f(wt)(w2 −w1)〉, (76)

where wt = tw2 + (1− t)w1 with t ∈ [0, 1]. For any nonzero x ∈ Rp(p−1)/2, one has

x>∇2f(wt)x = (vec(Lx))
>
(

(Lwt + J)
−1 ⊗ (Lwt + J)

−1
)

vec(Lx)

=
(vec(Lx))

> (
(Lwt + J)−1 ⊗ (Lwt + J)−1

)
vec(Lx)

(vec(Lx))
>

vec(Lx)
· ‖Lx‖2F

≥ inf
y

(vec(Ly))
> ((

(Lwt)† + J
)
⊗
(
(Lwt)† + J

))
vec(Ly)

(vec(Ly))
>

vec(Ly)
· ‖Lx‖2F

= inf
y

(vec(Ly))
> (

(Lwt)† ⊗ (Lwt)†
)

vec(Ly)

(vec(Ly))
>

vec(Ly)
· ‖Lx‖2F

≥ λ2
2

(
(Lwt)†

)
· ‖Lx‖2F , (77)
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where λ2

(
(Lwt)†

)
denotes the second smallest eigenvalue of (Lwt)† and (Lwt)† is the pseudo inverse of Lwt.

The first equality follows from Lemma 1.1; the last equality follows from
(
vec(Ly)

)>(
(Lwt)†⊗J

)
vec(Ly) = 0,(

vec(Ly)
)>(

J ⊗ (Lwt)†
)
vec(Ly) = 0, and

(
vec(Ly)

)>
(J ⊗J)vec(Ly) = 0 which are easy to verify; the last

inequality holds because of the property of Kronecker product that the eigenvalues ofA⊗B are λiµj with the
corresponding eigenvector ai⊗ bj , where λ1, . . . , λp are the eigenvalues of A ∈ Rp×p with the corresponding
eigenvectors a1, . . . ,ap, and µ1, . . . , µp are the eigenvalues of B ∈ Rp×p with the corresponding eigenvectors
b1, . . . , bp. Notice that there is one and only one zero eigenvalue for Lwt becausewt ∈ Sw. Assume λ1, . . . , λp
are the eigenvalues of (Lwt)† with the corresponding eigenvectors a1, . . . ,ap. Without loss of generality, let
λ1 = 0 and then a1 = 1√

p1. By calculation, one obtains

(vec(Ly))>vec(ai ⊗ a1) = 0, and (vec(Ly))>vec(a1 ⊗ ai) = 0,

for any i = 1, . . . , p and any y ∈ Rp(p−1)/2, indicating that vec(Ly) is orthogonal to all the eigenvectors of
(Lwt)† ⊗ (Lwt)† corresponding to zero eigenvalues. The smallest nonzero eigenvalue of (Lwt)† ⊗ (Lwt)† is
λ2

2

(
(Lwt)†

)
, establishing (77). Notice that (77) also holds with x = 0. One further obtains

λ2
2

(
(Lwt)†

)
≥ (‖Lw?‖2 + (1− t) ‖Lw1 − Lw?‖2 + t ‖Lw2 − Lw?‖2)

−2 ≥ (‖Lw?‖2 + r)
−2
, (78)

where the second inequality is established by ‖Lx‖2 ≤ ‖Lx‖F and the fact that both w1, w2 ∈ BM (w?; r).
Substituting (78) into (77) yields

x>∇2f(wt)x ≥ (‖Lw?‖2 + r)
−2 · ‖Lx‖2F . (79)

Combining (76) and (79) yields

f(w2) ≥ f(w1) + 〈∇f(w1),w2 −w1〉+
1

2
(‖Lw?‖2 + r)

−2 ‖Lw1 − Lw2‖2F , (80)

and

f(w1) ≥ f(w2) + 〈∇f(w2),w1 −w2〉+
1

2
(‖Lw?‖2 + r)

−2 ‖Lw1 − Lw2‖2F , (81)

Combining (80) and (81), we establish

〈∇f(w1)−∇f(w2),w1 −w2〉 ≥ (‖Lw?‖2 + r)
−2 ‖Lw1 − Lw2‖2F , (82)

completing the proof.

3 Additional Experimental Results

In this section, we present additional numerical simulation results on synthetic data and real-world data.

3.1 Synthetic Data

We present additional simulation results on random Barabasi-Albert graphs. Figure 1 illustrates the histograms
of the nonzero graph weights, which are learned by the `1-norm regularization method with different
regularization parameters as shown in Figure 1 of the paper. Figure 1 (d) depicts the histogram for the
graph in Figure 1 (d) of the paper, which is a fully connected graph, i.e., every graph weight is strictly
positive. It is observed in Figure 1 (d) that all the graph weights are very small. Therefore, a large
regularization parameter will lead to learn a graph with every weight strictly positive and small. We can see
that the histogram in Figure 1 (d) is significantly different from the true histogram in Figure 1 (a), implying
that the estimated model will fail to identify the true relationships among the data variables.
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Figure 1: Histograms of nonzero graph weights learned by the `1-norm regularization method with different
regularization parameters, corresponding to the graphs in Figure 1 of the paper. The histograms count the number
of nonzero graph weights falling into each interval.

(a) Ground-truth graph,
NE = 49.

(b) NE = 135, RE = 0.14,
FS = 0.53.

(c) NE = 49, RE = 0.08,
FS = 1.

(d) NE = 49, RE = 0.08,
FS = 1.

Figure 2: A sample result of learning a Barabasi-Albert graph of degree one by (b) GLE-ADMM [8], (c) NGL-SCAD
(proposed) and (d) NGL-MCP (proposed). The sample size ratio is n/p = 6. NE denotes the number of positive
edges in the graph, i.e., the number of nonzero graph weights. The regularization parameters for each method are
set as λADMM = 0, λSCAD = λMCP = 0.5.

Figure 2 shows a sample result of learning a random Barabasi-Albert graph via GLE-ADMM [8], NGL-
SCAD and NGL-MCP. It is observed that the graphs learned by NGL-SCAD and NGL-MCP present the
connection between any two nodes correctly, while there are many incorrect connections in the graph learned
by GLE-ADMM. In addition, performance measures including sparsity, relative error, and F-score also
indicate a better performance of the proposed method.

Table 1 shows the running time for different numbers of nodes p, where the graph weight w has the
dimension p(p− 1)/2. It is observed that the computational time of the proposed NGL-SCAD is much less
than that of GLE-ADMM.

3.2 Real-world Data

In this section, we compare the proposed method with the benchmark GLE-ADMM [8] on two real-world
data sets.

We conduct experiments on the COVID-19 data set1 provided by the Israelite Hospital Albert Einstein in
Brazil. The data set contains anonymized data from patients who had samples collected to perform the test

1The data set is freely available at: https://www.kaggle.com/einsteindata4u/covid19

Table 1: Comparison of computational time (seconds)

p 50 100 500 1000
GLE-ADMM 0.117 0.676 57.032 485.465
NGL-SCAD 0.023 0.097 9.000 67.018
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Figure 3: Learned graphs using the Brazilian COVID-19 data set via (a) GLE-ADMM, (b) NGL-SCAD (proposed),
and (c) NGL-MCP (proposed). The computational time for GLE-ADMM, NGL-SCAD, and NGL-MCP are 9.9, 55.8
and 57.9 seconds, respectively. The regularization parameters are set as λADMM = 0, λSCAD = 0.1, and λMCP = 0.5.

(a) (b) (c)

Figure 4: Stock graphs learned via (a) GLE-ADMM, (b) NGL-SCAD (proposed), and (c) NGL-MCP (proposed).
The computational time for GLE-ADMM, NGL-SCAD, and NGL-MCP are 20.5, 1.3 and 90.3 seconds, respectively.
The regularization parameters are set as λADMM = 0, λSCAD = 0.25, and λMCP = 0.5.

for SARS-CoV-2. The features in the data set are mainly clinical coming from blood, urine, and saliva exams,
e.g., hemoglobin level, platelets, red blood cells, etc. The original data set contains 108 features from 558
patients. We do not consider features that were measured for at most 10 patients due to the high number
of missing values. In addition, a large number of patients had no record of any features. Finally, we end up
with a data matrix of 182 patients with 57 features, i.e., p = 182 and n = 57. The remaining missing values
were filled in with zeros. We then compare the proposed method with the GLE-ADMM method on this data
set. It is observed in Figure 3 that the proposed NGL-SCAD and NGL-MCP output a more interpretable
representation of the network, where the blue and red nodes denote patients who tested negative and positive
for SARS-CoV-2, respectively.

We also conduct experiments on the data set from stocks composing the S&P 500 index. We select log-
returns from 181 stocks from 4 sectors, namely: ”Industrials”, ”Consumer Staples”, ”Energy”, ”Information
Technology”, during a period of 4 years from January 1st 2016 to May 20th 2020, with a total of 1101
observations. Then the data matrix X has a size of 181× 1101. The graphs are learned on the basis of the
sample correlation matrix. Figure 4 shows that the graphs learned by NGL-SCAD and NGL-MCP are able
to vividly display the sectors modularity, whereas the graph learned via GLE-ADMM fails to do so.

Finally, we present additional experimental results of GLE-ADMM on the 2019-nCoV data set with
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Figure 5: The learned graphs by GLE-ADMM with (a) λ = 0, (b) λ = 0.02 and λ = 0.1 on the 2019-nCoV data set.

different regularization parameters. It is observed in Figure 5 that the learned graphs learned by GLE-
ADMM are always dense along the increase of λ, implying that the `1-norm is not able to impose a sparse
solution here.
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