
Supplementary: What Makes for Good Views for
Contrastive Learning?

Yonglong Tian∗

MIT CSAIL
Chen Sun

Google, Brown University
Ben Poole

Google Research

Dilip Krishnan
Google Research

Cordelia Schmid
Google Research

Phillip Isola
MIT CSAIL

A Proof of Proposition 3.1

In this section, we provide proof for the statement regarding optimal views in proposition 3.1 of the
main text. As a warmup, we firstly recap some properties of mutual information.

A.1 Properties of MI [5]:

(1) Nonnegativity:

I(x;y) ≥ 0; I(x;y|z) ≥ 0

(2) Chain Rule:

I(x;y, z) = I(x;y) + I(x; z|y)

(2) Multivariate Mutual Information:

I(x1;x2; ...;xn+1) = I(x1; ...;xn)− I(x1; ...;xn|xn+1)

A.2 Proof

Proposition A.1. According to Proposition 1, the optimal views v∗
1,v

∗
2 for task T with label y, are

views such that I(v∗
1;v

∗
2) = I(v∗

1;y) = I(v∗
2;y) = I(x;y)

Proof. Since I(v1;y) = I(v2;y) = I(x;y), and v1, v2 are functions of x.

I(y;x) = I(y;v1,v2)

= I(y;v1) + I(y;v2|v1)

= I(y;x) + I(y;v2|v1)

Therefore I(y;v2|v1) = 0, due to the nonnegativity. Then we have:

I(v1;v2) = I(v1;v2) + I(y;v2|v1)

= I(v2;v1,y)

= I(v2;y) + I(v2;v1|y)
≥ I(v2;y) = I(x;y)

Therefore the optimal views v∗
1,v

∗
2 that minimizes I(v1;v2) subject to the constraint yields

I(v∗
1;v

∗
2) = I(x;y). Also note that optimal views v∗

1,v
∗
2 are conditionally independent given

y, as now I(v∗
2;v

∗
1|y) = 0.

∗Project page: http://hobbitlong.github.io/InfoMin

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

http://hobbitlong.github.io/InfoMin

Proposition A.2. Given optimal views v∗
1,v

∗
2 and minimal sufficient encoders f1, f2, then the

learned representations z1 (or z2) are sufficient statistic of v1 (or v2) for y, i.e., I(z1;y) = I(v1;y)
or I(z2;y) = I(v2;y).

Proof. Let’s prove for z1. Since z1 is a function of v1, we have:

I(y;v1) = I(y;v1, z1)

= I(y; z1) + I(y;v1|z1)

To prove I(y;v1) = I(y; z1), we need to prove I(y;v1|z1) = 0.

I(y;v1|z1) = I(y;v1)− I(y;v1; z1)

= I(y;v1;v2) + I(y;v1|v2)− I(y;v1; z1)

= I(y;v1;v2) + I(y;v1|v2)− [I(y;v1; z1;v2) + I(y;v1; z1|v2)]

= I(y;v1|v2) + [I(y;v1;v2)− I(y;v1; z1;v2)]− I(y;v1; z1|v2)

= I(y;v1|v2) + I(y;v1;v2|z1)− I(y;v1; z1|v2)

= I(y;v1|v2) + I(y;v1;v2|z1) + I(y; z1|v1,v2)︸ ︷︷ ︸
0

−I(y; z1|v2)

≤ I(y;v1|v2) + I(y;v1;v2|z1)
= I(y;v1|v2) + I(v1;v2|z1)− I(v1;v2|y, z1)︸ ︷︷ ︸

0

= I(y;v1|v2) + I(v1;v2|z1)

In the above derivation I(y; z1|v1,v2) = 0 because z1 is a function of v1; I(v1;v2|y, z1) = 0
because optimal views v1,v2 are conditional independent given y, see Proposition A.1. Now, we
can easily prove I(y;v1|v2) = 0 following a similar procedure in Proposition A.1. If we can
further prove I(v1;v2|z1) = 0, then we get I(y;v1|z1) ≤ 0. By nonnegativity, we will have
I(y;v1|z1) = 0.

To see I(v1;v2|z1) = 0, recall that our encoders are sufficient. According to Definition 1, we have
I(v1;v2) = I(v2; z1):

I(v1;v2|z1) = I(v1;v2)− I(v1;v2; z1)

= I(v1;v2)− I(v2; z1) + I(v2; z1|v1)︸ ︷︷ ︸
0

= 0

Proposition A.3. The representations z1 and z2 are also minimal for y.

Proof. For all sufficient encoders, we have proved z1 are sufficient statistic of v1 for predicting y.
Namely I(v1;y|z1) = 0. Now:

I(z1;v1) = I(z1;v1|y) + I(z1;v1;y)

= I(z1;v1|y) + I(v1;y)− I(v1;y|z1)︸ ︷︷ ︸
0

= I(z1;v1|y) + I(v1;y)

≥ I(v1;y)

The minimal sufficient encoder will minimize I(z1;v1) to I(v1;y). This is achievable and leads
to I(z1;v1|y) = 0. Therefore, z1 is a minimal sufficient statistic for predicting y, thus optimal.
Similarly, z2 is also optimal.

2

B Implementation Details

B.1 Spatial Patches with Different Distance

Why using DIV2K [1]? Recall that we randomly sample patches with a distance of d. During such
sampling process, there is a possible bias that with an image of relatively small size (e.g., 512x512),
a large d (e.g., 384) will always push these two patches around the boundary. To minimize this bias,
we choose to use high resolution images (e.g. 2k) from DIV2K dataset.

Setup and Training. We use the training framework of CMC [28]. The backbone network is a tiny
AlexNet, following [17, 28]. We train for 3000 epochs, with the learning rate initialized as 0.03 and
decayed with cosine annealing.

Evaluation. We evaluate the learned representation on both STL-10 and CIFAR-10 datasets. For
CIFAR-10, we resize the image to 64×64 to extract features. The linear classifier is trained for 100
epochs.

B.2 Channel Splitting with Various Color Spaces

Setup and Training. The backbone network is also a tiny AlexNet, with the modification of adapting
the first layer to input of 1 or 2 channels. We follow the training recipe in [28].

Evaluation. For the evaluation on STL-10 dataset, we train a linear classifier for 100 epochs and
report the single-crop classification accuracy. For NYU-Depth-v2 segmentation task, we freeze the
backbone network and train a 4-layer decoder on top of the learned representations. We report the
mean IoU for labeled classes.

B.3 Reducing I(v1;v2) with Frequency Separation

(a) STL-10 classification (b) Tiny ImageNet classification

Figure 1: We create views by splitting images into low- and high-frequency pairs with a blur function
parameterized by σ. INCE is maximized at σ = 0.7. Starting from this point, either increasing or decreasing
σ will reduce INCE but interestingly they form two different trajectories. When increasing σ from 0.7, the
accuracy firstly improves and then drops, forming a reverse-U shape corresponding to (a) in Figure 2 of the main
paper. While decreasing σ from 0.7, the accuracy keeps diminishing, corresponding to (b) in Figure 2 of the
main paper.

Another example we consider is to separate images into low- and high-frequency images. To simplify,
we extract v1 and v2 by Gaussian blur, i.e.,

v1 = Blur(x, σ)

v2 = x− v1

where Blur is the Gaussian blur function and σ is the parameter controlling the kernel. Extremely
small or large σ can make the high- or low-frequency image contain little information. In theory, the
maximal I(v1;v2) is obtained with some intermediate σ. As shown in Figure 1, we found σ = 0.7
leads to the maximal INCE on the STL-10 dataset. Either blurring more or less will reduce INCE , but
interestingly blurring more leads to different trajectory in the plot than blurring less. When increasing
σ from 0.7, the accuracy firstly improves and then drops, forming a reverse-U shape with a sweet
spot at σ = 1.0. This situation corresponds to (a) in Figure 2 of the main paper. While decreasing σ

3

……c-moving
MNIST

𝑣"

𝑥$𝑥" 𝑥% 𝑥&

𝑣%'

position

digit

bkgd.

𝑣%(

Figure 2: Illustration of the Colorful-Moving-MNIST dataset. In this example, the first view v1 is a sequence
of frames containing the moving digit, e.g., v1 = x1:k. The matched second view v+

2 share some factor with xt
that v1 can predict, while the unmatched view v−

2 does not share factor with xt.

from 0.7, the accuracy keeps diminishing, corresponding to (b) in Figure 2 of the main paper. This
reminds us of the two aspects in Proposition 3.1: mutual information is not the whole story; what
information is shared between the two views also matters.

Setup and Training. The setup is almost the same as that in color channel splitting experiments,
except that each view consists of three input channels. We follow the training recipe in [28].

Evaluation. We train a linear classifier for 100 epochs on STL-10 dataset and 40 epochs on
TinyImageNet dataset.

B.4 Colorful Moving MNIST

Dataset. Following the original Moving MNIST dataset [27], we use a canvas of size 64×64, which
contains a digit of size 28×28. The back ground image is a random crop from original STL-10
images (96×96). The starting position of the digit is uniformly sampled inside the canvas. The
direction of the moving velocity is uniformly sampled in [0, 2π], while the magnitude is kept as 0.1
of the canvas size. When the digit touches the boundary, the velocity is reflected.

Setup. We use the first 10 frames as v1 (namely k = 10), and we construct v2 by referring to the
20-th frame (namely t = 20). During the contrastive learning phase, we employ a 4-layer ConvNet
to encode images and use a single layer LSTM [18] on top of the ConvNet to aggregate features
of continuous frames. The CNN backbone consists of 4 layers with 8, 16, 32, 64 filters from low to
high. Average pooling is applied after the last convolutional layer, resulting in a 64 dimensional
representation. The dimensions of the hidden layer and output in LSTM are both 64.

Examples. The examples of v1 and v2 are shown in Figure 2, where the three rows on the RHS
shows cases that only a single factor (digit, position, or background) is shared.

Training. We perform intra-batch contrast. Namely, inside each batch of size 128, we contrast each
sample with the other 127 samples. We train for 200 epochs, with the learning rate initialized as 0.03
and decayed with cosine annealing.

B.5 Un-/Semi-supervised View Learning

+

X1

X2

Y1

𝐹
Y2

X1

X2

Y1
𝐹

Y2+

𝐺

+

(a) Volume-Preserving (b) None Volume-Preserving

Figure 3: Volume-preserving (a), and none volume-preserving (b) invertible model.

Invertible Generator. Figure 3 shows the basic building block for the Volume-Preserving (VP) and
None-Volume-Preserving (NVP) invertible view generator. The F and G are pixel-wise convolutional
function, i.e., convolutional layers with 1×1 kernel. X1 and Y1 represent a single channel of the
input and output respectively, while X2 and Y2 represent the other two channels. While stacking

4

basic building blocks, we alternatively select the first, second, and the third channel as X1, to enhance
the expressivity of view generator.

Setup and Training. For unsupervised view learning that only uses the adversarial INCE loss,
we found the training is relatively unstable, as also observed in GAN [12]. We found the learning
rate of view generator should be larger than that of INCE approximator. Concretely, we use Adam
optimizer [19], and we set the learning rates of view generator and INCE approximator as 2e-4 and
6e-4, respectively. For the semi-supervised view learning, we found the training is stable across
different learning rate combinations, which we considered as an advantage. To be fair, we still use
the same learning rates for both view generator and INCE approximator.

Contrastive Learning and Evaluation. After the view learning stage, we perform contrastive
learning and evaluation by following the recipe in Section B.2.

C Data Augmentation as InfoMin

C.1 InfoMin Augmentation

(a) I"#$	𝑣. 𝑠	Accuracy (b) Data Augmentation

Figure 4: (a) data augmentation as InfoMin on ImageNet with linear projection head; (b) illustration
of step-by-step data augmentation used in InfoMin.

InfoMin Aug. We gradually strengthen the family of data augmentation functions T, and plot the
trend between accuracy in downstream linear evaluation benchmarks and INCE . The overall results
are shown in Figure 4(a), where the plot is generated by only varying data augmentation while
keeping all other settings fixed. We consider Color Jittering with various strengths, Gaussian Blur,
RandAugment [6], and their combinations, as illustrated in Figure 4(b). The results suggest that as we
reduce INCE(v1;v1), via stronger T (in theory, I(v1;v1) also decreases), the downstream accuracy
keeps improving.

C.2 Analysis of Data Augmentation as it relates to MI and Transfer Performance

We also investigate how sliding the strength parameter of individual augmentation functions leads to
a practical reverse-U curves, as shown in Figures 5 and 6.

Cropping. In PyTorch, the RandomResizedCrop(scale=(c, 1.0)) data augmentation
function sets a low-area cropping bound c. Smaller c means more aggressive data augmentation.
We vary c for both a linear critic head [30] (with temperature 0.07) and nonlinear critic head [3]
(with temperature 0.15), as shown in Figure 5. In both cases, decreasing c forms a reverse-U shape
between INCE and linear classification accuracy, with a sweet spot at c = 0.2. This is different from
the widely used 0.08 in the supervised learning setting. Using 0.08 can lead to more than 1% drop in
accuracy compared to the optimal 0.2 when a nonlinear projection head is applied.

Color Jittering. As shown in Figure 4(b), we adopt a parameter x to control the strengths of color
jittering function. As shown in Figure 6, increasing x from 0.125 to 2.5 also traces a reverse-U shape,
no matter whether a linear or nonlinear projection head is used. The sweet spot lies around x = 1.0,
which is the same value as used in SimCLR [3]. Practically, we see the accuracy is more sensitive

5

10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9
INCE

55.0

55.5

56.0

56.5

57.0

57.5

58.0

58.5

59.0

Im
ag

eN
et

 A
cc

ur
ac

y
(%

) C-0.08
C-0.15 C-0.2

C-0.25
C-0.3

C-0.4

C-0.5RandomResizedCrop

(a) Linear projection head

5.7 5.8 5.9 6.0 6.1 6.2
INCE

60.5

61.0

61.5

62.0

62.5

63.0

Im
ag

eN
et

 A
cc

ur
ac

y
(%

)

C-0.08

C-0.15

C-0.2
C-0.25

C-0.3

C-0.4

C-0.5RandomResizedCrop

(b) MLP projection head

Figure 5: Different low-area cropping bounds in RandomResizedCrop.

9.8 9.9 10.0 10.1 10.2 10.3 10.4 10.5 10.6
INCE

56.5

57.0

57.5

58.0

58.5

59.0

59.5

60.0

60.5

Im
ag

eN
et

 A
cc

ur
ac

y
(%

)

x-0.125

x-0.25

x-0.5

x-1.0x-1.5x-2.0x-2.5

Color Jittering

(a) Linear projection head

5.6 5.7 5.8 5.9 6.0
INCE

61.5

62.0

62.5

63.0

63.5

64.0

Im
ag

eN
et

 A
cc

ur
ac

y
(%

)

x-0.125

x-0.25

x-0.5

x-1.0

x-1.5
x-2.0x-2.5

Color Jittering

(b) MLP projection head

Figure 6: Different magnitudes of Color Jittering.

around the sweet spot for the nonlinear projection head, which also happens for cropping. This
implies that it is important to find the sweet spot for future design of augmentation functions.

Details. These plots are based on the MoCo [13] framework. We use 65536 negatives and pre-train
for 100 epochs on 8 GPUs with a batch size of 256. The learning rate starts as 0.03 and decays
following a cosine annealing schedule. For the downstream task of linear evaluation, we train the
linear classifier for 60 epochs with an initial learning rate of 30, following [28].

C.3 Results on ImageNet Benchmark

Table 1: Single-crop ImageNet accuracies (%) of linear classifiers [33] trained on representations learned
with different contrastive methods using ResNet-50 [15]. InfoMin Aug. refers to data augmentation using
RandomResizedCrop, Color Jittering, Gaussian Blur, RandAugment, Color Dropping, and a JigSaw branch as in
PIRL [23]. * indicates splitting the network into two halves.

Method Architecture Param. Head Epochs Top-1 Top-5

InstDis [30] ResNet-50 24 Linear 200 56.5 -
Local Agg. [34] ResNet-50 24 Linear 200 58.8 -
CMC [28] ResNet-50* 12 Linear 240 60.0 82.3
MoCo [13] ResNet-50 24 Linear 200 60.6 -
PIRL [23] ResNet-50 24 Linear 800 63.6 -
CPC v2 [16] ResNet-50 24 - - 63.8 85.3
SimCLR [3] ResNet-50 24 MLP 1000 69.3 89.0

InfoMin Aug. (Ours) ResNet-50 24 MLP 200 70.1 89.4
InfoMin Aug. (Ours) ResNet-50 24 MLP 800 73.0 91.1

6

Table 2: Single-crop ImageNet accuracies (%) of linear classifiers [33] trained on representations learned with
different methods using various architectures.

Method Architecture Param. Head Epochs Top-1 Top-5

Methods using contrastive learning:
InstDis [30] ResNet-50 24 Linear 200 56.5 -
Local Agg. [34] ResNet-50 24 Linear 200 58.8 -
CPC v2 [16] ResNet-50 24 - - 63.8 85.3
CMC [28] 2x ResNet-50(0.5x) 12 Linear 240 60.0 82.3
CMC [28] 2x ResNet-50(1x) 47 Linear 240 66.2 87.0
CMC [28] 2x ResNet-50(2x) 188 Linear 240 70.6 89.7
MoCo [13] ResNet-50 24 Linear 200 60.6 -
MoCo [13] ResNet-50 (2x) 94 Linear 200 65.4 -
MoCo [13] ResNet-50 (4x) 375 Linear 200 68.6 -
PIRL [23] ResNet-50 24 Linear 800 63.6 -
PIRL [23] ResNet-50 (2x) 94 Linear 800 67.4 -
SimCLR [3] ResNet-50 24 MLP 1000 69.3 -
SimCLR [3] ResNet-50 (2x) 94 MLP 1000 74.2 -
SimCLR [3] ResNet-50 (4x) 375 MLP 1000 76.5 -
MoCo V2 [4] ResNet-50 24 MLP 800 71.1 -
InfoMin Aug. ResNet-50 24 MLP 100 67.4 87.9
InfoMin Aug. ResNet-50 24 MLP 200 70.1 89.4
InfoMin Aug. ResNet-50 24 MLP 800 73.0 91.1
InfoMin Aug. ResNet-101 43 MLP 300 73.4 -
InfoMin Aug. ResNet-152 58 MLP 200 73.4 -
InfoMin Aug. ResNeXt-101 87 MLP 200 74.5 -
InfoMin Aug. ResNeXt-152 120 MLP 200 75.2 -

Methods NOT using contrastive learning:
Exemplar [9, 20] ResNet-50 (3x) 211 - 35 46.0 -
JigSaw [24, 20] ResNet-50 (2x) 94 - 35 44.6 -
Relative Position [7, 20] ResNet-50 (2x) 94 - 35 51.4 -
Rotation [11, 20] RevNet-50 (4x) 86 - 35 55.4 -
BigBiGAN [8] RevNet-50 (4x) 86 - - 61.3 81.9
SeLa [32] ResNet-50 24 - 400 61.5 84.0

On top of the “RA-CJ-Blur” augmentations shown in Figure 4, we further reduce the mutual
information (or enhance the invariance) of views by using PIRL [23], i.e., adding JigSaw [24].
This improves the accuracy of the linear classifier from 63.6% to 65.9%. Replacing the widely-used
linear projection head [30, 28, 13] with a 2-layer MLP [3] increases the accuracy to 67.3%. When
using this nonlinear projection head, we found a larger temperature is beneficial for downstream linear
readout (as also reported in [4]). All these numbers are obtained with 100 epochs of pre-training. For
simplicity, we call such unsupervised pre-training as InfoMin pre-training (i.e., pre-training with our
InfoMin inspired augmentation). As shown in Table 2, our InfoMin model trained with 200 epochs
achieves 70.1%, outperforming SimCLR with 1000 epochs. Finally, a new state-of-the-art, 73.0%
is obtained by training for 800 epochs. Compared to SimCLR requiring 128 TPUs for large batch
training, our model can be trained with as less as 4 GPUs on a single machine.

For future improvement, there is still room for manually designing better data augmentation. As
shown in Figure 4(a), using “RA-CJ-Blur” has not touched the sweet spot yet. Another way to
is to learn to synthesize better views (augmentations) by following (and expanding) the idea of
semi-supervised view learning method presented in Section 4.2.2 of the main paper.

Different Architectures. We further include the performance of InfoMin as well as other SoTA
methods with different architectures in Table 2. Increasing the network capacity leads to significant
improvement of linear readout performance on ImageNet for InfoMin, which is consistent with
previous literature [28, 13, 3, 23].

7

Table 3: Results of object detection and instance segmentation fine-tuned on COCO. We adopt Mask R-CNN
R50-FPN, and report the bounding box AP and mask AP on val2017. In the brackets are the gaps to the
ImageNet supervised pre-training counterpart. For fair comparison, InstDis [30], PIRL [23], MoCo [13], and
InfoMin are all pre-trained for 200 epochs.

(a) Mask R-CNN, R50-FPN, 1x schedule

pre-train APbb APbb
50 APbb

75 APmk APmk
50 APmk

75
random init 32.8 50.9 35.3 29.9 47.9 32.0
supervised 39.7 59.5 43.3 35.9 56.6 38.6

InstDis [30] 38.8(↓0.9) 58.4(↓1.1) 42.5(↓0.8) 35.2(↓0.7) 55.8(↓0.8) 37.8(↓0.8)
PIRL [23] 38.6(↓1.1) 58.2(↓1.3) 42.1(↓1.2) 35.1(↓0.8) 55.5(↓1.1) 37.7(↓0.9)
MoCo [13] 39.4(↓0.3) 59.1(↓0.4) 42.9(↓0.4) 35.6(↓0.3) 56.2(↓0.4) 38.0(↓0.6)

InfoMin Aug. 40.6(↑0.9) 60.6(↑1.1) 44.6(↑1.3) 36.7(↑0.8) 57.7(↑1.1) 39.4(↑0.8)

(b) Mask R-CNN, R50-FPN, 2x schedule

pre-train APbb APbb
50 APbb

75 APmk APmk
50 APmk

75
random init 38.4 57.5 42.0 34.7 54.8 37.2
supervised 41.6 61.7 45.3 37.6 58.7 40.4

InstDis [30] 41.3(↓0.3) 61.0(↓0.7) 45.3(↓0.0) 37.3(↓0.3) 58.3(↓0.4) 39.9(↓0.5)
PIRL [23] 41.2(↓0.4) 61.2(↓0.5) 45.2(↓0.1) 37.4(↓0.2) 58.5(↓0.2) 40.3(↓0.1)
MoCo [13] 41.7(↑0.1) 61.4(↓0.3) 45.7(↑0.4) 37.5(↓0.1) 58.6(↓0.1) 40.5(↑0.1)

InfoMin Aug. 42.5(↑0.9) 62.7(↑1.0) 46.8(↑1.5) 38.4(↑0.8) 59.7(↑1.0) 41.4(↑1.0)

C.4 Comparing with SoTA in Transfer Learning

One goal of unsupervised pre-training is to learn transferable representations that are beneficial for
downstream tasks. The rapid progress of many vision tasks in past years can be ascribed to the
paradigm of fine-tuning models that are initialized from supervised pre-training on ImageNet. When
transferring to PASCAL VOC [10] and COCO [22], we found our InfoMin pre-training consistently
outperforms supervised pre-training as well as other unsupervised pre-training methods.

COCO Object Detection/Segmentation. Feature normalization has been shown to be important
during fine-tuning [13]. Therefore, we fine-tune the backbone with Synchronized BN (SyncBN [25])
and add SyncBN to newly initialized layers (e.g., FPN [21]). Table 3 reports the bounding box AP
and mask AP on val2017 on COCO, using the Mask R-CNN [14] R50-FPN pipeline. All results
are reported on Detectron2 [29]. We notice that, among unsupervised approaches, only ours
consistently outperforms supervised pre-training.

We have tried different popular detection frameworks with various backbones, extended the fine-tuning
schedule (e.g., 6x schedule), and compared InfoMin ResNeXt-152 [31] trained on ImageNet-1k with
supervised ResNeXt-152 trained on ImageNet-5k (6 times larger than ImageNet-1k). In all cases,
InfoMin consistently outperforms supervised pre-training. Please see Section D for more detailed
comparisons.

Pascal VOC Object Detection. We strictly follow the setting introduced in [13]. Specifically, We
use Faster R-CNN [26] with R50-C4 architecture. We fine-tune all layers with 24000 iterations, each
consisting of 16 images.

Table 4: Pascal VOC object detection. All contrastive models are pretrained for 200 epochs on ImageNet for
fair comparison. We use Faster R-CNN R50-C4 architecture for object detection. APs are reported using the
average of 5 runs. * we use numbers from [13] since the setting is exactly the same.

pre-train AP50 AP AP75 ImageNet Acc(%)
random init.* 60.2 33.8 33.1 -
supervised* 81.3 53.5 58.8 76.1
InstDis 80.9 55.2 61.2 59.5
PIRL 81.0 55.5 61.3 61.7
MoCo* 81.5 55.9 62.6 60.6
InfoMin Aug. (ours) 82.7 57.6 64.6 70.1

8

D Transfer Learning with Various Backbones and Detectors on COCO

We evaluated the transferability of various models pre-trained with InfoMin, under different detection
frameworks and fine-tuning schedules. In all cases we tested, models pre-trained with InfoMin
outperform those pre-trained with supervised cross-entropy loss. Interestingly, ResNeXt-152 trained
with InfoMin on ImageNet-1K beats its supervised counterpart trained on ImageNet 5K, which is
6x times larger. Bounding box AP and mask Ap are reported on val2017

D.1 ResNet-50 with Mask R-CNN, C4 architecture

The results of Mask R-CNN with R-50 C4 backbone are shown in Table 5. We experimented with 1x
and 2x schedule.

Table 5: COCO object detection and instance segmentation. R50-C4. In the brackets are the gaps to the
ImageNet supervised pre-training counterpart. In green are gaps of ≥ 0.5 point. * numbers are from [13] since
we use exactly the same fine-tuning setting.

(a) Mask R-CNN, R50-C4, 1x schedule

pre-train APbb APbb
50 APbb

75 APmk APmk
50 APmk

75
random init* 26.4 44.0 27.8 29.3 46.9 30.8
supervised* 38.2 58.2 41.2 33.3 54.7 35.2

MoCo* 38.5(↑0.3) 58.3(↑0.1) 41.6(↑0.4) 33.6(↑0.1) 54.8(↑0.1) 35.6(↑0.1)
InfoMin Aug. 39.0(↑0.8) 58.5(↑0.3) 42.0(↑0.8) 34.1(↑0.8) 55.2(↑0.5) 36.3(↑1.1)

(b) Mask R-CNN, R50-C4, 2x schedule

pre-train APbb APbb
50 APbb

75 APmk APmk
50 APmk

75
random init* 35.6 54.6 38.2 31.4 51.5 33.5
supervised* 40.0 59.9 43.1 34.7 56.5 36.9

MoCo* 40.7(↑0.7) 60.5(↓0.6) 44.1(↑1.0) 35.6(↓0.7) 57.4(↓0.8) 38.1(↑0.7)
InfoMin Aug. 41.3(↑1.3) 61.2(↑1.3) 45.0(↑1.9) 36.0(↑1.3) 57.9(↑1.4) 38.3(↑1.4)

D.2 ResNet-50 with Mask R-CNN, FPN architecture

The results of Mask R-CNN with R-50 FPN backbone are shown in Table 6. We compared with
MoCo [13] and MoCo v2 [4] under 2x schedule, and also experimented with 6x schedule.

Table 6: COCO object detection and instance segmentation. R50-FPN. In the brackets are the gaps to the
ImageNet supervised pre-training counterpart. In green are gaps of ≥ 0.5 point.

(a) Mask R-CNN, R50-FPN, 2x schedule

pre-train APbb APbb
50 APbb

75 APmk APmk
50 APmk

75
random init 38.4 57.5 42.0 34.7 54.8 37.2
supervised 41.6 61.7 45.3 37.6 58.7 40.4
MoCo [13] 41.7(↑0.1) 61.4(↓0.3) 45.7(↑0.4) 37.5(↓0.1) 58.6(↓0.1) 40.5(↑0.1)

MoCo v2 [4] 41.7(↑0.1) 61.6(↓0.1) 45.6(↑0.3) 37.6(↓0.0) 58.7(↓0.0) 40.5(↑0.1)
InfoMin Aug. 42.5(↑0.9) 62.7(↑1.0) 46.8(↑1.5) 38.4(↑0.8) 59.7(↑1.0) 41.4(↑1.0)

(b) Mask R-CNN, R50-FPN, 6x schedule

pre-train APbb APbb
50 APbb

75 APmk APmk
50 APmk

75
random init 42.7 62.6 46.7 38.6 59.9 41.6
supervised 42.6 62.4 46.5 38.5 59.9 41.5

InfoMin Aug. 43.6(↑1.0) 63.6(↑1.2) 47.3(↑0.8) 39.2(↑0.7) 60.6(↑0.7) 42.3(↑0.8)

9

D.3 ResNet-101 with Mask R-CNN, C4 architecture

The results of Mask R-CNN with R-101 C4 backbone are shown in Table 7. We experimented with
1x and 1x schedule.

Table 7: COCO object detection and instance segmentation. R101-C4. In the brackets are the gaps to the
ImageNet supervised pre-training counterpart.

(a) Mask R-CNN, R101-C4, 1x schedule

pre-train APbb APbb
50 APbb

75 APmk APmk
50 APmk

75
supervised 40.9 60.6 44.2 35.1 56.8 37.3

InfoMin Aug. 42.5(↑1.6) 62.1(↑1.5) 46.1(↑1.9) 36.7(↑1.6) 58.7(↑1.9) 39.2(↑1.9)

(b) Mask R-CNN, R101-C4, 2x schedule

pre-train APbb APbb
50 APbb

75 APmk APmk
50 APmk

75
supervised 42.5 62.3 46.1 36.4 58.7 38.7

InfoMin Aug. 43.9(↑1.4) 63.5(↑1.2) 47.5(↑1.4) 37.8(↑1.4) 60.4(↑1.7) 40.2(↑1.5)

D.4 ResNet-101 with Mask R-CNN, FPN architecture

The results of Mask R-CNN with R-101 FPN backbone are shown in Table 8. We experimented with
1x, 2x, and 6x schedule.

Table 8: COCO object detection and instance segmentation. R101-FPN. In the brackets are the gaps to the
ImageNet supervised pre-training counterpart.

(a) Mask R-CNN, R101-FPN, 1x schedule

pre-train APbb APbb
50 APbb

75 APmk APmk
50 APmk

75
supervised 42.0 62.3 46.0 37.6 59.1 40.1

InfoMin Aug. 42.9(↑0.9) 62.6(↑0.3) 47.2(↑1.2) 38.6(↑1.0) 59.7(↑0.6) 41.6(↑1.5)

(b) Mask R-CNN, R101-FPN, 2x schedule

pre-train APbb APbb
50 APbb

75 APmk APmk
50 APmk

75
supervised 43.3 63.3 47.1 38.8 60.1 42.1

InfoMin Aug. 44.5(↑1.2) 64.4(↑1.1) 48.8(↑1.7) 39.9(↑1.1) 61.5(↑1.4) 42.9(↑0.8)

(c) Mask R-CNN, R101-FPN, 6x schedule

pre-train APbb APbb
50 APbb

75 APmk APmk
50 APmk

75
supervised 44.1 63.7 48.0 39.5 61.0 42.4

InfoMin Aug. 45.3(↑1.2) 65.0(↑1.3) 49.3(↑1.3) 40.5(↑1.0) 62.5(↑1.5) 43.7(↑1.3)

D.5 ResNet-101 with Cascade Mask R-CNN, FPN architecture

The results of Cascade [2] Mask R-CNN with R-101 FPN backbone are shown in Table 9. We
experimented with 1x, 2x, and 6x schedule.

D.6 ResNeXt-101 with Mask R-CNN, FPN architecture

The results of Mask R-CNN with X-101 FPN backbone are shown in Table 10. We experimented
with 1x and 2x schedule.

10

Table 9: COCO object detection and instance segmentation. Cascade R101-FPN. In the brackets are the gaps
to the ImageNet supervised pre-training counterpart.

(a) Cascade Mask R-CNN, R101-FPN, 1x schedule

pre-train APbb APbb
50 APbb

75 APmk APmk
50 APmk

75
supervised 44.9 62.3 48.8 38.8 59.9 42.0

InfoMin Aug. 45.8(↑0.9) 63.1(↑0.8) 49.5(↑0.7) 39.6(↑0.8) 60.4(↑0.5) 42.9(↑0.9)

(b) Cascade Mask R-CNN, R101-FPN, 2x schedule

pre-train APbb APbb
50 APbb

75 APmk APmk
50 APmk

75
supervised 45.9 63.4 49.7 39.8 60.9 43.0

InfoMin Aug. 47.3(↑1.4) 64.6(↑1.2) 51.5(↑1.8) 40.9(↑1.1) 62.1(↑1.2) 44.6(↑1.6)

(c) Cascade Mask R-CNN, R101-FPN, 6x schedule

pre-train APbb APbb
50 APbb

75 APmk APmk
50 APmk

75
supervised 46.6 64.0 50.6 40.5 61.9 44.1

InfoMin Aug. 48.2(↑1.6) 65.8(↑1.8) 52.7(↑2.1) 41.8(↑1.3) 63.5(↑1.6) 45.6(↑1.5)

Table 10: COCO object detection and instance segmentation. X101-FPN. In the brackets are the gaps to the
ImageNet supervised pre-training counterpart.

(a) Mask R-CNN, X101-FPN, 1x schedule

pre-train APbb APbb
50 APbb

75 APmk APmk
50 APmk

75
supervised 44.1 64.8 48.3 39.3 61.5 42.3

InfoMin Aug. 45.0(↑0.9) 65.3(↑0.5) 49.5(↑1.2) 40.1(↑0.8) 62.3(↑0.8) 43.1(↑0.8)

(b) Mask R-CNN, X101-FPN, 2x schedule

pre-train APbb APbb
50 APbb

75 APmk APmk
50 APmk

75
supervised 44.6 64.4 49.0 39.8 61.6 43.0

InfoMin Aug. 45.4(↑0.8) 65.3(↑0.9) 49.6(↑0.6) 40.5(↑0.7) 62.5(↑0.9) 43.8(↑0.8)

D.7 ResNeXt-152 with Mask R-CNN, FPN architecture

The results of Mask R-CNN with X-152 FPN backbone are shown in Table 11. We experimented with
1x schedule.. Note in this case, while InfoMin model is pre-trained on the standard ImageNet-1K
dataset, supervised model is pre-trained on ImageNet-5K, which is 6x times larger than ImageNet-1K.
That said, we found InfoMin still outperforms the supervised pre-training.

Table 11: COCO object detection and instance segmentation. X152-FPN. In the brackets are the gaps to the
ImageNet supervised pre-training counterpart. Supervised model is pre-trained on ImageNet-5K, while InfoMin
model is only pre-trained on ImageNet-1K.

(a) Mask R-CNN, X152-FPN, 1x schedule

pre-train APbb APbb
50 APbb

75 APmk APmk
50 APmk

75
supervised 45.6 65.7 50.1 40.6 63.0 43.5

InfoMin Aug. 46.4(↑0.8) 66.5(↑0.8) 50.8(↑0.7) 41.3(↑0.7) 63.6(↑0.6) 44.4(↑0.9)

11

References
[1] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution:

Dataset and study. In CVPR Workshops, 2017. 3
[2] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving into high quality object detection.

In CVPR, 2018. 10
[3] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework

for contrastive learning of visual representations. arXiv:2002.05709, 2020. 5, 6, 7
[4] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum

contrastive learning. arXiv:2003.04297, 2020. 7, 9
[5] Thomas M Cover and Joy A Thomas. Entropy, relative entropy and mutual information.

Elements of information theory, 1991. 1
[6] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical data

augmentation with no separate search. arXiv:1909.13719, 2019. 5
[7] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation learning

by context prediction. In ICCV, 2015. 7
[8] Jeff Donahue and Karen Simonyan. Large scale adversarial representation learning. In NeurIPS,

2019. 7
[9] Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Riedmiller, and Thomas Brox. Dis-

criminative unsupervised feature learning with convolutional neural networks. In NIPS, 2014.
7

[10] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. IJCV, 2010. 8

[11] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by
predicting image rotations. arXiv:1803.07728, 2018. 7

[12] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, 2014. 5

[13] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. arXiv:1911.05722, 2019. 6, 7, 8, 9

[14] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In ICCV, 2017. 8
[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image

recognition. In CVPR, 2016. 6
[16] Olivier J Hénaff, Ali Razavi, Carl Doersch, SM Eslami, and Aaron van den Oord. Data-efficient

image recognition with contrastive predictive coding. arXiv:1905.09272, 2019. 6, 7
[17] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Adam Trischler,

and Yoshua Bengio. Learning deep representations by mutual information estimation and
maximization. In ICLR, 2019. 3

[18] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 1997.
4

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv:1412.6980, 2014. 5

[20] Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. Revisiting self-supervised visual
representation learning. In CVPR, 2019. 7

[21] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In CVPR, 2017. 8

[22] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV,
2014. 8

[23] Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant repre-
sentations. arXiv:1912.01991, 2019. 6, 7, 8

[24] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving
jigsaw puzzles. In ECCV, 2016. 7

12

[25] Chao Peng, Tete Xiao, Zeming Li, Yuning Jiang, Xiangyu Zhang, Kai Jia, Gang Yu, and Jian
Sun. Megdet: A large mini-batch object detector. In CVPR, 2018. 8

[26] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In NIPS, 2015. 8

[27] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudinov. Unsupervised learning of video
representations using lstms. In ICML, 2015. 4

[28] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding.
arXiv:1906.05849, 2019. 3, 4, 6, 7

[29] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2.
https://github.com/facebookresearch/detectron2, 2019. 8

[30] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via
non-parametric instance discrimination. In CVPR, 2018. 5, 6, 7, 8

[31] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In CVPR, 2017. 8

[32] Asano YM., Rupprecht C., and Vedaldi A. Self-labelling via simultaneous clustering and
representation learning. In ICLR, 2020. 7

[33] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In ECCV, 2016.
6, 7

[34] Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. Local aggregation for unsupervised
learning of visual embeddings. arXiv:1903.12355, 2019. 6, 7

13

https://github.com/facebookresearch/detectron2

