
Extra information

LSUN FID scores for LSUN datasets are included in Table 3. Scores marked with ∗ are reported
by StyleGAN2 as baselines, and other scores are reported by their respective authors.

Table 3: FID scores for LSUN 256× 256 datasets
Model LSUN Bedroom LSUN Church LSUN Cat

ProgressiveGAN [27] 8.34 6.42 37.52
StyleGAN [28] 2.65 4.21∗ 8.53∗
StyleGAN2 [30] - 3.86 6.93
Ours (Lsimple) 6.36 7.89 19.75
Ours (Lsimple, large) 4.90 - -

Progressive compression Our lossy compression argument in Section 4.3 is only a proof of concept,
because Algorithms 3 and 4 depend on a procedure such as minimal random coding [20], which is
not tractable for high dimensional data. These algorithms serve as a compression interpretation of the
variational bound (5) of Sohl-Dickstein et al. [53], not yet as a practical compression system.

Table 4: Unconditional CIFAR10 test set rate-distortion values (accompanies Fig. 5)
Reverse process time (T − t+ 1) Rate (bits/dim) Distortion (RMSE [0, 255])

1000 1.77581 0.95136
900 0.11994 12.02277
800 0.05415 18.47482
700 0.02866 24.43656
600 0.01507 30.80948
500 0.00716 38.03236
400 0.00282 46.12765
300 0.00081 54.18826
200 0.00013 60.97170
100 0.00000 67.60125

A Extended derivations

Below is a derivation of Eq. (5), the reduced variance variational bound for diffusion models. This
material is from Sohl-Dickstein et al. [53]; we include it here only for completeness.

L = Eq
[
− log

pθ(x0:T)

q(x1:T |x0)

]
(17)

= Eq

− log p(xT)−
∑
t≥1

log
pθ(xt−1|xt)
q(xt|xt−1)

 (18)

= Eq

[
− log p(xT)−

∑
t>1

log
pθ(xt−1|xt)
q(xt|xt−1)

− log
pθ(x0|x1)

q(x1|x0)

]
(19)

= Eq

[
− log p(xT)−

∑
t>1

log
pθ(xt−1|xt)
q(xt−1|xt,x0)

· q(xt−1|x0)

q(xt|x0)
− log

pθ(x0|x1)

q(x1|x0)

]
(20)

= Eq

[
− log

p(xT)

q(xT |x0)
−
∑
t>1

log
pθ(xt−1|xt)
q(xt−1|xt,x0)

− log pθ(x0|x1)

]
(21)

13

= Eq

[
DKL(q(xT |x0) ‖ p(xT)) +

∑
t>1

DKL(q(xt−1|xt,x0) ‖ pθ(xt−1|xt))− log pθ(x0|x1)

]
(22)

The following is an alternate version of L. It is not tractable to estimate, but it is useful for our
discussion in Section 4.3.

L = Eq

− log p(xT)−
∑
t≥1

log
pθ(xt−1|xt)
q(xt|xt−1)

 (23)

= Eq

− log p(xT)−
∑
t≥1

log
pθ(xt−1|xt)
q(xt−1|xt)

· q(xt−1)

q(xt)

 (24)

= Eq

− log
p(xT)

q(xT)
−
∑
t≥1

log
pθ(xt−1|xt)
q(xt−1|xt)

− log q(x0)

 (25)

= DKL(q(xT) ‖ p(xT)) + Eq

∑
t≥1

DKL(q(xt−1|xt) ‖ pθ(xt−1|xt))

+H(x0) (26)

B Experimental details

Our neural network architecture follows the backbone of PixelCNN++ [52], which is a U-Net [48]
based on a Wide ResNet [72]. We replaced weight normalization [49] with group normalization [66]
to make the implementation simpler. Our 32× 32 models use four feature map resolutions (32× 32
to 4 × 4), and our 256 × 256 models use six. All models have two convolutional residual blocks
per resolution level and self-attention blocks at the 16 × 16 resolution between the convolutional
blocks [6]. Diffusion time t is specified by adding the Transformer sinusoidal position embedding [60]
into each residual block. Our CIFAR10 model has 35.7 million parameters, and our LSUN and
CelebA-HQ models have 114 million parameters. We also trained a larger variant of the LSUN
Bedroom model with approximately 256 million parameters by increasing filter count.

We used TPU v3-8 (similar to 8 V100 GPUs) for all experiments. Our CIFAR model trains at 21
steps per second at batch size 128 (10.6 hours to train to completion at 800k steps), and sampling
a batch of 256 images takes 17 seconds. Our CelebA-HQ/LSUN (2562) models train at 2.2 steps
per second at batch size 64, and sampling a batch of 128 images takes 300 seconds. We trained on
CelebA-HQ for 0.5M steps, LSUN Bedroom for 2.4M steps, LSUN Cat for 1.8M steps, and LSUN
Church for 1.2M steps. The larger LSUN Bedroom model was trained for 1.15M steps.

Apart from an initial choice of hyperparameters early on to make network size fit within memory
constraints, we performed the majority of our hyperparameter search to optimize for CIFAR10 sample
quality, then transferred the resulting settings over to the other datasets:

• We chose the βt schedule from a set of constant, linear, and quadratic schedules, all
constrained so that LT ≈ 0. We set T = 1000 without a sweep, and we chose a linear
schedule from β1 = 10−4 to βT = 0.02.

• We set the dropout rate on CIFAR10 to 0.1 by sweeping over the values {0.1, 0.2, 0.3, 0.4}.
Without dropout on CIFAR10, we obtained poorer samples reminiscent of the overfitting
artifacts in an unregularized PixelCNN++ [52]. We set dropout rate on the other datasets to
zero without sweeping.

• We used random horizontal flips during training for CIFAR10; we tried training both with
and without flips, and found flips to improve sample quality slightly. We also used random
horizontal flips for all other datasets except LSUN Bedroom.

• We tried Adam [31] and RMSProp early on in our experimentation process and chose the
former. We left the hyperparameters to their standard values. We set the learning rate to
2× 10−4 without any sweeping, and we lowered it to 2× 10−5 for the 256× 256 images,
which seemed unstable to train with the larger learning rate.

14

• We set the batch size to 128 for CIFAR10 and 64 for larger images. We did not sweep over
these values.

• We used EMA on model parameters with a decay factor of 0.9999. We did not sweep over
this value.

Final experiments were trained once and evaluated throughout training for sample quality. Sample
quality scores and log likelihood are reported on the minimum FID value over the course of training.
On CIFAR10, we calculated Inception and FID scores on 50000 samples using the original code
from the OpenAI [51] and TTUR [21] repositories, respectively. On LSUN, we calculated FID
scores on 50000 samples using code from the StyleGAN2 [30] repository. CIFAR10 and CelebA-HQ
were loaded as provided by TensorFlow Datasets (https://www.tensorflow.org/datasets),
and LSUN was prepared using code from StyleGAN. Dataset splits (or lack thereof) are standard
from the papers that introduced their usage in a generative modeling context. All details can be found
in the source code release.

C Discussion on related work

Our model architecture, forward process definition, and prior differ from NCSN [55, 56] in subtle but
important ways that improve sample quality, and, notably, we directly train our sampler as a latent
variable model rather than adding it after training post-hoc. In greater detail:

1. We use a U-Net with self-attention; NCSN uses a RefineNet with dilated convolutions. We
condition all layers on t by adding in the Transformer sinusoidal position embedding, rather
than only in normalization layers (NCSNv1) or only at the output (v2).

2. Diffusion models scale down the data with each forward process step (by a
√

1− βt factor)
so that variance does not grow when adding noise, thus providing consistently scaled inputs
to the neural net reverse process. NCSN omits this scaling factor.

3. Unlike NCSN, our forward process destroys signal (DKL(q(xT |x0) ‖ N (0, I)) ≈ 0), ensur-
ing a close match between the prior and aggregate posterior of xT . Also unlike NCSN, our
βt are very small, which ensures that the forward process is reversible by a Markov chain
with conditional Gaussians. Both of these factors prevent distribution shift when sampling.

4. Our Langevin-like sampler has coefficients (learning rate, noise scale, etc.) derived rig-
orously from βt in the forward process. Thus, our training procedure directly trains our
sampler to match the data distribution after T steps: it trains the sampler as a latent variable
model using variational inference. In contrast, NCSN’s sampler coefficients are set by hand
post-hoc, and their training procedure is not guaranteed to directly optimize a quality metric
of their sampler.

D Samples

Additional samples Figure 11, 13, 16, 17, 18, and 19 show uncurated samples from the diffusion
models trained on CelebA-HQ, CIFAR10 and LSUN datasets.

Latent structure and reverse process stochasticity During sampling, both the prior xT ∼
N (0, I) and Langevin dynamics are stochastic. To understand the significance of the second source
of noise, we sampled multiple images conditioned on the same intermediate latent for the CelebA
256 × 256 dataset. Figure 7 shows multiple draws from the reverse process x0 ∼ pθ(x0|xt) that
share the latent xt for t ∈ {1000, 750, 500, 250}. To accomplish this, we run a single reverse chain
from an initial draw from the prior. At the intermediate timesteps, the chain is split to sample multiple
images. When the chain is split after the prior draw at xT=1000, the samples differ significantly.
However, when the chain is split after more steps, samples share high-level attributes like gender,
hair color, eyewear, saturation, pose and facial expression. This indicates that intermediate latents
like x750 encode these attributes, despite their imperceptibility.

Coarse-to-fine interpolation Figure 9 shows interpolations between a pair of source CelebA
256 × 256 images as we vary the number of diffusion steps prior to latent space interpolation.
Increasing the number of diffusion steps destroys more structure in the source images, which the

15

https://www.tensorflow.org/datasets

model completes during the reverse process. This allows us to interpolate at both fine granularities
and coarse granularities. In the limiting case of 0 diffusion steps, the interpolation mixes source
images in pixel space. On the other hand, after 1000 diffusion steps, source information is lost and
interpolations are novel samples.

1000 steps

875 steps

750 steps

625 steps

500 steps

375 steps

250 steps

125 steps

0 steps

Source Rec. λ=0.1 λ=0.2 λ=0.3 λ=0.4 λ=0.5 λ=0.6 λ=0.7 λ=0.8 λ=0.9 Rec. Source

Figure 9: Coarse-to-fine interpolations that vary the number of diffusion steps prior to latent mixing.

0 200 400 600 800 1,000

2

4

6

8

10

Reverse process steps (T − t)

In
ce

pt
io

n
Sc

or
e

0 200 400 600 800 1,000

0

100

200

300

Reverse process steps (T − t)

FI
D

Figure 10: Unconditional CIFAR10 progressive sampling quality over time

16

Figure 11: CelebA-HQ 256× 256 generated samples

17

(a) Pixel space nearest neighbors

(b) Inception feature space nearest neighbors

Figure 12: CelebA-HQ 256× 256 nearest neighbors, computed on a 100× 100 crop surrounding the
faces. Generated samples are in the leftmost column, and training set nearest neighbors are in the
remaining columns.

18

Figure 13: Unconditional CIFAR10 generated samples

19

Figure 14: Unconditional CIFAR10 progressive generation

20

(a) Pixel space nearest neighbors

(b) Inception feature space nearest neighbors

Figure 15: Unconditional CIFAR10 nearest neighbors. Generated samples are in the leftmost column,
and training set nearest neighbors are in the remaining columns.

21

Figure 16: LSUN Church generated samples. FID=7.89

22

Figure 17: LSUN Bedroom generated samples, large model. FID=4.90

23

Figure 18: LSUN Bedroom generated samples, small model. FID=6.36

24

Figure 19: LSUN Cat generated samples. FID=19.75

25

