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In this supplemental material we show additional results and analysis of our framework for 3D texture
synthesis. We first demonstrate the capability of our system to learn a continuous latent texture
space when trained on a dataset consisting of diverse textures (Section 1). Next, we present more
qualitative results that demonstrate the benefits of our approach compared to the system by Henzler
et al. [1] and SinGAN [2], a 2D synthesis technique (Sections 2-4). In Section 5, we tabulate the
network architectures of the convolutional neural networks used in our experiments. Finally, we
present detailed results from our user study and all the images used therein in Section 6.
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1 Latent space interpolation

Figure 1: Linear interpolation in latent space z. Top: first exemplar. Bottom: second exemplar.
Middle: interpolated result. First and last square in each strip correspond to resynthesized exemplars.
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2 Qualitative comparisons

Figure 2: Single exemplar setting. Left: exemplar (top), ours (middle), Henzler et al. (bottom). Right:
ours (top), Henzler et al. (bottom). Note how our result is closer to the exemplar texture.
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3 Comparison to 2D

Figure 3: Single exemplar setting. Here we show a qualitative comparison to the 2D synthesis
framework SinGAN [2]. Left: exemplar (top), ours (middle), SinGAN (bottom). Right: ours (top),
SinGAN (bottom). For texturing the 3D object with SinGAN, we first synthesize a 2D texture and
sample this texture during rendering using the texture coordinates provided with the 3D model. While
our 3D approach plausibly textures arbitrary surfaces, the 2D approach causes blur and distortions on
the spherical surface. Note that the lighting setting is not exactly the same in both scenes, due to the
use of a different renderer for bitmap texture lookups.
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4 More results

Figure 4: Texture space setting. Here we demonstrate artifacts that occur due to non-axis-aligned
slicing. If only axis-aligned slices are sampled during training ([1]), distortion artifacts occur along
non-axis-aligned slices. Left: Henzler et al. axis-aligned cube (first and third row) and 45◦ rotated
cube (second and fourth row). Right: ours axis-aligned cube (first and third row) and 45◦ rotated cube
(second and fourth row). Note how ours produces more consistent results for both axis-aligned and
non-axis-aligned geometry. See Figure 7 (second row) and Figure 8 (third row) for exemplar images.
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Figure 5: Single exemplar setting. Here we show a example that violates the assumption behind a 3D
texture. Given a grass training exemplar (top), our model learns a plausible 3D texture where random
slices (middle) look similar to the target texture, although this setting would not be an ideal use of
our proposed 3D approach.
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5 Network architectures

Table 1: Network architecture of encoder E.

layer activaiton shape in shape out kernel

conv LReLU 128× 128× 3 128× 128× 32 3× 3
pool − 128× 128× 32 64× 64× 32 2× 2
conv LReLU 64× 64× 32 64× 64× 64 3× 3
pool − 64× 64× 64 32× 32× 64 2× 2
conv LReLU 32× 32× 64 32× 32× 128 3× 3
pool − 32× 32× 128 16× 16× 128 2× 2
conv LReLU 16× 16× 128 16× 16× 256 3× 3
pool − 16× 16× 256 8× 8× 256 2× 2
conv LReLU 8× 8× 256 8× 8× 256 3× 3
pool − 8× 8× 256 4× 4× 256 2× 2
conv LReLU 4× 4× 256 4× 4× 256 3× 3
pool − 4× 4× 256 2× 2× 256 2× 2
conv LReLU 2× 2× 256 2× 2× 256 2× 2
pool − 2× 2× 256 1× 1× 256 2× 2
dense LReLU 256 256 −
dense − 256 32 −

Table 2: Network architecture of discriminator D.

layer activaiton shape in shape out kernel

conv LReLU 128× 128× 3 128× 128× 32 3× 3
conv LReLU 128× 128× 32 128× 128× 64 3× 3
pool − 128× 128× 64 64× 64× 64 2× 2
conv LReLU 64× 64× 64 64× 64× 64 3× 3
conv LReLU 64× 64× 64 64× 64× 128 3× 3
pool − 64× 64× 128 32× 32× 128 2× 2
conv LReLU 32× 32× 128 32× 32× 128 3× 3
pool − 32× 32× 128 16× 16× 128 2× 2
conv LReLU 16× 16× 128 16× 16× 256 3× 3
pool − 16× 16× 256 8× 8× 256 2× 2
conv LReLU 8× 8× 256 8× 8× 256 3× 3
pool − 8× 8× 256 4× 4× 256 2× 2
conv LReLU 4× 4× 256 4× 4× 256 3× 3
pool − 4× 4× 256 2× 2× 256 2× 2
conv LReLU 2× 2× 256 2× 2× 256 2× 2
pool − 2× 2× 256 1× 1× 256 2× 2
dense LReLU 256 512 −
dense − 512 1 −
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6 User study

Figure 6: User study images, palette 1. From left to right: reference, Henzler et al., ours, ground truth.
Numbers show average user rank from our study (lower is better).
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Figure 7: User study images, palette 2. From left to right: reference, Henzler et al., ours, ground truth.
Numbers show average user rank from our study (lower is better).
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Figure 8: User study images, palette 3. From left to right: reference, Henzler et al., ours, ground truth.
Numbers show average user rank from our study (lower is better).
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Figure 9: User study images, palette 4. From left to right: reference, Henzler et al., ours, ground truth.
Numbers show average user rank from our study (lower is better).
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