
A Linearization Results

In this section, we provide more details on the derivation of the results pertaining to the asymptotic
mean-squared errors in Theorem 2. While [16] provides an outline of the result, we provide some
missing details here, including additional assumptions under which the result in [16] is valid. The
following result from [4] will be useful to us.

A.1 Central Limit Theorem for SA

Statements in this part are adapted from [4, Chapter 2 and 3]. Consider a SA algorithm of the form

ξn = ξn−1 + γnW (ξn−1, Yn), (17)

where ξn lies in Rd, and the state Yn lies in Rk. Suppose the algorithm satisfies following assumptions.
Assumption 1. [4, Page 43, Assumption A]

(a). Decreasing Step Size:

γn ≥ 0;
∑
n

γn = +∞;
∑
n

γαn <∞ for some α > 1. (18)

(b). Markovian Noise: There exists a Markov chain {ηn}, independent of {ξn} with a unique
stationary distribution such that Yn = f(ηn).

(c). Existence of a Mean Vector Field: We assume the existence of the mean vector field defined by

w(ξ) := lim
n→∞

E [W (ξ, Yn)] ,

where the expectation is taken under the distribution of (Yn).

Assumption 1(c) allows us to introduce the ODE

ξ̇ = w(ξ), ξ(0) = z (19)

whose unique solution is denoted as [ξ(z, t)]t≥0. The next assumption we have is on the ODE.
Assumption 2. [4, Assumption (A.2), Assumption (A.2b)] The ODE (19) has an attractor ξ∗, whose
domain of attraction is denoted by D∗. Assumption 1 is satisfied in D∗.

Further, we assume the uniqueness of the attractor.
Assumption 3. [4, Page 108] The ODE is globally asymptotically stable with a unique stable
equilibrium point ξ∗.

Define

C(ξ) :=

+∞∑
n=−∞

Cov[W (ξ, Yn),W (ξ, Y1)] (20)

where Cov denotes the covariance when Y1 is stationary. We can now state the central limit theorem.
Theorem 3. [4, Page 110, Theorem 3] Suppose Assumption 2 and Assumption 3 hold, and the step
size sequence satisfies γn = 1

n . If∇ξw(ξ∗) and C(ξ∗) exist, and λmax(∇ξw(ξ∗)) < − 1
2 , we have

n
1
2 (ξn − ξ∗) −→

d
N (0, P ) (21)

where P is the unique symmetric solution of the Lyapunov equation(
I

2
+∇ξw(ξ∗)

)
P + P

(
I

2
+∇ξw(ξ∗)>

)
+ C(ξ∗) = 0.

A.2 Applications to Q-learning and Double Q-learning

In this section, we show that Theorem 3 is applicable to Q-learning (2) and Double Q-learning (3)
under the assumptions stated in the main body of the paper. Note that the step sizes are assumed to
be αn = g

n , and δn = 2g
n in Theorem 2, which are different from that in Theorem 3. Therefore, we

13



scale the reward function and feature vectors to absorb the constant g (or 2g) in updates of Q-learning
and Double Q-learning. The step sizes are then shifted to 1

n .

Recall Zn = (Xn, Sn+1) defined in the proof of Theorem 2. We first notice that Assumption 1
is automatically satisfied because: 1) The step size condition is fulfilled for 1

n ; 2) The samples
{Zn, n ≥ 0} form a Markov chain independent of θn; 3) The mean vector field w(θ) is well-defined
since {Zn} has a unique limiting stationary distribution, and its state space X × S is finite. As a
result, the ODE for Q-learning is defined as

θ̇(t) = gE
[
φ(Xn)(R(Xn) + γH(θ(t), θ(t), Sn+1)− φ(Xn)>θ(t))

]
, (22)

and that of Double Q-learning is given by

θ̇A(t) = gE
[
φ(Xn)(R(Xn) + γH(θA(t), θB(t), Sn+1)− φ(Xn)>θA(t))

]
, (23a)

θ̇B(t) = gE
[
φ(Xn)(R(Xn) + γH(θB(t), θA(t), Sn+1)− φ(Xn)>θB(t))

]
. (23b)

For ease of notation, denote U(t) = ((θA(t)); (θB(t))). The notation (a;b) is a vector that is the
concatenation of a and b. Also, denote the right hand side of (22) by w(θ(t)), and that of (23) by
w̃(U(t)).

To guarantee Assumption 2 and Assumption 3, we make the following assumption.
Assumption 4. Both θ(t) and U(t) have unique globally asymptotically stable (GAS) equilibrium
points.

Sufficient conditions under which Q-learning with linear function approximation satisfies Assumption
4 are studied in [25, 27]. While little is known on the convergence of Double Q-learning with
linear function approximation, it is commonly perceived that double Q-learning is more stable than
Q-learning even when equipped with neural networks [33].

Denote the unique stable point of θ(t) as θ∗, and that of U(t) as U∗. It is shown in [27] that θ∗ is
the solution to the projected Bellman equation. The following lemma shows that (θ∗; θ∗) is also the
GAS equilibrium point of the ODE of Double Q-learning. The reader is referred to the next section
for the proof.
Lemma 1. The point U∗ is exactly (θ∗; θ∗).

To apply Theorem 3, we need to work out ∇θw(θ∗), Cθ(θ
∗),∇U w̃(U∗), CU (U∗) which are the

analogs of the quantities in (20) for Q-learning and Double Q-learning, respectively. However, since
the function H in (22) could be non-differentiable around θ∗, we impose the following assumption
from [16] that ensures the existence of∇θw(θ∗) and ∇U w̃(U∗).
Assumption 5. The optimal policy π∗ := πθ∗ is unique.

Under this assumption, we summarize the exact forms of∇θw(θ∗), Cθ(θ
∗),∇U w̃(U∗), CU (U∗) in

the following result. The proof of this lemma is deferred to the next section.
Lemma 2. Following the notation in the proof of Theorem 2, the following equalities hold:

∇θw(θ∗) = gĀ, Cθ(θ
∗) = g2(B1 +B2); (24a)

∇U w̃(U∗) = gĀD, CU (U∗) = 2g2

(
B1 B2

B2 B1

)
, (24b)

where B1 := E
[∑∞

n=1W (Zn)W (Z1))>
]
, B2 := E

[∑∞
n=2W (Zn)W (Z1)>

]
, and W (Zn) :=

(b(Zn) +A2(Zn)θ∗ −A1(Zn)θ∗) .

Note that in Theorem 2, we assume θ∗ = 0. Therefore, W (Zn) = b(Zn).

Define g0 := inf{g ≥ 0 : gmax(λmax(Ā), λmax(ĀD)) < −1}. Then whenever g > g0, we have
λmax(∇θw(θ∗)) < − 1

2 , λmax(∇U w̃(U∗)) < − 1
2 . So far we have checked all conditions in Theorem

3 for Q-learning and Double Q-learning. Therefore, the central limit theorem holds:

n
1
2 (θn − θ∗) −→

d
N (0, PQ) (25a)

n
1
2 (Un − U∗) −→

d
N (0, PD) (25b)
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where PQ, PD are given by(
I

2
+ gĀ

)
PQ + PQ

(
I

2
+ gĀ>

)
+ g2(B1 +B2) = 0 (26a)(

I

2
+ gĀD

)
PD + PD

(
I

2
+ gĀ>D

)
+ 2g2

(
B1 B2

B2 B1

)
= 0. (26b)

We can see Eq. (26a) and Eq. (26b) are indeed identical to the two equations, Eq. (13) and Eq. (14),
for the asymptotic covariance matrices of Q-learning and Double Q-learning. However, since we only
establish convergence in distribution of a sequence of random vectors, it does not immediately imply
that the limit of variances of these random vectors converges to the variance of the corresponding
normal distribution. To fix this gap, we first observe that the function x>x is continuous where x is a
vector. By the Continuous Mapping Theorem for random vectors and Eq. (25), it holds

n ‖θn − θ∗‖22 −→
d
‖XQ‖22 (27a)

n ‖(Un − U∗)‖22 −→
d
‖XD‖22 . (27b)

where XQ follows the normal distribution N (0, PQ), and XD follows N (0, PD). Here, the conver-
gence in distribution is for random variables. Finally, to establish the convergence of the mean of
these random variables, we need uniform integrability, which we assume as follows.
Assumption 6. The three sequences of random variables

{n ‖θn − θ∗‖22 , n ≥ 1}, {n
∥∥θAn − θ∗∥∥2

2
, n ≥ 1}, {n

∥∥θBn − θ∗∥∥2

2
, n ≥ 1}

are all uniformly integrable.

Assumption 6 directly implies the sequence {n ‖Un − U∗‖22 , n ≥ 1} is uniformly integrable. Com-
bining (27) with Assumption 6, we have

lim
n→∞

nE
[
‖θn − θ∗‖22

]
= E

[
‖XQ‖22

]
= Tr(PQ) (28a)

lim
n→∞

nE
[
‖(Un − U∗)‖22

]
= E

[
‖XD‖22

]
= Tr(PD). (28b)

Under all the assumptions stated in this section, the linearizations in Section 2.3 are valid.

A.3 Proof of Lemmas

In this section, we provide missing proofs of Lemma 1 and Lemma 2.

Proof of Lemma 1: By Assumption 4, the ODE of Double Q-learning has a unique GAS equilib-
rium point. Denote this point as (θ1; θ2). By the symmetry of the ODE (23), (θ2; θ1) is also a GAS
equilibrium point of the ODE. But such point is unique. We thus have θ1 = θ2. In this case, the ODE
(23) degenerates to the ODE (22) of Q-learning. Therefore, we have θ1 = θ2 = θ∗.

Proof of Lemma 2: We show it for Q-learning. The same strategy can be applied to Double
Q-learning.

Recall the ODE of Q-learning defined as (22). We know that θ∗ is the unique GAS equilibrium point
of this ODE. Recall that the right hand side of (22) is denoted by w(θ(t)). Then at the point θ∗, the
following equality holds:

w(θ∗) = g
(
E [φ(Xn)R(Xn)] + γE [φ(Xn)H(θ∗, θ∗, Sn+1)]− E

[
φ(Xn)φ(Xn)>

]
θ∗
)
.

Note that the optimal policy π∗ is unique by assumption. We can rewrite H(θ∗, θ∗, Sn+1) as
φ(Sn+1, π

∗(Sn+1))>θ∗. Then we can see

w(θ∗) = g
(
E [φ(Xn)R(Xn)] + γE

[
φ(Xn)φ(Sn+1, π

∗(Sn+1))>θ∗
]
− E

[
φ(Xn)φ(Xn)>

]
θ∗
)

(29)

= gE [φ(Xn)R(Xn)] + g(Ā2 − Ā1)θ∗. (30)
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which is the same as the ODE of the linearization (4) at the point θ∗.

Furthermore, since the optimal policy is unique for θ∗, we can define a constant

ω := min
(s,a)∈X : a 6=π∗(s)

(φ(s, π∗(s))>θ∗ − φ(s, a)>θ∗) > 0

be the minimum gap between value functions of optimal actions and non-optimal actions for all
states, estimated by θ∗. Let ε = ω

3‖Φ‖1
. Consider any θ ∈ Rd satisfying ‖θ − θ∗‖∞ ≤ ε. We claim

that the greedy policy πθ is equal to π∗. To see that it is true, let us fix a state s ∈ S. For any a ∈ A
and a 6= π∗(s), it holds

φ(s, π∗(s))>θa−φ(s, a)>θa ≥ φ(s, π∗(s))>θ∗−φ(s, a)>θ∗−2
∥∥Φ>(θ − θ∗)

∥∥
∞ ≥ ω−

2ω

3
> 0.

Therefore, πθ = π∗. Consequently, for any θ such that ‖θ − θ∗‖∞ ≤ ε, it holds w(θ) =

gE [φ(Xn)R(Xn)] + g(Ā2 − Ā1)θ. Therefore, ∇θw(θ∗) = gA = g(Ā2 − Ā1).

For Cθ(θ∗), define

W (Zn) := φ(Xn)R(Xn) + γφ(Sn+1, π
∗(Sn+1))θ∗ − φ(Xn)φ(Xn)>θ∗.

Then by definition,

Cθ(θ
∗) =

+∞∑
n=−∞

E
[
(gW (Zn)− w(θ∗))(gW (Z1)− w(θ∗))>

]
= g2

+∞∑
n=−∞

E
[
(W (Zn))(W (Z1))>

]
= g2

(
+∞∑
n=1

E
[
(W (Zn))(W (Z1))>

]
+

+∞∑
n=2

E
[
(W (Zn))(W (Z1))>

])
.

B A Stronger Result for the Mean-Squared Error

In this section, we provide a stronger result for the asymptotic mean-squared error of Double Q-
learning. Assume that the vector b(x) defined in the proof of Theorem 2 is not the same for all x ∈ X .
Additionally, assume that θ∗ = 0. Following the notation in Theorem 2, we have this result.
Theorem 4. Let the step sizes of Q-learning and Double Q-learning be αn = g/n and δn = 2g/n
respectively, where g is a positive constant. With the same constant g0 in Theorem 2, for any g > g0,
it holds

AMSE(θA) ≥ AMSE(θ) + c0g

where c0 is a positive constant independent from g.

Theorem 4 shows that in general, the asymptotic mean-squared error of Double Q-learning is worse
than that of Q-learning, when using twice of the step size. Moreover, the gap scales at least linearly
with respect to the step size.

To prove Theorem 4, we need two additional lemmas. The first lemma is on the relationship between
the two matrices ĀD and Ā defined in the proof of Theorem 2.
Lemma 3. Following the notation in the proof of Theorem 2, consider the matrix ĀD =(
−Ā1 Ā2

Ā2 −Ā1

)
. The set of its eigenvalues is given by the union of eigenvalues of A2 −A1 and that

of −(A2 +A1).

Proof of Lemma 3: Suppose λ is an eigenvalue of ĀD with an eigenvector v = (v>1 , v
>
2 )> 6= 0

where v1, v2 ∈ Rd. We claim that λ is either an eigenvalue of −Ā1 + Ā2 or an eigenvalue of
−(Ā1 + Ā2). To see this fact, it holds

ĀD

[
v1

v2

]
= λ

[
v1

v2

]
.
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If v1 + v2 6= 0, then
(−Ā1 + Ā2)(v1 + v2) = λ(v1 + v2),

showing that λ is an eigenvalue of−Ā1 + Ā2. Otherwise, suppose v1 + v2 = 0. Then v1 = −v2, and

−(Ā1 + Ā2)v1 = λv1.

We can also show that for every eigenvalue of −Ā1 + Ā2 and −(Ā1 + Ā2), we can construct a
corresponding eigenvector with respect to ĀD. Therefore, the set of eigenvalues of ĀD is exactly the
union of eigenvalues of −Ā1 + Ā2 and −(Ā1 + Ā2).

The second lemma is on the trace of the solution of a Lyapunov equation.

Lemma 4. Consider a Lyapunov equation

AX +XA> +Q = 0,

where A,Q ∈ Rn×n are given, for some positive integer n. If A is Hurwitz, and Q < 0, and
Tr(Q) > 0, then Tr(X) > 0.

Note that the notation Q < 0 means that Q is a positive semi-definite matrix.

Proof of Lemma 4: By [10, Theorem 5.6], if A is Hurwitz, then X has a unique solution that can
be expressed as

X =

∫ ∞
0

eAtQeA
>t dt. (31)

Since Q < 0 by assumption, and (eAt)> = eA
>t for all t, we have X < 0. We prove Tr(X) > 0 by

contradiction. Suppose Tr(X) = 0. Therefore, as X < 0, we have: v>Xv = 0,∀ vectors v (since
all eigenvalues of X are 0).

Denote the largest eigenvalue of Q as λm, which must be a positive real value because Q < 0 and
Tr(Q) > 0. Suppose v is the unit eigenvector corresponding to λm, i.e., Qv = λmv, and ‖v‖2 = 1.
We have

v>Xv =

∫ ∞
0

v>eAtQeA
>tv dt. (32)

Note that limt→0 e
At = I , and limt→0 e

A>t = I. Therefore, for ε = min
(

λm

‖Q‖2
, 1
)

, there exists a

t̃ > 0, such that for any 0 ≤ t ≤ t̃, we have∥∥eAt − I∥∥
2
≤ ε,

∥∥∥eA>t − I∥∥∥
2
≤ ε. (33)

Equation (32) can be rewritten as

v>Xv =

∫ t̃

0

v>eAtQeA
>tv dt+

∫ ∞
t̃

v>eAtQeA
>tv dt (34)

a
≥
∫ t̃

0

v>eAtQeA
>tv dt (35)

=

∫ t̃

0

v>(I + eAt − I)Q(I + eA
>t − I)v dt (36)

=

∫ t̃

0

v>Qv dt+

∫ t̃

0

v>(eAt − I)Qv dt+

∫ t̃

0

v>Q(eA
>t − I)v dt

+

∫ t̃

0

v>(eAt − I)Q(eA
>t − I)v dt. (37)

Inequality a follows from the fact that eAtQeA
>t < 0, for any t ≥ 0. To lower bound (37), we first

have
∫ t̃

0
v>Qv dt = t̃ ‖v‖22 λm, by definition of v. For the last three terms, using the definition of

17



matrix norm and (33), the following hold∣∣∣∣∣
∫ t̃

0

v>(eAt − I)Qv dt

∣∣∣∣∣ ≤ t̃ ‖v‖22 ‖Q‖2 ε (38)∣∣∣∣∣
∫ t̃

0

v>Q(eA
>t − I)v dt

∣∣∣∣∣ ≤ t̃ ‖v‖22 ‖Q‖2 ε (39)∣∣∣∣∣
∫ t̃

0

v>(eAt − I)Q(eA
>t − I)v dt

∣∣∣∣∣ ≤ t̃ ‖v‖22 ‖Q‖2 ε2. (40)

Therefore, we have

v>Xv ≥ t̃ ‖v‖22 λm − 2t̃ ‖v‖22 ‖Q‖2 ε− t̃ ‖v‖
2
2 ‖Q‖2 ε

2

≥ t̃ ‖v‖22
(
λm − ‖Q‖2

(
2ε+ ε2

))
≥ 1

2
t̃ ‖v‖22 λm

(41)

by the definition of ε. We can see that v>Xv > 0, which contradicts the assumption that v>Xv = 0.
Therefore, Tr(X) > 0 by contradiction.

We now present the proof of Theorem 4.

Proof of Theorem 4: This proof follows the notation in the proof of Theorem 2. In particular, we
assume that the random vector b(Xn) is centered at 0. Recall Eq. (15). Subtracting the block on the
upper left corner by that on the upper right corner, we have

(V − C)

(
1

2
I − g(Ā1 + Ā2)

)>
+

(
1

2
I − g(Ā1 + Ā2)

)
(V − C) + 2g2(B1 −B2) = 0. (42)

By the definition of B1 and B2, we have B1 − B2 = E
[
b(X1)b(X1)>

]
, whose trace is pos-

itive by assumptions. As in the proof of Theorem 2, set the constant g0 := inf{g ≥ 0 :

gmax(λmax(Ā), λmax(ĀD)) < −1}. Since the matrix ĀD is defined as
(
−Ā1 Ā2

Ā2 −Ā1

)
, we know

by Lemma 3, the set of eigenvalues of −(Ā1 + Ā2) is a subset of eigenvalues of ĀD. Therefore, for
g > g0, we have gλmax(−(Ā1 + Ā2)) < −1. It immediately implies 1

2I − g(Ā1 + Ā2) is Hurwitz.
Utilizing Lemma 4, we have Tr(V − C) > 0. Together with the result V + C = 2ΣQ∞ in the proof
of Theorem 2, we have

AMSE(θA) = Tr(V ) = Tr(ΣQ∞) +
Tr(V − C)

2
> Tr(ΣQ∞) = AMSE(θ).

On the other hand, to show AMSE(θA)−AMSE(θ) indeed scales up linearly with respect to g, we
divide both sides of Eq. (42) by g

(V − C)

(
1

2g
I − (Ā1 + Ā2)

)>
+

(
1

2g
I − (Ā1 + Ā2)

)
(V − C) + 2g(B1 −B2) = 0.

Since 1
2g I − (Ā1 + Ā2) is Hurwitz, the following equation has a unique positive definite solution X .

X

(
1

2g
I − (Ā1 + Ā2)

)>
+

(
1

2g
I − (Ā1 + Ā2)

)
X + (B1 −B2) = 0

Therefore, Tr(V − C) = 2gTr(X). Further, let X ′ be the solution to the following Lyapunov
equation

X ′
(
−(Ā1 + Ā2)

)>
+
(
−(Ā1 + Ā2)

)
X ′ + (B1 −B2) = 0.

Since −(Ā1 + Ā2) is Hurwitz, and B1 − B2 has a positive trace, we have Tr(X ′) > 0, which is
independent of g. By the expression Eq. (31) of X and X ′, it can be easily shown that Tr(X) ≥
Tr(X ′). This proves that AMSE(θA)−AMSE(θ) ≥ c0g for some positive constant c0 independent
from g.
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