
Appendices
A Proofs

Lemma A.1. The Multilevel Budgeted Combinatorial optimization problem (1) is equivalent to:

max
a1
1∈A1

... max
a
b1
1 ∈A1\{a1

1,..,a
b1−1
1 }

min
a1
2∈A2

... max
a
bL
L ∈AL\{a1

L,..,a
bL−1

L }
S(G, {a11, .., a

b1
1 }, .., {a1L, .., a

bL
L }).

Proof. We immediately have the following relation:

max
|A1|≤b1

... max
|AL|≤bL

S(G,A1, A2, .., AL) = max
a1
1∈A1

max
|A′1|≤b1−1

... max
|AL|≤bL

S(G, {a1}∪A′1, A2, .., AL)

As the same reasoning holds with min, we can apply it recursively, which closes the proof.

Lemma A.2. ∀j ∈ [2, Bmax], supp(D∗j) ⊆ supp(Dr
j)

Proof. For all s0 ∼ D, for all t ∈ [[0, B − 1]], we define A∗t (a0, ..., at−1) ⊆ At(a0, ..., at−1) as the
set of optimal actions at time t in state st for the player p(st), where we made evident the dependence
of st on previous actions. As by assumption we consider games where players can only improve
their objective by taking a decision, we have that ∀t, At 6= ∅ =⇒ A∗t 6= ∅. For a given st and
subsequent At, recall that art is defined as a random variable with values in At and following the
uniform law. Given s0 ∼ D, we take (a∗0, ..., a

∗
B−1) ∈ A∗0 × ... ×A∗B−1(a∗0, ..., a

∗
B−2), one of the

possible sequence of optimal decisions. Then, using the chain rule, it is easy to show by recurrence
that ∀t ∈ [[0, B − 1]], P (ar0 = a∗0, ..., a

r
t = a∗t) > 0. In words, every optimal sequence of decisions

is generated with a strictly positive probability.

B Algorithms

B.1 MultiL-DQN

As the player currently playing is completely determined from st, we can use the same neural network
Q̂ to estimate all the state-action values, regardless of the player. We call Bt the sum of all the
budgets in Bt such that an episode stops when Bt = 0.

Algorithm 2: MultiL-DQN
1 Initialize the replay memoryM to capacity C ;
2 Initialize the Q-network Q̂ with weights θ̂ ;
3 Initialize the target-network Q̃ with weights θ̃ = θ̂ ;
4 for episode e = 1, ..., E do
5 Sample s0 = (G0,B0) ∼ D ;
6 t← 0 ;
7 while Bt ≥ 1 do

8 at =


random action at ∈ At w.p. ε

argmaxat∈At Q̂(st, at) otherwise if p(st) = 1

argminat∈At Q̂(st, at) otherwise if p(st) = 2

;

9 st+1 ← N(st, at) ;
10 t← t+ 1 ;
11 if t ≥ 1 then
12 Add (st−1, at−1, R(st−1, at−1), st) toM ;

13 Sample a random batch {(si, ai, ri, s′i)}mi=1
i.i.d∼ M ;

14 for i = 1, ..,m do
15 yi = ri + 1p(s′i)=1 maxa′∈A′ Q̃(s′i, a

′) + 1p(s′i)=2 mina′∈A′ Q̃(s′i, a
′)

16 Update θ̂ over 1
m

∑m
i=1

(
yi − Q̂(si, ai)

)2
with Adam [8] ;

17 Update θ̃ ← θ̂ every Ttarget steps
18 return the trained Q-network Q̂

1

B.2 Greedy Rollout

Algorithm 3: Greedy Rollout
Input :A state st with total budget Bt and a list of experts value networks LV̂

1 Initialize the value v̂ ← 0 ;
2 while Bt ≥ 1 do
3 Retrieve the expert of the next level V̂t+1 from the list LV̂ ;
4 Generate every possible afterstate S ′t ← {N(st, at)}at∈At ;

5 st+1 =

{
argmaxs′∈S′t V̂t+1(s

′) if p(st) = 1

argmins′∈S′t V̂t+1(s
′) if p(st) = 2

;

6 v̂ ← v̂ +R(st, st+1) ;
7 t← t+ 1 ;
8 return the value v̂

B.3 MultiL-MC

As we use Monte-Carlo samples as targets, the values of the targets sampled from the replay memory
M is not dependent on the current expert as in DQN [12] but on a previous version of V̂ , which can
become outdated quickly. Thus, to easily control the number of times an old estimate is used, we
decided to perform an epoch on the memory every time m new samples were pushed, and used a
capacity C = k ×m so that the total number of times a Monte-Carlo sample is seen is directly k.

Algorithm 4: MultiL-MC
1 Initialize the replay memoryM to capacity C ;
2 Initialize the value-network V̂ with weights θ̂ ;
3 for episode e = 1, ..., E do
4 Sample s0 = (G0,B0) ∼ D ;
5 Initialize the memory of the episodeMe to be empty;
6 Initialize the length of the episode T ← 0 ;
7 while Bt ≥ 1 do // perform a Monte Carlo sample

8 at =


random action at ∈ At w.p. ε

argmaxat∈At V̂ (N(st, at)) otherwise if p(st) = 1

argminat∈At V̂ (N(st, at)) otherwise if p(st) = 2

;

9 st+1 = N(st, at) ;
10 Add (st, R(st, at)) toMe ;
11 T ← T + 1
12 Initialize the target yT ← 0 ;
13 for t = 1, ..., T do // associate each state to its value
14 Recover (sT−t, R(sT−t, aT−t)) fromMe ;
15 yT−t ← yT−t+1 +R(sT−t, aT−t) ;
16 Add (sT−t, yT−t) toM
17 if there are more than m new couples inM then
18 Create a random permutation σ ∈ SN ;
19 for batches {(si, yi)}mi=1 ∼ σ(M) do // perform an epoch on the memory

20 Update θ̂ over the loss 1
m

∑m
i=1

(
yi − V̂ (si)

)2
with Adam [8]

21 return the trained value-network V̂

C Broadening the scope of the exact algorithm

In order to constitute a test set to compare the results given by our heuristics to exact ones, we used
the exact method described in [2] to solve a small amount of instances. The algorithm they described
was thought for the MCN problem, but is directly applicable without change on MCNdir. However,
in order to monitor the learning at each stage of the curriculum for MCN as in Table 1, there is a
need to solve instances where node infections were already performed in the sequence of previous
moves but there is still some budget left to spend for the attacker, which is not possible as it is in [2].
Moreover, small changes need to be made in order to solve instances of MCNw.

2

C.1 Adding nodes that are already infected

We denote by J the set of nodes that are already infected at the attack stage and βv = 1v∈J the
indicator of whether node v is in J or not. Then, the total set of infected nodes after the attacker
spend his/her remaining budget Λ and infect new nodes I is J ∪ I . In order to find I , we use the AP
algorithm of [2], with the following modification to the rlxAP optimization problem:

min Λp+
∑
v∈V

γv∑
v∈V

yv ≤ Λ

yv≤ 1− βv ∀v ∈ V

hv +
∑

(u,v)∈A

q(u, v)−
∑

(u,v)∈A

q(v, u) ≥ 1 ∀v ∈ V

p−
∑

(u,v)∈A

q(u, v) ≥ 0 ∀v ∈ V

γv + |V |yv − hv ≥ −|V |βv ∀v ∈ V
p, hv, γv, q(u, v) ≥ 0 ∀v ∈ V, ∀(u, v) ∈ A

yv ∈ {0, 1} ∀v ∈ V

We indicated changes in blue. The notations for the variables being the ones from [2].

C.2 Adding weights

Taking the weights wv of the nodes v ∈ V into account in the optimization problems is even more
straightforward. As the criterion to optimize is no longer the number of saved nodes but the sum of
their weights, each time a cardinal of a set appears in the algorithms AP and MCN in [2], we replace
it by the the sum of the weights of its elements. As for the optimization problems that are solved
during the routines, we replace, in the Defender problem and in the 1lvlMIP:∑

v∈V
αv −→

∑
v∈V

wvαv

and in the rlxAP problem:

hv +
∑

(u,v)∈A

q(u, v)−
∑

(u,v)∈A

q(v, u) ≥ 1 −→ hv +
∑

(u,v)∈A

q(u, v)−
∑

(u,v)∈A

q(v, u) ≥ wv

D Experiments details

D.1 Architecture details

Nodes embedding . The first step of the method described in Figure 2 is the node embedding part.
Each node v ∈ V begins with two features xv = (wv,1v∈I): its weight and an indicator of whether
it is attacked or not. First, we normalize the weights by dividing them with the sum of the weights in
the graph such that each wv ∈ [0, 1]. We extend the two features with the Local Degree Profile of
each node [3], which consists in 5 features on the degree:

xv = xv||(deg(v),min(DN(v)),max(DN(v)),mean(DN(v)), std(DN(v))) (12)

with deg the degree of a node, and DN the degrees of N (v) - the neighbors of v in the graph. Then,
we project our features xv ∈ R7 into Rde with a linear layer. After that, we replicated the Multihead
Attention Layer described in Kool et al.[10] using a Graph Attention Network (GAT) [4]. Thus, we
apply one GAT layer such that:

xv
′ = µv,vΘxv +

∑
u∈N (v)

µv,uΘxu (13)

3

with µ defined by:

µv,u =
exp(LeakyReLU(a>[Θxv||Θxu]))∑

k∈N (v)∪{v} exp(LeakyReLU(a>[Θxv||Θxk]))
, (14)

where a ∈ R2×dv and Θ ∈ Rdv×de are the trainable parameters. Here, de is the original embedding
dimension of xv, dv is the dimension of xv

′. We apply these equations with nh different Θ and a,
nh being the number of heads used in the attention layer. Then, we project back in Rde the xv

′ with
a linear layer, and sum the nh resulting vectors. After that, we apply a skip connection [6] and a
Batch-Normalization [7] layer BN such that:

xv
′ = BN(xv + xv

′). (15)

Finally, we introduce a feedforward network FF which is a 2-layer fully connected network with
ReLU activation functions. The input and output dimensions are de and the hidden dimension is dh.
The final output is then:

xv = BN(xv
′ + FF(xv

′)). (16)

We repeated the process described between equation (13) and equation (16) a total of na times. Then,
to propagate the information of each node to the others in the same connected component, we use an
APPNP layer [9]. Given the matrix of nodes embedding X(0), the adjacency matrix with inserted
self-loops Â, D̂ its corresponding diagonal degree matrix, and a coefficient α ∈ [0, 1], it recursively
applies K times:

X(k) = (1− α)D̂−1/2ÂD̂−1/2X(k−1) + αX(0). (17)

We used K = 23 when we trained on instances from D(1) and K = 60 when we trained on D(2).

Graph embedding . Given the resulting nodes embedding xv ∈ Rde , in a skip-connection fashion,
we concatenate the xv back with the original two features (w′v,1v∈I) (w′v being the normalized
weights). Then, the graph level representation vector is, for a graph of size n:

r =

n∑
i=1

softmax(hgate(xi))� hr(xi). (18)

Here, hgate and hr are feedforward neural networks with 2 layers and using ReLU activation
functions. For both, the input dimension is de + 2 and the hidden dimension is dh. For hr the output
dimension is de whereas for hgate, it is 1. We used np different versions of the parameters and
concatenated the np different outputs such that the final graph embedding has a dimension of np× de.

Final steps . We now have the nodes embedding xv ∈ Rde and a graph representation r of
dimension de × np. But the context for each node is not entirely contained in r: the budgets, the size
of the graph n and the total sum of weights in the graph are still missing. Thus, we form a context
vector co as follows:

co = r||(n,Ω,Φ,Λ,Ω/n,Φ/n,Λ/n,
∑
v∈V

wv). (19)

When this is done, we perform, for each node, the concatenation xv||co. This is the entry of a
feedforward neural network, FFV or FFQ, that computes, for V̂ , the probability of each node being
saved given the context, and the state-action values for Q̂. The two feedforward networks are 3-layers
deep, with the first hidden dimension being dh and the second de. We used LeakyReLU activation
functions, Batch Norm and dropout [13] with parameter p. Indeed, our experiment shows that using
dropout at this stage helps prevent overfitting, and Batch Norm speedups the training. The last
activation function for FFQ is ReLU whereas for FFV we use a sigmoid. Finally, for FFV , we
output:

V̂ (s) =
∑
v∈V

P (v is saved | context)wv. (20)

For FFQ, we just mask the actions not available, i.e. the nodes that are already labeled as attacked.

4

Hyperparameters . All the negative slopes in the LeakyReLU we used were set by default at 0.2.
The value of all the other hyperparameters we introduced here were fixed using Optuna [1] with a
TPE sampler and a Median pruner. The objective we defined was the value of the loss of V̂ on a
test set of exactly solved instances ∈ D(1) with budgets Ω = 0, Φ = 1, Λ ∈ [[0, 3]]. After running
Optuna for 100 trials, we fixed the following values for the hyperparameters: de = 200, dh =
400, dv = 100, α = 0.2, p = 0.2, na = 7, nh = 3, np = 3. It represents a total of 2, 8 million
parameters to train for both V̂ and Q̂.

D.2 Parameters of the training algorithms

Comparison between the 3 algorithms . For all 3 algorithms, we used roughly the same values
of parameters in order to make the comparison fair. All three algorithms were compared on instances
from D(1). The batch size was fixed to m = 256. Although we share our training times for the sake
of transparency and to compare the methods, we want to highlight that our code is hardly optimized
and that cutting the times presented here may be easy with a few improvements.
For MultiL-Cur, we used a training set of size 100 000 and a validation set of 1000 instances at each
stage of the curriculum. As there are 8 distributions to learn from (as we use afterstates, there is no
need to learn the values of instances having Ω = 3, Φ = 3, Λ = 3 as budgets), this amounts for a
total of 808 000 episodes. At each stage j, we trained our expert V̂j for 120 epochs, meaning that we
used a total of 375 000 training steps to finish the curriculum, which necessitated a total of 36 hours.
Most of the training time was directed towards generating the training sets, i.e. performing the greedy
rollouts. Moreover, cutting a few hours in this training time is also possible if we do not monitor the
evolution of the training on the test sets (computing the loss on the test sets regularly takes time).
For MultiL-MC, we fixed C, the capacity of the replay memory to be equal to 27× 256 so that each
Monte-Carlo sample is exactly seen 27 times. We used a total of 700 000 episodes here, resulting in
an average of 377 000 training steps, which took 56 hours. Indeed, the length of the episodes here is
longer on average than the ones used in the curriculum as we directly begin from instances sampled
from D(1) and not the ones where moves were already performed randomly. So the rollout process
lasts longer, which is what takes time in our algorithm.
Finally, for MultiL-DQN, we used a capacity C = 10 240. In order to perform the same number
of training steps for the same number of episodes than the other two algorithms, we generated our
data in batches of size of 16: at each time step, there are 16 new instances pushed in memory. We
used a total of 16 × 60 000 = 960 000 episodes. The number of training steps performed was
370 000 on average. The time necessary for that was 29 hours. Although this is lower than the
other two methods (due to a much quicker rollout), the optimality gap and approximation ratio were
so high (η = 32.55%, ζ = 1.54) with this amount of data that we actually decided to re-launch
an experiment using more episodes. The graphs in Table 1 show the behaviour during training of
the 3 algorithms with the setting described until now, however the results of optimality gap and
approximation ratio for the MultiL-DQN algorithm are those from a different training setting where
we used much more episodes. We made a second experiment were we generated batches of size 128
instead of 16, amounting the number of episodes used to 7 680 000 for the same number of training
steps. This second experiment took 72 hours, proving that MultiL-DQN actually necessitates way
more data than the two other algorithms, for worse results.
For both MultiL-MC and MultiL-DQN, we used a probability ε with an exponential decay: εstart =
0.9, εend = 0.05 and a temperature Tdecay = 1000.

Curriculum on larger graphs . For the results in Table 2, we trained our experts on D(2). As
these instances are of larger size and theoretically harder to solve, we decided to train for longer our
experts V̂j . We used a training set of size 120 000, a validation set of size 2000 and a number of
epoch per stage of 200 for the MCN problem. For MCNdir and MCNw, we used a training set of size
60 000, a validation set of size 1000 and 400 epochs at each stage. The MCN training took roughly a
week to run, for MCNw and MCNdir it took 5 days: the rollout on larger graphs takes a long time.

D.3 Details on the test sets

The test sets we used for the results in Table 1 consisted in 1000 exactly solved instances for each
of the 8 different training distributions used during the curriculum. For the results in Table 2, we
gathered the instances from [2] for the MCN. As they put a threshold of 2 hours for their solver

5

MCNMIX , the number of instances solved for each of the sizes is different. Moreover, an extensive
study of the graphs of size 40 has been done in their paper. For MCNdir and MCNw, we used the
solvers described in Appendix C. The size of the training sets considered in Table 2 are then:

Table 3: Sizes of the test sets used.

size of Dtest

|V | MCN MCNdir MCNw

20 120 36 36
40 876 35 34
60 110 23 29
80 101 12 30

100 85 11 27

E Extended Results

E.1 Training the Q network with more data

As discussed earlier, we trained an agent on D(1) with MultiL-DQN using two configurations. First,
we used 960 000 episode for 370 000 optimization steps. Faced with the poor results, we re-trained
our agent using more data: 7 680 000 episodes for the same number of steps. We compare the results
of the two methods in Table 4. We clearly see that training with more data radically impacts the

Table 4: Comparison between two configurations of training for Q̂. In Config. 1, we trained with
960 000 episodes while in Config. 2 we used 7 680 000. We display the evolution of the losses during
training on 8 test sets of size 1000. We measure the resulting optimality gap η and approximation
ratio ζ on 3 different test sets, one for each of the 3 levels of the problem.

Config. 1 Config. 2

0 50000 100000 150000 200000 250000 300000 350000

training steps
10

2

10
1

10
0

10
1

te
st

 lo
ss

0 50000 100000 150000 200000 250000 300000 350000

training steps
10

2

10
1

10
0

10
1

te
st

 lo
ss

= 0, = 0, = 1
= 0, = 0, = 2
= 0, = 0, = 3
= 0, = 1, [[0, 3]]
= 0, = 2, [[0, 3]]
= 0, = 3, [[0, 3]]
= 1, [[1, 3]], [[0, 3]]
= 2, [[1, 3]], [[0, 3]]

Level η(%) ζ η(%) ζ

Vaccination 29.8 1.54 6.7 1.08
Attack 35.8 1.45 21.2 1.18

Protection 28.8 1.63 4.01 1.07

results. More than that, there is a necessity of training with many episodes to obtain reasonable
results. We also notice a worse behaviour at the attack stage compared to the other two where it is the
defender’s turn to play. Thus, we may benefit from adapting the MultiL-DQN algorithms to use two
Q networks, one for each player.

E.2 Training the Value network with less data

In order to assess the capacity of our curriculum to use less data and less training steps, we trained
our value network on D(1) using a second configuration. We re-trained our experts using 50 000
instances in the training sets, with 60 epochs at each stage, instead of 100 000 and 120 originally.

6

Table 5: Comparison between two configurations of curriculum for V̂ . In Config. 1, we trained with
a total of 800 000 episodes and 375 000 optimization steps while in Config. 2 we used 400 000
episodes and 93 750 steps. We display the evolution of the losses during training on 8 test sets of size
1000 arriving at different stages of the curriculum. We measure the resulting optimality gap η and
approximation ratio ζ on 3 different test sets, one for each of the 3 levels of the problem.

Config. 1 Config. 2

0 50000 100000 150000 200000 250000 300000 350000

training steps
10

2

10
1

10
0

10
1

te
st

 lo
ss

0 50000 100000 150000 200000 250000 300000 350000

training steps
10

2

10
1

10
0

10
1

te
st

 lo
ss

= 0, = 0, = 1
= 0, = 0, = 2
= 0, = 0, = 3
= 0, = 1, [[0, 3]]
= 0, = 2, [[0, 3]]
= 0, = 3, [[0, 3]]
= 1, [[1, 3]], [[0, 3]]
= 2, [[1, 3]], [[0, 3]]

Level η(%) ζ η(%) ζ

Vaccination 0.955 1.011 1.126 1.013
Attack 0.409 1.004 0.913 1.009

Protection 0.005 1.000 0.005 1.000

The results in Table 5 clearly show that training with half the data and a quarter of the steps in the
curriculum hardly affects the end results, demonstrating the efficiency of the method. Training with
Config. 2 took 15 hours compared to the 36 necessary with Config. 1.

E.3 Comparing the difficulty to learn to solve the 3 problems

In this part, we propose to compare the difficulty our curriculum has on learning to solve the 3 different
problems MCN, MCNdir and MCNw on instances from D(1). For that, we ran our curriculum in
exactly the same way 3 times, except for the distribution of graphs from which we sampled our
instances: undirected with unit weights for the MCN, directed with unit weights for MCNdir and
undirected with integer weights for MCNw. In Figure 3, we compare the values of the 3 validation
losses during the training, along with the values of the approximation ratio ζ and optimality gap η on
3 test sets of 9000 exactly solved instances from D(1) in Table 6.

Problem η(%) ζ

MCNw 7.08 1.069
MCNdir 2.84 1.032
MCN 0.51 1.006

Table 6: Values of the approximation ratio and
optimality gap on a test sets of exactly solved
instances from D(1) for each of the 3 problems.

Figure 3: Evolution of the loss on the successive
validation sets during the curriculum for the 3
problem considered.

0 50000 100000 150000 200000 250000 300000 350000
training steps

10
2

10
1

10
0

10
1

va
lid

at
io

n
lo

ss

MCNw

MCNdir

MCN

Both the table and the figure seem to tell the same story: the easiest problem to learn to solve with
our curriculum is the MCN, followed by MCNdir, the hardest one being MCNw.

7

E.4 Assessing the ability to generalize to larger graphs

Previous work on learning to solve single level combinatorial problems with graph neural networks
such as [5, 10] reported that their trained agent managed to satisfyingly solve instances with larger
graphs at test time than the ones used in their training distributions. In order to assess if this holds
for agents trained with our curriculum on the multilevel combinatorial problem, we trained, for
each of the 3 problems, our agents on both D(1) and D(2), then measured how well they behaved on
increasingly larger graphs at test time. We report our results in Table 7.

Table 7: Evolution of the optimality gap η and the approximation ratio ζ with the size of the graphs
at test time for each of the 3 problems considered.

η(%) ζ

20 30 40 50 60 70 80 90 100

|V|

10
0

10
1

10
2

(%
)

trained on (2)

trained on (1)

20 30 40 50 60 70 80 90 100

|V|

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4trained on (2)

trained on (1)

M
C

N
w

20 30 40 50 60 70 80 90 100

|V|

10
0

10
1

10
2

(%
)

trained on (2)

trained on (1)

20 30 40 50 60 70 80 90 100

|V|

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4trained on (2)

trained on (1)

M
C

N
d
ir

20 30 40 50 60 70 80 90 100

|V|

10
0

10
1

10
2

(%
)

trained on (2)

trained on (1)

20 30 40 50 60 70 80 90 100

|V|

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4trained on (2)

trained on (1)

M
C

N

We clearly see in Table 7 that the experts trained on D(2), i.e. on larger graphs, perform better than
the ones trained on D(1). From the curves, it seems that our experts can generalize to graphs up to 2
times larger than the ones they were trained on. The fact that for the curves about D(1) there is first
an increase of the values of the metrics and a sudden decrease around |V | = 80 may be explained
by the fact that η and ζ do not directly measure the goodness of our heuristics. Indeed, if we were
to measure how good the decisions taken at a certain level are, we should solve to optimality the
subsequent lower levels, which is not what we do here: we use our heuristics everywhere. Thus,
when our heuristics perform too badly at each level, i.e. defending poorly but also attacking poorly,
there is a chance that the value measured in the end of the game is actually not too far from the one

8

that would have followed optimal decisions. To produce the graphs in Table 7, we generated 3 test
sets, one for each problem, using the solver described in Appendix C with IBM ILOG CPLEX 12.9.0.
The number of instances in those datasets for each value of |V | are listed in Table 8:

Table 8: Sizes of the test sets used for the results in Table 7.

|V | = 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

MCNw 36 36 36 35 34 33 29 29 29 28 31 29 30 28 29 29 27
MCNdir 36 36 36 34 35 32 29 27 23 17 13 - 12 - 10 - 11
MCN 36 36 36 32 30 27 29 26 24 22 17 15 14 - 9 - 10

E.5 Identifying multiple optimal solutions

In many situations, there exists multiple solutions to an instance of a combinatorial problem. For
some methods, this can represent a challenge as it clouds the decision-making process [11]. However,
being able to produce multiple optimal solutions to a combinatorial problem is of interest. Here, the
formulation we used naturally allows to identify many of the optimal solutions, assuming our value
networks correctly approximate the values of each afterstate. Indeed, if our agents correctly label
each node with its value (i.e. the value of the afterstate if the action is performed on the node, plus
reward), then identifying all the possible ways of acting optimally is directly readable from them, as
shown in the example presented in Figure 4.

11

9

9

11

9

10

11
9

9

12

11

9

11

11

12

(a) Exact values

10.7

9.4

9.9

10.9

9.9

9.5

10.7
9.7

9.4

12.5
11.1

9.9

10.1

11.2

12.1

(b) Approximate values

Figure 4: Exact values and approximate values on an instance of MCN constituted of a graph G and
budgets Ω = 1, Φ = 1, Λ = 2. The exact value of each node is obtained by removing (vaccinating)
the said node from G and solving exactly the subsequent afterstate with Ω set to 0. The approximate
values are obtained by feeding the afterstates to the expert trained on budgets Φ = 1, Λ ∈ [[0, 3]]
during the curriculum for instances from D(1).

In Figure 4, there are 2 optimal vaccinations: the two blue nodes with value 12. Although the
approximate values are not perfectly aligned with the exact ones, the two optimal decisions are clearly
identifiable from them, demonstrating the ability of our method to detect multiple optimal solutions.

9

References
[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-

generation hyperparameter optimization framework. arXiv preprint arXiv:1907.10902, 2019.

[2] Andrea Baggio, Margarida Carvalho, Andrea Lodi, and Andrea Tramontani. Multilevel approaches for the
critical node problem. Operations Research, To appear, 2020.

[3] Chen Cai and Yusu Wang. A simple yet effective baseline for non-attributed graph classification. arXiv
preprint arXiv:1811.03508, 2018.

[4] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph attention networks. In International Conference on Learning Representations, 2018.

[5] Hanjun Dai, Elias Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial optimization
algorithms over graphs. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages 6348–6358. Curran
Associates, Inc., 2017.

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

[7] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In Proceedings of the 32nd International Conference on International Conference
on Machine Learning - Volume 37, ICML’15, page 448–456. JMLR.org, 2015.

[8] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and
Yann LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[9] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Combining neural networks with per-
sonalized pagerank for classification on graphs. In International Conference on Learning Representations,
2019.

[10] Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019.

[11] Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph convolutional
networks and guided tree search. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems 31, pages 539–548. Curran
Associates, Inc., 2018.

[12] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare,
Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis
Hassabis. Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 02
2015.

[13] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:
A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):1929–1958, January
2014.

10

	Proofs
	Algorithms
	MultiL-DQN
	Greedy Rollout
	MultiL-MC

	Broadening the scope of the exact algorithm
	Adding nodes that are already infected
	Adding weights

	Experiments details
	Architecture details
	Parameters of the training algorithms
	Details on the test sets

	Extended Results
	Training the Q network with more data
	Training the Value network with less data
	Comparing the difficulty to learn to solve the 3 problems
	Assessing the ability to generalize to larger graphs
	Identifying multiple optimal solutions

