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Abstract

We consider reinforcement learning (RL) in episodic MDPs with adversarial full-
information reward feedback and unknown fixed transition kernels. We propose
two model-free policy optimization algorithms, POWER and POWER++, and
establish guarantees for their dynamic regret. Compared with the classical notion
of static regret, dynamic regret is a stronger notion as it explicitly accounts for the
non-stationarity of environments. The dynamic regret attained by the proposed
algorithms interpolates between different regimes of non-stationarity, and moreover
satisfies a notion of adaptive (near-)optimality, in the sense that it matches the
(near-)optimal static regret under slow-changing environments. The dynamic regret
bound features two components, one arising from exploration, which deals with the
uncertainty of transition kernels, and the other arising from adaptation, which deals
with non-stationary environments. Specifically, we show that POWER++ improves
over POWER on the second component of the dynamic regret by actively adapting
to non-stationarity through prediction. To the best of our knowledge, our work is
the first dynamic regret analysis of model-free RL algorithms in non-stationary
environments.

1 Introduction

Classical reinforcement learning (RL) literature often evaluates an algorithm by comparing its
performance with that of the best fixed (i.e., stationary) policy in hindsight, where the difference is
commonly known as regret. Such evaluation metric implicitly assumes that the environment is static
so that it is appropriate to compare an algorithm to a single best policy. However, as we advance
towards modern and practical RL problems, we face challenges arising in dynamic and non-stationary
environments for which comparing against a single policy is no longer sufficient.

Two of the most prominent examples of RL for non-stationary environments are continual RL [30]
and meta RL [16, 51] (and more broadly meta learning [20, 21]), which are central topics in the
study of generalizability of RL algorithms. In these settings, an agent encounters a stream of tasks
throughout time and aims to solve each task with knowledge accrued via solving previous tasks.
The tasks can be very different in nature from each other, with potentially increasing difficulties. In
particular, the reward mechanism may vary across tasks, and therefore requires the agent to adapt to
the change of tasks. Another example of RL under non-stationary environments is human-machine
interaction [23, 41]. This line of research studies how humans and machines (or robots) should interact
or collaborate to accomplish certain goals. In one scenario, a human teaches a robot to complete a
task by assigning appropriate rewards to the robot but without intervening its dynamics. The rewards
from the human can depend on the stage of the learning process and the rate of improvement in the
robot’s behaviors. Therefore, the robot has to adjust its policy over time to maximize the rewards it
receives.
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In the above examples, it is uninformative to compare an algorithm with a fixed stationary policy,
which itself may not perform well given the rapidly changing nature of environments. It is also
unclear whether existing algorithms, designed for static environments and evaluated by the standard
notion of regret, are sufficient for tackling non-stationary problems.

We aim to address these challenges in this paper. We consider the setting of episodic Markov decision
processes (MDPs) with adversarial full-information reward feedback and unknown fixed transition
kernels. We are interested in the notion of dynamic regret, the performance difference between an
algorithm and the set of policies optimal for individual episodes in hindsight. For non-stationary RL,
dynamic regret is a significantly stronger and more appropriate notion of performance measure than
the standard (static) regret, but on the other hand more challenging for algorithm design and analysis.
We propose two efficient, model-free policy optimization algorithms, POWER and POWER++. Under
a mild regularity condition of MDPs, we provide dynamic regret analysis for both algorithms and we
show that the regret bounds interpolate bewteen different regimes of non-stationarity. In particular,
the bounds are of order Õ(T 1/2) when the underlying model is nearly stationary, matching with
existing near-optimal static regret bounds. In that sense, our algorithms are adaptively near-optimal
in slow-varying environments. To the best of our knowledge, we provide the first dynamic regret
analysis for model-free RL algorithms under non-stationary environments.

Our dynamic regret bounds naturally decompose into two terms, one due to maintaining optimism
and encouraging exploration in the face of uncertainty associated with the transition kernel, and
the other due to the changing nature of reward functions. This decomposition highlights the two
main components an RL algorithm needs in order to perform well in non-stationary environments:
effective exploration under uncertainty and self-stabilization under drifting reward signals. Our
second algorithm, POWER++, takes advantage of active prediction and improves over POWER in
terms of the second term in the dynamic regret bounds.

Our contributions. The contributions of our work can be summarized as follows:

• We propose two model-free policy optimization algorithms, POWER and POWER++, for
non-stationary RL with adversarial rewards;

• We provide dynamic regret analysis for both algorithms, and the regret bounds are applicable
across all regimes of non-stationarity of the underlying model;

• When the environment is nearly stationary, our dynamic regret bounds are of order Õ(T 1/2)
and match the near-optimal static regret bounds, thereby demonstrating the adaptive near-
optimality of our algorithms in slow-changing environments.

Related work. Dynamic regret has been considered for RL in several papers. The work of [27]
considers the setting of online MDP in which the transition kernel and reward function are allowed to
change l times, and the regret compares the algorithm against optimal policies for each of the l + 1
periods. It proposes UCRL2 with restart, which achieves an Õ((l+ 1)1/3T 2/3) regret where T is the
number of timesteps. The work of [22] considers the same setting and shows that UCRL2 with sliding
windows achieves the same regret. Generalizing the previous settings, the work of [39] studies the
setting where the changes of model is allowed to take place in every timestep. It proves that UCRL
with restart achieves a regret of Õ((Br +Bp)

1/3T 2/3) for sufficiently large Br, Bp > 0, where Br
and Bp are the variations of rewards and transition kernels over the T timesteps, respectively. The
work of [13] proposes the sliding-window UCRL2 with confidence widening, which achieves an
Õ((Br +Bp + 1)1/4T 3/4) regret; under additional regularity conditions, the regret can be improved
to Õ((Br+Bp+1)1/3T 2/3). A Bandit-over-RL algorithm is also provided by [13] to adaptively tune
the UCRL2-based algorithm to achieve an Õ((Br +Bp + 1)1/4T 3/4) regret without knowing Br or
Bp. The work [34] considers the setting of episodic MDPs in which reward functions and transition
kernels get corrupted by an adversary in K0 episodes. It proposes an algorithm called CRANE-RL
that achieves a regret of Õ(K0

√
T +K2

0 ). We remark that all the work discussed so far study model-
based algorithms, and we refer interested readers to [40] for an excellent survey on the topic of RL in
non-stationary environments. Dynamic regret has also been studied under the settings of multi-armed
bandits [3, 6, 8, 11, 12, 31–33, 48], online convex optimization [7, 24–26, 44, 47, 49, 52, 55–62] and
games [17]. Interestingly, the notion of dynamic regret is related to the exploitability of strategies in
two-player zero-sum games [14]. We would also like to mention a series of papers that consider the
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setting of non-stationary MDPs [1, 2, 10, 15, 19, 28, 36–38, 41, 45, 46, 53, 54], although they focus
on static regret analysis.

Notations. For a positive integer n, we let [n] := {1, 2, . . . , n}. We write x+ = max{x, 0} for
a scalar or vector x, where the maximum operator is applied elementwise. For two non-negative
sequences {ai} and {bi}, we write ai . bi if there exists a universal constant C > 0 such that
ai ≤ Cbi for all i. We write ai � bi if ai . bi and bi . ai. We use Õ(·) to denote O(·) while hiding
logarithmic factors. We use ‖ · ‖ or ‖ · ‖2 to denote the `2 norm of a vector or spectral norm of a
matrix, and ‖ · ‖1 for the `1 norm of a vector. We denote by ∆(X ) the set of probability distributions
supported on a discrete set X . We define

∆(X | Y, H) :=
{
{πh(· | ·)}h∈[H] : πh(· | y) ∈ ∆(X ) for any y ∈ Y and h ∈ [H]

}
for any set Y and horizon length H ∈ Z>0. For p1, p2 ∈ ∆(X ), we define DKL(p1‖p2) to be the KL
divergence between p1 and p2, that is, DKL(p1‖p2) :=

∑
x∈X p1(x) log

(
p1(x)
p2(x)

)
.

2 Preliminaries

2.1 Episodic MDPs and dynamic regret

In this paper, we study RL in non-stationary environments via episodic MDPs with adversarial
full-information reward feedback and unknown fixed transition kernels. An episodic MDP is defined
by the state space S, the action space A, the length H of each episode, the transition kernels
{Ph(· | ·, ·)}h∈[H] and the reward functions {rkh : S × A → [0, 1]}(k,h)∈[K]×[H]. We assume that
the reward functions are deterministic and potentially different across episodes, and that both S and
A are discrete sets of sizes S := |S| and A := |A|, respectively.

An agent interacts with the MDP through K episodes without knowledge of {Ph}. At the beginning
of episode k, the environment provides an arbitrary state sk1 to the agent and chooses reward functions
{rkh}h∈[H]. The choice of the reward functions is possibly adversarial and may depend on the history
of the past (k − 1) episodes. In step h of episode k, the agent observes state skh and then takes an
action akh, upon which the environment transitions to the next state skh+1 ∼ P(· | skh, akh). At the
same time, the environment also reveals the reward function rkh to the agent, and the agent receives
the reward rkh(skh, a

k
h) (known as the full-information setting). At step H + 1, the agent observes

state skH+1 but does not take any action (therefore receiving no reward), and episode k is completed.
We denote by T := KH the total number of steps taken throughout the K episodes.

For any fixed policy π = {πh}h∈[H] ∈ ∆(A | S, H) and any (k, h, s, a) ∈ [K]× [H]× S ×A, we
define the value function V π,kh : S → R as

V π,kh (s) := Eπ

[
H∑
i=h

rki (si, ai)

∣∣∣∣∣ sh = s

]
,

and the corresponding action-value function Qπ,kh : S ×A → R as

Qπ,kh (s, a) := Eπ

[
H∑
i=h

rki (si, ai)

∣∣∣∣∣ sh = s, ah = a

]
.

Here, the expectation Eπ[·] is taken over the randomness of the state-action tuples
{(sh, ah, sh+1)}h∈[H], where the action ah is sampled from the policy πh(· | sh) and the next
state sh+1 is sampled from the transition kernel Ph(· | sh, ah). The Bellman equation is given by

Qπ,kh (s, a) = rkh + PhV π,kh+1, V π,kh (s) :=
〈
Qπ,kh , πh

〉
A
, V πH+1(s) = 0. (1)

In Equation (1), we use 〈·, ·〉A to denote the inner product over A and we will omit the subscript A
in the sequel when appropriate; we also define the operator

(Phf)(s, a) := Es′∼Ph(· | s,a)[f(s′)]
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for any function f : S → R.

Under the setting of episodic MDPs, the agent aims to approximate the optimal non-stationary policy
by interacting with the environment. Let π∗,k = argmaxπ∈∆(A|S,H) V

π,k
1 (sk1) be the optimal policy

of episode k, and suppose that the agent executes policy πk in episode k. The difference in values
between V π

k,k
1 (sk1) and V π

∗,k,k
1 (sk1) serves as the regret or the sub-optimality of the agent’s policy

πk in episode k. Therefore, the dynamic regret for K episodes is defined as

D-Regret(K) :=
∑
k∈[K]

[
V π
∗,k,k

1 (sk1)− V π
k,k

1 (sk1)
]
. (2)

Dynamic regret is a stronger notion than the classical regret measure found in the literature of online
learning and reinforcement learning, which is also known as static regret and defined as

Regret(K) :=
∑
k∈[K]

[
V π
∗,k

1 (sk1)− V π
k,k

1 (sk1)
]
, (3)

where π∗ = argmaxπ∈∆(A|S,H)

∑
k∈[K] V

π,k
1 (sk1). In words, dynamic regret compares the agent’s

policy to the optimal policy of each individual episode in the hindsight, while static regret compares
the agent’s policy to only the optimal fixed policy over all episodes combined. Therefore, the notion
of dynamic regret is a more natural measure of performance under non-stationary environments. It is
clear that dynamic regret always upper bounds static regret:

D-Regret(K) =
∑
k∈[K]

[
max

π∈∆(A|S,H)
V π,k1 (sk1)− V π

k,k
1 (sk1)

]
≥ max
π∈∆(A|S,H)

∑
k∈[K]

[
V π,k1 (sk1)− V π

k,k
1 (sk1)

]
= Regret(K).

When {π∗,k} happen to be identical for all episodes k ∈ [K], dynamic regret reduces to static regret.

2.2 Model assumptions

For any policy π, step h ∈ [H] and states s, s′ ∈ S, we denote by Pπh (s′ | s) the probability of
transitioning from s to s′ in step h when policy π is executed, i.e., Pπh (s′ | s) :=

∑
a∈A Ph(s′ | s, a) ·

πh(a | s). The quantity Pπh is also known as the visitation measure of π at state s and step h. For any
pair of policies π and π′, we define the shorthands

‖πh − π′h‖∞ := max
s∈S
‖πh(· | s)− π′h(· | s)‖1,

‖Pπh − Pπ
′

h ‖∞ := max
s∈S
‖Pπh (· | s)− Pπ

′

h (· | s)‖1.

The following assumption stipulates that the visitation measures are smooth with respect to policies.
Assumption 1 (Smooth visitation measures). We assume that there exists a universal constant C > 0
such that ‖Pπh − Pπ

′

h ‖∞ ≤ C · ‖πh − π′h‖∞ for all h ∈ [H] and all pairs of policies π, π′.

Assumption 1 states that the visitation measures do not change drastically when similar policies are
executed. This notion of smoothness in visitation measures also appears in [41] in the context of
two-player games.
Remark 1. Assumption 1 can in fact be relaxed to ‖Pπh −Pπ

′

h ‖∞ ≤ C · ‖πh − π′h‖∞ for all h ∈ [H]
and C = O(Tα) that holds for all α > 0 (i.e., the Lipschitz parameter C is sub-polynomial in T ),
and our algorithms and results remain the same. We choose to instead require C > 0 to be a universal
constant for clear exposition.

Next, we introduce several measures of changes in MDPs and algorithms. Define

PT :=
∑
k∈[K]

∑
h∈[H]

‖π∗,kh − π∗,k−1
h ‖∞, (4)

where we set π∗,0h = π∗,1h for h ∈ [H]. Note that PT measures the total variation in the optimal
policies of adjacent episodes. Oftentimes, algorithms are designed to estimate the optimal policies
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{π∗,k}k∈[K] by estimating action-value functions {Qπ∗,k,k}k∈[K] via iterates {Qk}k∈[K]. For such
algorithms, we define

DT :=
∑
k∈[K]

∑
h∈[H]

max
s∈S
‖Qkh(s, ·)−Qk−1

h (s, ·)‖2∞, (5)

where we set Q0
h = Q1

h for h ∈ [H]. Therefore, the quantity DT computes total variation in
algorithmic iterates {Qk}. The notions of PT and DT are also used in the work of [7, 24, 25, 43, 62]
and are known as variation budgets or path lengths. We assume that we have access to quantities
PT and DT or their upper bounds via an oracle, but we do not know {π∗,k}. Such assumptions are
standard in non-stationary RL and online convex optimization [7, 22, 27, 39, 42, 43].

2.3 Connections with popular RL paradigms

We briefly discuss how the setting introduced in Section 2.1 is related to several popular paradigms
of RL. In certain settings of continual and meta RL, an agent needs to solve tasks one after another
in the same physical environment and receives rewards for each task commensurate to the agent’s
performance in solving the task. A task can therefore be seen as an episode in our episodic setting.
Since the tasks are presented and solved within the same physical environment, it is sufficient to
assume a fixed transition model as we do in Section 2.1. On the other hand, the tasks to be solved by
the agent can be substantially different from each other in reward mechanism, as such detail of each
task is potentially determined by the agent’s performance in all previous tasks. This suggests that the
rewards of the tasks are possibly non-stationary, corresponding to the quantities {rkh} in our setting.

Our setting can also be viewed as a high-level abstraction for human-machine interaction. As in the
example discussed in Section 1, a human guides a robot (the learner) to accomplish certain tasks
by only presenting rewards according to the performance of the robot. Here, we can think of the
period in between two presented rewards as an episode in our setting. We may also set the physical
state of the robot as the state of our model, thus implying a fixed state transition from the robot’s
perspective. Moreover, the rewards are controlled by the human in a way that possibly depends on
time and history of the robot’s performance, which corresponds to our assumption on {rkh}.

3 Algorithms

In this section, we present two efficient and model-free algorithms: Policy Optimization With
PEriodic Restart (POWER) and its enhanced version, POWER++. Let us introduce some additional
notations before proceeding. We set d = |S| |A|, and let φ(s, a) be the canonical basis of Rd
corresponding to the state-action pair (s, a) ∈ S ×A: that is, the (s′, a′)-th entry of φ(s, a) equals to
1 if (s, a) = (s′, a′) and 0 otherwise.

3.1 POWER

We present our first algorithm, POWER, in Algorithm 1. Algorithm 1 is inspired by the work of
[9, 18]. It mainly consists of a policy update and a policy evaluation step. The policy update step in
Line 7 is equivalent to solving the following optimization problem:

πk = argmax
π∈∆(A | S,H)

Lk−1(π)− 1

α
Eπk−1

 ∑
h∈[H]

DKL(πh(· | sh)‖πk−1
h (· | sh))

∣∣∣∣∣ s1 = sk1

 , (6)

where

Lk−1(π) := V π
k−1,k−1

1 (sk1)

+ Eπk−1

 ∑
h∈[H]

〈
Qπ

k−1,k−1
h (sh, ·), πh(· | sh)− πk−1

h (· | sh)
〉 ∣∣∣∣∣ s1 = sk1


is a local linear approximation of V π,k−1

1 (sk1) at π = πk−1. In view of Equation (6), we observe that
the policy update step can be seen as a mirror descent (MD) step with KL divergence as the Bregman
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Algorithm 1 POWER
Input: Confidence level δ, number of episodes K, restart cycle length τ , step size α, regularization

factor λ and bonus multiplier β
1: for episode k = 1, . . . ,K do
2: Receive the initial state sk1
3: if k mod τ = 1 then . periodic restart
4: Set {Qk−1

h }h∈[H] as zero functions and {πk−1
h }h∈[H] as uniform distributions on A

5: end if
6: for step h = 1, 2, . . . ,H do . policy update
7: Update the policy by πkh(· | ·) ∝ πk−1

h (· | ·) · exp{α ·Qk−1
h (·, ·)}

8: Take action akh ∼ πkh(· | skh)
9: Observe the reward function rkh(·, ·) and receive the next state skh+1

10: end for
11: Compute {Qkh} by EvaluatePolicy(k, {rkh}, {πkh}, λ, β) . policy evaluation
12: end for

divergence. The policy evaluation step in Line 11 estimates value functions of each step. To that
end, it invokes a subroutine, EvaluatePolicy, which computes the intermediate estimates wkh as the
solution of the following regularized least-squares problem

wkh ← argmin
w∈Rd

∑
t∈[k−1]

(V kh+1(sth+1)− φ(sth, a
t
h)>w)2 + λ · ‖w‖22.

This step can be efficiently computed by taking the sample mean of {V kh+1(sth+1)}t∈[k−1]. In fact,
one has

wkh(s, a) = φ(s, a)>wkh =
∑
s′∈S

Nk
h (s, a, s′)

Nk
h (s, a) + λ

· V kh+1(s′),

for each (s, a), where the function Nk
h counts the number of times each tuple (s, a, s′) or (s, a) has

been visited by the algorithm at step h prior to episode k. To facilitate exploration in the face of
uncertainties, EvaluatePolicy additionally defines a bonus term Γkh(s, a) ∝ [Nk

h (s, a)]−1/2 for each
state-action pair (s, a). The estimated action-value function is then set as Qkh = rkh + wkh + Γkh. We
provide the detailed implementation of the subroutine EvaluatePolicy in Algorithm 3 in Appendices.

In addition to updating and evaluating policy, Algorithm 1 features a periodic restart mechanism,
which resets its policy estimate every τ episodes. Restart mechanisms have been used to handle
non-stationarity in RL [27, 39] and related problems including bandits [6], online convex optimization
[7, 26] and games [17, 41]. Intuitively, by employing the restart mechanism, Algorithm 1 is able
to stabilize its iterates against non-stationary drift in the learning process due to adversarial reward
functions. We remark that our Algorithm 1 is very different from those used in the existing non-
stationary RL literature. Notably, Algorithm 1 is model-free, which is more efficient than the
model-based algorithms proposed in e.g., [12, 22, 27, 34, 39], with respect to both time and space
complexities.

3.2 POWER++

Instead of only passively tackling non-stationarity, we may enhance our algorithms with active
prediction of the environment. Optimistic mirror descent (OMD) provides exactly such prediction
functionality via the so-called predictable sequences. It is well-known in the online learning literature
that OMD provides improved regret guarantees than MD algorithm [42, 43]. First proposed by [35]
under the name “mirror-prox”, OMD maintains a sequence of main and intermediate iterates. Through
the predictable sequences in intermediate iterates, it exploits certain structures of the problem at
hand, and therefore achieve better theoretical guarantees. We incorporate predictable sequences into
POWER and arrive at an enhanced algorithm, POWER++, which is presented in Algorithm 2.

In Algorithm 2, Lines 8 and 12 together form the OMD steps. Line 10 estimates the intermediate
action-value function Qk−1/2

h to be used in the second OMD step (Line 12). The series of iterates
{Qk−1

h } in Line 8 is the so-called predictable sequence in OMD. Note that we do not execute the
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Algorithm 2 POWER++
Input: Confidence level δ, number of episodes K, restart cycle length τ , step size α, regularization

factor λ and bonus multiplier β
1: Set {r0

h}h∈[H] as zero functions
2: for episode k = 1, . . . ,K do
3: Receive the initial state sk1
4: if k mod τ = 1 then . periodic restart
5: Set {Qk−1

h }h∈[H] as zero functions and {πk−1
h }h∈[H] as uniform distributions on A

6: end if
7: for step h = 1, 2, . . . ,H do . intermediate policy update
8: Update the policy by πk−1/2

h (· | ·) ∝ πk−1
h (· | ·) · exp{α ·Qk−1

h (·, ·)}
9: end for

10: Compute {Qk−1/2
h } by EvaluatePolicy(k, {rk−1

h }, {πk−1/2
h }, λ, β)

. intermediate policy evaluation
11: for step h = 1, 2, . . . ,H do . main policy update
12: Update the policy by πkh(· | ·) ∝ πk−1

h (· | ·) · exp{α ·Qk−1/2
h (·, ·)}

13: Take action akh ∼ πkh(· | skh)
14: Observe the reward function rkh(·, ·) and receive the next state skh+1
15: end for
16: Compute {Qkh} by EvaluatePolicy(k, {rkh}, {πkh}, λ, β) . main policy evaluation
17: end for

intermediate policy πk−1/2 in the first (and intermediate) OMD step (Line 8), which is only used to
compute the intermediate value estimates {V k−1/2

h }. Rather, we execute the policy πk updated by
the second (and main) OMD step. Finally, we remark that both Algorithms 1 and 2 have polynomial
space and time complexities in S, A and T .

4 Main results

To help with the presentation of our main results, we define the thresholding operator Π[a,b](x) :=

max{min{x, b}, a} and we adopt the convention that x/0 =∞ for x ∈ R. We also define L :=
⌈
K
τ

⌉
to be the number of restarts that take place in Algorithm 1 or 2. The following theorem gives an
upper bound for the dynamic regret incurred by Algorithm 1.

Theorem 1 (Upper bound for Algorithm 1). Under Assumption 1, for any δ ∈ (0, 1], with probability

at least 1 − δ and the choice of λ = 1, α =
√

L logA
KH2 , τ = Π[1,K]

(⌊(
T
√

logA
HPT

)2/3
⌋)

and

β = CβH
√
S log(dT/δ) (for some universal constant Cβ > 0) in Algorithm 1, the dynamic regret

of Algorithm 1 is bounded by

D-Regret(K) .
√
H3S2AT ·log2(dT/δ)+


√
H3T logA, if 0 ≤ PT ≤

√
logA
K ,(

H2T
√

logA
)2/3

P
1/3
T , if

√
logA
K ≤PT .K

√
logA,

H2PT , if PT & K
√

logA.

The result also holds if we replace PT in the above with its upper bound. When the upper bounds on
D-Regret(K) exceed T , we have D-Regret(K) ≤ T .

The proof is given in Appendix C. The regret bound in Theorem 1 interpolates smoothly throughout
three regimes of PT :

• Small PT : when 0 ≤ PT ≤
√

logA
K , the dynamic regret scales as Õ(T 1/2) and subsumes

the static regret results in [9, 18] under the full-information setting. In view of [4], this
bound is also nearly optimal (up to polynomial factors of H , S and A). Therefore, our
bound in Theorem 1 is adaptively near-optimal under small PT ;
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• Moderate PT : when
√

logA
K ≤ PT . K

√
logA, we obtain a dynamic regret of order

Õ(T 2/3P
1/3
T ), which is Õ(T 2/3) if PT = O(1) and sub-linear in T if PT = o(K). Similar

Õ(T 2/3) bounds have been achieved by model-based algorithms in [13, 22, 27, 39], which
are less efficient than our model-free algorithms in both time and space complexities;

• Large PT : when PT & K
√

logA, the model is highly non-stationary and Algorithm 1
incurs a linear regret in T .

In addition, the dynamic regret bound in Theorem 1 can be seen as a combination of two parts.
The first is the cost paid for being optimistic and due to sum of bonus terms {Γkh} in Algorithm
3 (see Equation (15) in the proof for details). This part is necessary to enforce optimism in the
face of uncertainty generated by the transition kernels and is key to effective exploration. The
second part is the error caused by non-stationarity of reward functions and depends on PT . Such
decomposition is not available in the dynamic regret analysis of online convex optimization problems
where MD/OMD-based algorithms have been widely applied. In particular, the dynamic regret bound
for online optimization lacks the term due to bonus as it does not require exploration, which is
nevertheless a key component underlying RL algorithms that provably explore.

Next we present a result for Algorithm 2.
Theorem 2 (Upper bound for Algorithm 2). Under Assumption 1, for any δ ∈ (0, 1], with probability

at least 1 − δ and the choice of λ = 1, α =
√

LH logA
DT

, τ = Π[1,K]

(⌊(√
DT ·T logA
H2PT

)2/3
⌋)

and

β = CβH
√
S log(dT/δ) (for some universal constant Cβ > 0) in Algorithm 2, the dynamic regret

of Algorithm 2 is bounded by

D-Regret(K).
√
H3S2AT ·log2(dT/δ)+


√
DT ·H logA, if 0 ≤ PT ≤

√
DT ·logA
K2H3 ,(

H
√
DT ·T logA

)2/3
P

1/3
T , if

√
DT ·logA
K2H3 ≤PT .

√
DT ·T logA
H2 ,

H2PT , if PT &
√
DT ·T logA

H2 .

The result also holds if we replace PT and DT in the above with their upper bounds. When the upper
bounds on D-Regret(K) exceed T , we have D-Regret(K) ≤ T .

The proof is given in Appendix D. A few remarks about Theorem 2 are in order. Similar to Theorem
1, the result in Theorem 2 interpolates across three regimes depending on the magnitude of PT ,
and decomposes into two terms respectively arising from the uncertainties of transition kernels and
non-stationarity of reward functions. Moreover, thanks to the OMD steps in Algorithm 2 that actively
make predictions via predictable sequence {Qk−1

h }, the bound in Theorem 2 is strictly better than

that in Theorem 1 in view of the fact that DT . KH3. When PT is moderate, i.e.,
√

DT ·logA
K2H3 ≤

PT .
√
DT ·T logA

H2 , the dynamic regret bound in Theorem 2 is of order Õ(T 1/3D
1/3
T P

1/3
T ), which is

similar to the result of [26, Theorem 3] obtained for online optimization problems. Regret bounds
that depend on DT , the variation of predictable sequences, have also appeared in [42, 43], although
for static regret and online optimization problems.

Technical highlights. A central step of our dynamic regret analysis is to control the expected
performance difference between the estimated policies {πk} and the optimal {π∗,k}, defined as∑

k∈[K]

∑
h∈[H]

Eπ∗,k

[〈
Qkh(sh, ·), π∗,kh (· | sh)− πkh(· | sh)

〉 ∣∣∣∣∣ s1 = sk1

]
.

Note the the expectation is taken over {π∗,k} which may vary over episodes k. For static regret, i.e.,
when π∗,k ≡ π∗ for k ∈ [K], we may control the above term by a standard telescoping argument,
which is not viable for dynamic regret analysis. Instead, we decompose the above expectation into
Eπ∗,k [·] = Eπ∗,k0 [·] + Eπ∗,k−π∗,k0 [·]. Here, k0 < k is the episode in which restart takes place most
recently prior to episode k. The first expectation Eπ∗,k0 [·] is taken over π∗,k0 , which stays constant for
the period from k0 to the next restart. Therefore, we may apply a customized telescoping argument
to each period between restarts. The second expectation Eπ∗,k−π∗,k0 [·] from the decomposition
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involves the difference π∗,k − π∗,k0 and can be bounded by PT . See Lemmas 3 and 4 in Appendices,
respectively, for details of controlling the two expectations. Furthermore, it is noteworthy that the
restart cycle length τ plays an important role of balancing the tradeoffs that 1) the optimal policies
between two adjacent restarts are relatively stationary among themselves so that the algorithm is
compared to stable benchmarks, and that 2) there are not too many restarts so that the sub-optimality
of algorithm do not grow too fast when combined over periods in between restarts.

Comparison with existing results. We compare the results in Theorems 1 and 2 to those in [13],
which is so far state-of-the-art in dynamic regret analysis for non-stationary RL. First, our model-free
algorithms are more efficient than the model-based algorithm in [13] that is adapted from UCRL2
and requires solving linear programs in each timestep. Second, our bounds in Theorems 1 and 2 are
on the near-optimal order Õ(T 1/2) when PT is sufficiently small, whereas the results in [13] are of
order Õ(T 2/3). On the other hand, [13] studies a more general setting where the transition kernel of
the MDP is allowed to vary adversarially in each timestep. It also provides a procedure to adaptively
tune its UCRL2-based algorithm to achieve an Õ(T 3/4) regret without knowledge of variations such
as PT .

Broader Impact

This work provides novel algorithms and analysis for non-stationary RL, which is the foundation
of several important RL paradigms including continual/meta RL and human-machine interaction.
We present two efficient and model-free policy optimization algorithms for episodic MDPs with
adversarial reward functions and fixed unknown transitions. For both algorithms, we provide dynamic
regret bounds that interpolate between different regimes of non-stationarity of the underlying model.
We show that our bounds achieve the near-optimal Õ(T 1/2) order and are adaptively near-optimal
in slow-changing environments. To the best of our knowledge, our work provides the first dynamic
regret analysis for model-free algorithms in non-stationary RL.
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Appendices
A Implementation of EvaluatePolicy

Algorithm 3 EvaluatePolicy
Input: Episode index k, reward functions {rh}, policies {πh}, regularization factor λ and bonus

multiplier β
Output: Updated Q-values {Qh}

1: Initialize VH+1 as a zero function
2: for step h = H,H − 1, . . . , 1 do
3: Λh ←

∑
t∈[k−1] φ(sth, a

t
h)φ(sth, a

t
h)> + λ · I

4: wh ← (Λh)−1
∑
t∈[k−1] φ(sth, a

t
h) · Vh+1(sth+1)

5: Γh(·, ·)← β · [φ(·, ·)>(Λh)−1φ(·, ·)]1/2
6: Qh(·, ·)← rh(·, ·) + min{φ(·, ·)>wh + Γh(·, ·), H − h}+
7: Vh(·)← 〈Qh(·, ·), πh(· | ·)〉A
8: end for

In Algorithm 3, the tuples {(sth, ath)}t∈[k−1] are state-action pairs visited by Algorithm 1 or 2 before
episode k.

B Proofs of technical lemmas

Recall that L :=
⌈
K
τ

⌉
. Algorithm 1 divides K episodes into L periods, and at the the beginning of

each period it resets its Q-value and policy estimates. Each period contains τ episodes, except for the
last one, which consists of at most τ episodes. For ease of notations, we assume that the last period
has exactly τ episodes. Our proof can be easily extended to the case where the last period has fewer
than τ episodes.

B.1 Regret decomposition

For any (k, h, s) ∈ [K]× [H]× S , we define the model prediction error

ιkh := rkh + PhV kh+1 −Qkh. (7)

We have the following decomposition of the dynamic regret (2).
Lemma 1. We have

D-Regret(K) =
∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

Eπ∗,k

[〈
Qkh(sh, ·), π∗,kh (· | sh)− πkh(· | sh)

〉 ∣∣∣∣∣ s1 = sk1

]

+
∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

[
Eπ∗,k [ιkh(sh, ah) | s1 = sk1 ]− ιkh(skh, a

k
h)
]

+MK,H ,

where MK,H :=
∑
k∈[K]

∑
h∈[H]M

k
h is a martingale that satisfies

∣∣Mk
h

∣∣ ≤ 4H for (k, h) ∈
[K]× [H].

We defer its proof to Section B.5.

B.2 Performance difference bound

We may further decompose the first term on the RHS of Lemma 1 as

∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

Eπ∗,k

[〈
Qkh(sh, ·), π∗,kh (· | sh)− πkh(· | sh)

〉 ∣∣∣∣∣ s1 = sk1

]
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=
∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

Eπ∗,(l−1)τ+1

[〈
Qkh(sh, ·), π∗,kh (· | sh)− πkh(· | sh)

〉 ∣∣∣∣∣ s1 = sk1

]

+
∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

(Eπ∗,k − Eπ∗,(l−1)τ+1)

[〈
Qkh(sh, ·), π∗,kh (· | sh)− πkh(· | sh)

〉 ∣∣∣∣∣ s1 = sk1

]
.

(8)

B.2.1 First term in Equation (8)

We first introduce a “one-step descent” result.

Lemma 2 ([9, Lemma 3.3]). For any distribution p∗ and p supported onA, state s ∈ S , and function
Q : S ×A → [0, H], it holds for a distribution p′ supported onA with p′(·) ∝ p(·) · exp{α ·Q(s, ·)}
that

〈Q(s, ·), p∗(·)− p(·)〉 ≤ 1

2
αH2 +

1

α
[DKL(p∗(·) ‖ p(·))−DKL(p∗(·) ‖ p′(·))] .

The next lemma controls the performance difference for any initial state.

Lemma 3. For any sk1 ∈ S, we have

∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

Eπ∗,(l−1)τ+1

[〈
Qkh(sh, ·), π∗,kh (· | sh)− πkh(· | sh)

〉 ∣∣∣∣∣ s1 = sk1

]

≤ 1

2
αKH3 +

1

α
LH logA+ τHPT .

Proof. For each l ∈ [L], we let νl = {νlh}h∈[H] where each νlh is a policy (or a distribution supported
A) to be specified. We have the decomposition

∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

Eπ∗,(l−1)τ+1

[〈
Qkh(sh, ·), π∗,kh (· | sh)− πkh(· | sh)

〉 ∣∣∣∣∣ s1 = sk1

]

=
∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

Eπ∗,(l−1)τ+1

[〈
Qkh(sh, ·), νlh(· | sh)− πkh(· | sh)

〉 ∣∣∣∣∣ s1 = sk1

]

+
∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

Eπ∗,(l−1)τ+1

[〈
Qkh(sh, ·), π∗,kh (· | sh)− νlh(· | sh)

〉 ∣∣∣∣∣ s1 = sk1

]
=: E1 + E2. (9)

By Lemma 2, we have

E1 ≤
1

2
αKH3 +

∑
h∈[H]

1

α

×
∑
l∈[L]

Eπ∗,(l−1)τ+1

 lτ∑
k=(l−1)τ+1

[
DKL(νlh(· | sh) ‖ πkh(· | sh))−DKL(νlh(· | sh) ‖ πk+1

h (· | sh))
] ∣∣∣∣∣ s1 = sk1


≤ 1

2
αKH3 +

∑
h∈[H]

1

α

×
∑
l∈[L]

Eπ∗,(l−1)τ+1

[
DKL(νlh(· | sh) ‖ π(l−1)τ+1

h (· | sh))−DKL(νlh(· | sh) ‖ πlτ+1
h (· | sh))

∣∣∣∣∣ s1 = sk1

]

≤ 1

2
αKH3 +

∑
h∈[H]

1

α
·
∑
l∈[L]

Eπ∗,(l−1)τ+1

[
DKL(νlh(· | sh) ‖ π(l−1)τ+1

h (· | sh))

∣∣∣∣∣ s1 = sk1

]
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≤ 1

2
αKH3 +

1

α
LH logA,

where the second step holds by telescoping, the third step holds since the KL divergence is non-
negative, and the last step holds since by construction π(l−1)τ+1

h (· | s) in Algorithm 1 is a uniform
distribution on A and for any policy ν and state s ∈ S we have

DKL(ν(· | s)‖π(l−1)τ+1
h (· | s)) =

∑
a∈A

ν(a | s) · log (A · ν(a | s))

= logA+
∑
a∈A

ν(a | s) · log (ν(a | s))

≤ logA

given the fact that the entropy of any distribution is non-negative.

Now for each (l, h) ∈ [L]× [H], we set

νlh := π
∗,(l−1)τ+1
h ,

that is, νlh is the policy after one update in step h of period l. For D2, we have

E2 ≤
∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

Eπ∗,(l−1)τ+1

[
H · ‖π∗,kh (· | sh)− νlh(· | sh)‖1

∣∣∣∣∣ s1 = sk1

]

= H ·
∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

Eπ∗,(l−1)τ+1

[
‖π∗,kh (· | sh)− π∗,(l−1)τ+1

h (· | sh)‖1

∣∣∣∣∣ s1 = sk1

]

≤ H ·
∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

k∑
t=(l−1)τ+2

Eπ∗,(l−1)τ+1

[
‖π∗,th (· | sh)− π∗,t−1

h (· | sh)‖1

∣∣∣∣∣ s1 = sk1

]

≤ H ·
∑
l∈[L]

lτ∑
k=(l−1)τ+1

lτ∑
t=(l−1)τ+1

∑
h∈[H]

max
s′∈S
‖π∗,th (· | s′)− π∗,t−1

h (· | s′)‖1

= H · τ ·
∑
t∈[K]

∑
h∈[H]

max
s′∈S
‖π∗,th (· | s′)− π∗,t−1

h (· | s′)‖1

= H · τ · PT

where the first step holds by Holder’s inequality and the fact that ‖Qkh(s, ·)‖∞ ≤ H , the second step
holds by the definition of {νlh}, the third step follows from telescoping, and the last step holds by the
definition PT :=

∑
k∈[K]

∑
h∈[H] ‖π

∗,k
h − π∗,k−1

h ‖∞.

B.2.2 Second term in Equation (8)

The following lemma controls the performance difference due to varying optimal policies across
episodes.
Lemma 4. Under Assumption 1, we have∑

l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

(Eπ∗,k − Eπ∗,(l−1)τ+1)

[〈
Qkh(sh, ·), π∗,kh (· | sh)− πkh(· | sh)

〉 ∣∣∣∣∣ s1 = sk1

]
≤ C · τH2PT ,

where C > 0 is a universal constant.

Proof. We denote by I(sh) the indicator function for state sh, and we have∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

(Eπ∗,k − Eπ∗,(l−1)τ+1)

[〈
Qkh(sh, ·), π∗,kh (· | sh)− πkh(· | sh)

〉 ∣∣∣∣∣ s1 = sk1

]
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≤
∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

(Eπ∗,k − Eπ∗,(l−1)τ+1)
[
2H · I(sh)

∣∣∣ s1 = sk1

]

=
∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

k∑
t=(l−1)τ+2

(Eπ∗,t − Eπ∗,t−1)
[
2H · I(sh)

∣∣∣ s1 = sk1

]
(10)

where the first step follows from
∣∣∣〈Qkh(sh, ·), π∗,kh (· | sh)− πkh(· | sh)

〉∣∣∣ ≤ 2H · I(sh) and the last
step holds by telescoping. Let Pπi (s) be the visitation measure of state s in step i under policy π, and
let us fix an h ∈ [H]. Under policies {π(i)}, the distribution of sh conditional on s1 is given by

Pπ
(1)

1 Pπ
(2)

2 · · · Pπ
(h−1)

h−1 (sh | s1) :=
∑

s2,...,sh−1

∏
i∈[h−1]

Pπ
(i)

i (si+1 | si).

Recall that ‖π − π′‖∞ := maxs∈S ‖π(· | s) − π′(· | s)‖1 for any pair of policies π and π′, and
Pπh (s | s′) :=

∑
a′∈A Ph(s | s′, a′) · πh(a′ | s′) is the transition kernel in step h when policy π

is executed. We have the following smoothness property for the (conditional) visitation measure
Pπ(1)

1 Pπ(2)

2 · · · Pπ(h−1)

h−1 (sh | s1) thanks to Assumption 1.

Lemma 5. Under Assumption 1, for any h ∈ [H], j ∈ [h−1], sh, s1 ∈ S , and policies {π(i)}i∈[H]∪
{π′} we have ∣∣∣Pπ(1)

1 · · · Pπ
(j)

j · · · Pπ
(h−1)

h−1 (sh | s1)− Pπ
(1)

1 · · · Pπ
′

j · · · Pπ
(h−1)

h−1 (sh | s1)
∣∣∣

≤ C · ‖π(j)
j − π

′
j‖∞,

where C > 0 is a universal constant.

Proof. We have∣∣∣Pπ(1)

1 · · · Pπ
(j)

j · · · Pπ
(h−1)

h−1 (sh | s1)− Pπ
(1)

1 · · · Pπ
′

j · · · Pπ
(h−1)

h−1 (sh | s1)
∣∣∣

≤
∑

s2,s3,...,sh−1

∣∣∣Pπ(j)

j (sj+1 | sj)− Pπ
′

j (sj+1 | sj)
∣∣∣ · ∏
i∈[h−1]\{j}

Pπ
(i)

i (si+1 | si)

(i)

≤
∑

s2,...sj ,sj+2,...,sh−1

∑
sj+1

∣∣∣Pπ(j)

j (sj+1 | sj)− Pπ
′

j (sj+1 | sj)
∣∣∣ · max
sj+1∈S

∏
i∈[h−1]\{j}

Pπ
(i)

i (si+1 | si)

(ii)

≤
∑

s2,...sj−1,sj+2,...,sh−1

max
sj∈S

∑
sj+1

∣∣∣Pπ(j)

j (sj+1 | sj)− Pπ
′

j (sj+1 | sj)
∣∣∣ ·∑

sj

max
sj+1∈S

∏
i∈[h−1]\{j}

Pπ
(i)

i (si+1 | si)

(iii)

≤ C · ‖π(j)
j − π

′
j‖∞ ·

∑
s2,...,sj ,sj+2...,sh−1

max
sj+1∈S

∏
i∈[h−1]\{j}

Pπ
(i)

i (si+1 | si)

= C · ‖π(j)
j − π

′
j‖∞ ·

∑
sj+2,...,sh−1

max
sj+1∈S

h−1∏
i=j+1

Pπ
(i)

i (si+1 | si)︸ ︷︷ ︸
≤1

·
∑

s2,...,sj

j−1∏
i=1

Pπ
(i)

i (si+1 | si)︸ ︷︷ ︸
=1

≤ C · ‖π(j)
j − π

′
j‖∞,

where steps (i) and (ii) hold by Holder’s inequality, and step (iii) holds under Assumption 1.

Therefore, for (k, t, h) ∈ [K]2 × [H] such that k ≤ t− 1, we have∣∣∣(Eπ∗,t − Eπ∗,t−1)
[
I(sh)

∣∣∣ s1 = sk1

]∣∣∣
≤ ‖Pπ

∗,t

1 Pπ
∗,t

2 · · · Pπ
∗,t

h−1(· | sk1)− Pπ
∗,t−1

1 Pπ
∗,t−1

2 · · · Pπ
∗,t−1

h−1 (· | sk1)‖∞
≤ ‖Pπ

∗,t

1 Pπ
∗,t

2 · · · Pπ
∗,t

h−1(· | sk1)− Pπ
∗,t

1 Pπ
∗,t−1

2 · · · Pπ
∗,t−1

h−1 (· | sk1)‖∞
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+ ‖Pπ
∗,t

1 Pπ
∗,t−1

2 · · · Pπ
∗,t−1

h−1 (· | sk1)− Pπ
∗,t−1

1 Pπ
∗,t−1

2 · · · Pπ
∗,t−1

h−1 (· | sk1)‖∞
≤ C ·

∑
i∈[h]

‖π∗,ti − π
∗,t−1
i ‖∞, (11)

where the third step follows from further telescoping the first term in the second step and then
applying Lemma 5. Combining Equations (10) and (11), we have∑

l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

(Eπ∗,k − Eπ∗,(l−1)τ+1)

[〈
Qkh(sh, ·), π∗,kh (· | sh)− πkh(· | sh)

〉 ∣∣∣∣∣ s1 = sk1

]

≤
∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

k∑
t=(l−1)τ+2

2H · C ·
∑
i∈[h]

‖π∗,ti − π
∗,t−1
i ‖∞

≤ 2H · C ·
∑
h∈[H]

∑
l∈[L]

lτ∑
k=(l−1)τ+1

lτ∑
t=(l−1)τ+1

∑
i∈[H]

‖π∗,ti − π
∗,t−1
i ‖∞


= 2H · C ·

∑
h∈[H]

τ ∑
t∈[K]

∑
i∈[H]

‖π∗,ti − π
∗,t−1
i ‖∞


≤ 2C ·H2 · τ · PT ,

where in the last step we used the definition PT :=
∑
k∈[K]

∑
i∈[H] ‖π

∗,k
i − π∗,k−1

i ‖∞.

B.2.3 Putting together

Finally, we establish the following result on the performance difference.
Lemma 6. Recall that PT :=

∑
k∈[K]

∑
i∈[H] ‖π

∗,k
i − π∗,k−1

i ‖∞. Under Assumption 1, we choose

α =
√

L logA
KH2 in Algorithm 1, and we have∑

l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

Eπ∗,k

[〈
Qkh(sh, ·), π∗,kh (· | sh)− πkh(· | sh)

〉 ∣∣∣∣∣ s1 = sk1

]
= 2H2

√
K logA+ C · τH2PT ,

for some universal constant C > 0.

Proof. Recall from Equation (8) that for any l ∈ [L], we have∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

Eπ∗,k

[〈
Qkh(sh, ·), π∗,kh (· | sh)− πkh(· | sh)

〉 ∣∣∣∣∣ s1 = sk1

]

=
∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

Eπ∗,(l−1)τ+1

[〈
Qkh(sh, ·), π∗,kh (· | sh)− πkh(· | sh)

〉 ∣∣∣∣∣ s1 = sk1

]

+
∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

(Eπ∗,k − Eπ∗,(l−1)τ+1)

[〈
Qkh(sh, ·), π∗,kh (· | sh)− πkh(· | sh)

〉 ∣∣∣∣∣ s1 = sk1

]
.

By applying Lemmas 3 and 4, we have∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

Eπ∗,k

[〈
Qkh(sh, ·), π∗,kh (· | sh)− πkh(· | sh)

〉 ∣∣∣∣∣ s1 = sk1

]

≤ αKH3 +
1

α
LH logA+ τHPT + C ′ · τH2PT

= 2H2
√
KL logA+ τHPT + C ′ · τH2PT

≤ 2H2
√
KL logA+ C · τH2PT ,

where the equality above holds by our choice of α, and C,C ′ > 0 are universal constants.

17



B.3 Model prediction error

We need the following results to control the bonus Γkh(·, ·) (defined in Line 5 of Algorithm 3)
accumulated over episodes.
Lemma 7. Let λ = 1 and β = C ·H

√
S log(dT/p) in Algorithm 1, where C > 0 is a universal

constant and p ∈ (0, 1]. With probability at least 1−p/2 and for all (k, h, s, a) ∈ [K]× [H]×S×A,
it holds that

−2Γkh(s, a) ≤ ιkh(s, a) ≤ 0.

Proof. The proof follows that of [9, Lemma 4.3] specialized to the tabular setting by replacing
Lemma D.2 therein with [5, Lemma 12].

Lemma 8 ([9, Lemma D.6]; [29, Lemma D.2]). Let {φt}t≥0 be a bounded sequence in Rd satisfying
supt≥0 ‖φt‖ ≤ 1. Let Λ0 ∈ Rd×d be a positive definite matrix with λmin(Λ0) ≥ 1. For any t ≥ 0,
we define Λt := Λ0 +

∑
i∈[t−1] φiφ

>
i . Then, we have

log

[
det(Λt+1)

det(Λ0)

]
≤
∑
i∈[t]

φ>i Λ−1
i φi ≤ 2 log

[
det(Λt+1)

det(Λ0)

]
.

Lemma 9. We have ∑
k∈[K[

∑
h∈[H]

Γkh(skh, a
k
h) ≤ βH

√
2dK log((K + λ)/λ).

Proof. Given the construction of Λkh in Algorithm 1, we have for any h ∈ [H],∑
k∈[K]

φ(skh, a
k
h)>(Λkh)−1φ(skh, a

k
h) ≤ 2 log

[
det(ΛK+1

h )

det(Λ1
h)

]

≤ 2d log

[
K + λ

λ

]
,

where the last step holds since the construction of Algorithm 1 implies that Λ1
h = λ · I and

Λk+1
h =

∑
t∈[k]

φ(sth, a
t
h)φ(sth, a

t
h)> + λ · I � (k + λ) · I,

which yields

log

[
det(ΛK+1

h )

det(Λ1
h)

]
≤ log

[
det((K + λ) · I)

det(λ · I)

]
= d log

[
K + λ

λ

]
.

Therefore, by the Cauchy-Schwarz inequality and Lemma 9, we have

∑
k∈[K[

∑
h∈[H]

Γkh(skh, a
k
h) ≤ β ·

∑
h∈[H]

K · ∑
k∈[K]

φ(skh, a
k
h)>(Λkh)−1φ(skh, a

k
h)

1/2

= βH
√

2dK log((K + λ)/λ).

B.4 Martingale bound

Lemma 10. Consider MK,H in Lemma 1. With probability 1− δ/2, we have

|MK,H | ≤
√

16H2T · log(4/δ).

Proof. From Lemma 1 and by the Azuma Hoeffding inequality, we have for any t ≥ 0,

P (|MK,H | ≥ t) ≤ 2 exp

(
− t2

16H2T

)
.

Setting t =
√

16H2T · log(4/δ), we have

|MK,H | ≤
√

16H2T · log(4/δ)

with probability at least 1− δ/2.
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B.5 Proof of Lemma 1

For any function f : S ×A → R and any (k, h, s) ∈ [K]× [H]× S , define the operators

(J∗k,hf)(s) =
〈
f(s, ·), π∗,kh (· | s)

〉
, (Jk,hf)(s) =

〈
f(s, ·), πkh(· | s)

〉
.

and the function

ξkh(s) := (J∗k,hQkh)(s)− (Jk,hQkh)(s) =
〈
Qkh(s, ·), π∗,kh (· | s)− πkh(· | s)

〉
.

The proof mostly follows that of [9, Lemma 4.2], except that we replace π∗ and Jh therein by π∗,k
and J∗k,h, respectively. Therefore, we outline the key steps only and refer the readers to the proof of
[9, Lemma 4.2] for full details.

Recall that π∗,k is the optimal policy in episode k. We have

D-Regret(K) =
∑
k∈[K]

[
V π
∗,k,k

1 (sk1)− V π
k,k

1 (sk1)
]

=
∑
l∈[L]

lτ∑
k=(l−1)τ+1

[
V π
∗,k,k

1 (sk1)− V π
k,k

1 (sk1)
]
.

We have

V π
∗,k,k

1 (sk1)− V π
k,k

1 (sk1) = V π
∗,k,k

1 (sk1)− V k1 (sk1)︸ ︷︷ ︸
G1

+V k1 (sk1)− V π
k,k

1 (sk1)︸ ︷︷ ︸
G2

. (12)

From [9, Section B.1], we have for any k ∈ [K],

G1 =
∑
h∈[H]

Eπ∗,k [ιkh(sh, ah) | s1 = sk1 ]

+
∑
h∈[H]

Eπ∗,k

[〈
Qkh(sh, ·), π∗,kh (· | sh)− πkh(· | sh)

〉 ∣∣∣∣∣ s1 = sk1

]
, (13)

and
G2 = −

∑
h∈[H]

ιkh(skh, a
k
h) +

∑
h∈[H]

(Dk
h,1 +Dk

h,2), (14)

where

Dk
h,1 :=

(
Jk,h(Qkh −Q

πk,k
h )

)
(skh)− (Qkh −Q

πk,k
h )(skh, a

k
h),

Dk
h,2 :=

(
Ph(V kh+1 − V

πk,k
h+1 )

)
(skh, a

k
h)− (V kh+1 − V

πk,k
h+1 )(skh+1).

From Line 11 of Algorithm 1, we have

Qkh, Q
πk,k
h , V kh+1, V

πk,k
h+1 ∈ [0, H],

which implies
∣∣∣Dk

h,1

∣∣∣ , ∣∣∣Dk
h,2

∣∣∣ ≤ 2H for any (k, h) ∈ [K]× [H]. Writing Mk
h := Dk

h,1 +Dk
h,2, we

have that
MK,H :=

∑
k∈[K]

∑
h∈[H]

Mk
h

is a martingale where
∣∣Mk

h

∣∣ ≤ 4H . The proof is completed in view of Equations (12), (13) and (14).
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C Proof of Theorem 1

By Lemmas 7 and 9, we have

∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

[
Eπ∗,k [ιkh(sh, ah) | s1 = sk1 ]− ιkh(skh, a

k
h)
]

≤ 2
∑
k∈[K[

∑
h∈[H]

Γkh(skh, a
k
h) ≤ 2βH

√
2dK log((K + λ)/λ). (15)

We apply Lemmas 6 and 10 as well as Equation (15) to the conclusion of Lemma 1. With the choice
of λ = 1 and β = CβH

√
S log(dT/δ) and the identity K = Lτ , we have

D-Regret(K) ≤ 2H2
√
KL logA+ C · τH2PT + 2βH

√
2dK log((K + λ)/λ)

+
√

16H2T · log(4/δ)

≤ 2H2
√
KL logA+ C · τH2PT + 2CβH

2
√
S log(dT/δ)

√
2dK log(K + 1)

+
√

16H2T · log(4/δ)

= 2H2
√
KL logA+ C · τH2PT + 2Cβ

√
2H3S2AT · log(dT/δ) · log(K + 1)

+
√

16H2T · log(4/δ)

≤ 2H2
√
KL logA+ C · τH2PT + C ′

√
2H3S2AT · log2(dT/δ) (16)

where C,C ′ > 0 are universal constants, the second step above holds by the definition of β, and the
third step holds by the identity T = KH .

We discuss several cases.

• If 0 ≤ PT ≤
√

logA
K , then by elementary calculation we have

(
T
√

logA
HPT

)2/3

≥ K. This
implies τ = K by our choice of τ , and therefore L = 1. Then Equation (16) yields

D-Regret(K) ≤ 2H2
√
K logA+ C ·H2

√
K logA+ C ′

√
2H3S2AT log2(dT/δ)

= (2 + C)
√
H3T logA+ C ′

√
2H3S2AT log2(dT/δ).

• If
√

logA
K ≤ PT ≤ 2−3/2 ·K

√
logA, we have and 2 ≤ τ ≤ K and Equation (16) implies

D-Regret(K) ≤ 2 · 1√
τ
HT

√
logA+ C · τH2PT + C ′

√
2H3S2AT · log2(dT/δ)

≤ (4 + C) ·
(
H2T

√
logA

)2/3

P
1/3
T + C ′

√
2H3S2AT · log2(dT/δ),

where the first step holds by K = Lτ , and in the last step we applied the choice of

τ =

⌊(
T
√

logA
HPT

)2/3
⌋

.

• If PT > 2−3/2 ·K
√

logA, we have
(
T
√

logA
HPT

)2/3

< 2 and therefore τ = 1 and L = K.
Then Equation (16) yields

D-Regret(K) ≤ 2HT
√

logA+ C ·H2PT + C ′
√

2H3S2AT · log2(dT/δ)

≤ (8 + C)H2PT + C ′
√

2H3S2AT · log2(dT/δ),

It is not hard to see that all of the above arguments also go through if we replace PT with its
upper bound. The proof is completed by combining the last case above with the trivial bound
D-Regret(K) ≤ T .
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D Proof of Theorem 2

The proof follows the same reasoning as in Appendix C, except that Lemmas 6 no longer applies. In
the following, we provide an alternative to Lemmas 6 adapted for Algorithm 2.
Lemma 11. For any s ∈ S, we have∑

l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

〈
Qkh(s, ·), π∗,kh (· | s)− πkh(· | s)

〉
≤ αDT +

1

α
LH logA+ τHPT .

Proof. Let us fix an s ∈ S. For each l ∈ [L], we let νl = {νlh}h∈[H] where each νlh is a policy (or a
distribution supported A) that depends only on l and h. We have the decomposition∑

l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

〈
Qkh(s, ·), π∗,kh (· | s)− πkh(· | s)

〉

≤
∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

〈
Qkh(s, ·), νlh(· | s)− πkh(· | s)

〉
+
∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

〈
Qkh(s, ·), π∗,kh (· | s)− νlh(· | s)

〉
=: E1 + E2.

The term E2 can be controlled in exactly the same way as in the proof of Lemma 3. Therefore, we
only control E1. Note that the policy update steps in Algorithm 2 (Lines 8 and 12) essentially follow
the update steps of OMD (see e.g. [50, Section 3.1.1] for details). This observation enables us to take
advantage of the following lemma, which is a version of [50, Proposition 5] adapted to our case.

Lemma 12. For any (l, h, s) ∈ [L]× [H]× S , we have

lτ∑
k=(l−1)τ+1

〈
Qkh(s, ·), νlh(· | s)− πkh(· | s)

〉
≤ logA

α
+ α ·

lτ∑
k=(l−1)τ+1

‖Qkh(s, ·)−Qk−1
h (s, ·)‖2∞ −

1

8α
·

lτ∑
k=(l−1)τ+1

‖πkh − πk−1
h ‖2∞.

Proof. The result follows from [50, Proposition 5] and we note that the quantity R defined therein is
upper bounded by logA.

By Lemma 12 and the definition of DT in Equation (5), we have

E1 ≤ L ·H ·
logA

α
+ α ·DT ,

We have the following result on the performance difference, similar to Lemma 6.

Lemma 13. Recall that PT :=
∑
k∈[K]

∑
i∈[H] ‖π

∗,k
i −π

∗,k−1
i ‖∞. Under Assumption 1, we choose

α =
√

LH logA
DT

in Algorithm 2, and we have

∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

Eπ∗,k

[〈
Qkh(sh, ·), π∗,kh (· | sh)− πkh(· | sh)

〉 ∣∣∣∣∣ s1 = sk1

]
= 2
√
DTLH logA+ C · τH2PT ,

for some universal constant C > 0.
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Proof. Now, for any l ∈ [L] we have the decomposition

∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

Eπ∗,k

[〈
Qkh(sh, ·), π∗,kh (· | sh)− πkh(· | sh)

〉 ∣∣∣∣∣ s1 = sk1

]

=
∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

Eπ∗,(l−1)τ+1

[〈
Qkh(sh, ·), π∗,kh (· | sh)− πkh(· | sh)

〉 ∣∣∣∣∣ s1 = sk1

]

+
∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

(Eπ∗,k − Eπ∗,(l−1)τ+1)

[〈
Qkh(sh, ·), π∗,kh (· | sh)− πkh(· | sh)

〉 ∣∣∣∣∣ s1 = sk1

]

By applying Lemmas 11 and 4, we have

∑
l∈[L]

lτ∑
k=(l−1)τ+1

∑
h∈[H]

Eπ∗,k

[〈
Qkh(sh, ·), π∗,kh (· | sh)− πkh(· | sh)

〉 ∣∣∣∣∣ s1 = sk1

]

≤ αDT +
LH logA

α
+ τHPT + C ′ · τH2PT

= 2
√
DTLH logA+ τHPT + C ′ · τH2PT

≤ 2
√
DTLH logA+ C · τH2PT ,

where the last equality holds by our choice of α, and C,C ′ > 0 are universal constants

We apply Lemmas 13 and 10 and Equation (15) to the conclusion of Lemma 1. With the choice of
λ = 1 and β = CβH

√
S log(dT/δ), we have

D-Regret(K) ≤ 2
√
DTLH logA+ C · τH2PT + 2βH

√
2dK log((K + λ)/λ)

+
√

16H2T · log(4/δ)

≤ 2
√
DTLH logA+ C · τH2PT + 2CβH

2
√
S log(dT/δ)

√
2dK log(K + 1)

+
√

16H2T · log(4/δ)

= 2
√
DTLH logA+ C · τH2PT + 2Cβ

√
2H3S2AT · log(dT/δ) · log(K + 1)

+
√

16H2T · log(4/δ)

≤ 2
√
DTLH logA+ C · τH2PT + C ′

√
2H3S2AT · log2(dT/δ) (17)

where C,C ′ > 0 are universal constants, the second step holds by the definition of β, and the third
step holds by the identity T = KH . Analyzing Equation (17) in the same way as Equation (16) in
Section C (for different regimes of PT ) yields the result.
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