
Supplementary Material:
On Correctness of Automatic Differentiation

for Non-Differentiable Functions

A Comments on Results in §2

A.1 Comments on the proof of Proposition 1

First, we elaborate on our proof in Proposition 1 that g is continuous on (0, 1). Since g is continuous
on (0, 1) \ C1 by its construction, we only need to show that g is continuous on C1. Consider any
x ∈ C1 and ε > 0. It suffices to show that there is δ ∈ (0, x) such that

0 < |x− x′| < δ =⇒ |g(x)− g(x′)| = |g(x′)| = g(x′) < ε. (1)

Let k > 0 be an integer with 2−k < ε. Consider the set

S = {x′ ∈ (0, 1) \ C1 | g(x′) ≥ 2−k}.
By the construction of g, S is the union of some finitely many closed intervals in (0, 1) that do not
contain x. (Note that each of those closed intervals is contained in an open interval removed at some
k′(≤ k)-th step of g’s construction.) Hence,

δ = min

(
inf
x′∈S
|x− x′|, x

)
is positive. We now show that δ satisfies (1). Consider any x′ with 0 < |x − x′| < δ. If x′ ∈ C1,
then g(x′) = 0. If x′ /∈ C1, then x′ ∈ (0, 1) \ C1 and x′ /∈ S by the definition of δ, and thus
g(x′) < 2−k < ε by the definition of S and k. Hence, (1) holds and this completes the proof.

Second, we elaborate on our proof in Proposition 1 that g ◦ f is not differentiable on C1/2. Consider
any x ∈ C1/2. It suffices to show that for any δ ∈ (0, x), there exist x1, x2 ∈ (x− δ, x+ δ) \ {x}
such that ∣∣∣∣ (g ◦ f)(x)− (g ◦ f)(x1)

x− x1

∣∣∣∣ = 0 and
∣∣∣∣ (g ◦ f)(x)− (g ◦ f)(x2)

x− x2

∣∣∣∣ > 1. (2)

Consider any δ ∈ (0, x). Since x ∈ C1/2 is a limit point ofC1/2, there exists x1 ∈ (x−δ, x+δ)\{x}
with x1 ∈ C1/2. For this x1, the first equality in (2) holds, since (g ◦ f)(C1/2) = g(C1) = {0}. To
find x2, let k > 0 be an integer such that

d(k) =
1

2
· 1

2k
+

3

4
· 1

3k
< δ and

3

4
·
(

2

3

)k
<

1

2
. (3)

We claim that there exists x2 ∈ (0, 1) such that

0 < |x− x2| ≤ d(k) and (g ◦ f)(x2) = 2−k. (4)
If the claim holds, then∣∣∣∣ (g ◦ f)(x)− (g ◦ f)(x2)

x− x2

∣∣∣∣ ≥ 2−k/d(k) (by (4) and (g ◦ f)(x) = 0)

= 2−k
/(1

2
· 1

2k
+

3

4
· 1

3k

)
(by the equality in (3))

= 1
/(1

2
+

3

4
·
(

2

3

)k)

> 1/

(
1

2
+

1

2

)
= 1 (by the inequality in (3)),
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and thus the second equality in (2) holds. Hence, finding x2 ∈ (0, 1) satisfying (4) completes the
proof. We now show that such x2 exists. Consider the situation right after the k-th step of C1/2’s
construction is performed. Then, the total length of the closed intervals that still remain is

1− 1

2
·
(

1

31
· 20 +

1

32
· 21 + · · ·+ 1

3k
· 2k−1

)
=

1

2
·

(
1 +

(
2

3

)k)
,

so the length of each of those closed intervals is 1
2 (2−k + 3−k), since those closed intervals have the

same length and there are 2k such intervals. Due to this, and by the construction of C1/2, there is
some open interval I that is removed exactly at the k-th step of C1/2’s construction and satisfies

dist(x, I) ≤ 1

2
·
(

1

2k
+

1

3k

)
.

Let x2 ∈ (0, 1) be the midpoint of I . By the construction of f and g, we have (g ◦ f)(x2) = 2−k.
Furthermore, since the length of I is 3−k/2, we have

|x− x2| ≤ dist(x, I) +
1

2
· len(I) ≤ 1

2
·
(

1

2k
+

1

3k

)
+

1

4
· 1

3k
= d(k).

Hence, x2 ∈ (0, 1) satisfies (4), and this concludes the proof.

Next, we make a remark on non-differentiable inputs of f , g, and g ◦ f in the proof. One might
guess that f should be non-differentiable exactly on C1/2, given that f maps (0, 1) \ C1/2 onto
(0, 1) \ C1 in a linear way and maps C1/2 onto C1 in a non-smooth-looking way. Surprisingly, the
guess is wrong: f is in fact non-differentiable only on a measure-zero subset of C1/2. On the other
hand, g and g ◦ f are non-differentiable exactly on C1 and C1/2, respectively. The proof that g is
non-differentiable on C1 is similar to the above proof that g ◦ f is non-differentiable on C1/2, and
thus we omit it.

Finally, we connect the examples in the proof with our results in §3. Both f and g are shown to be non-
PAP (Proposition 5). Hence, our results do not guarantee that g ◦ f is PAP and so almost-everywhere
differentiable. In fact, g ◦ f is non-PAP, since g ◦ f is not almost-everywhere differentiable.

A.2 Comments on the proof of Proposition 2

We explain how the counterexample in the proof does not contradict to our results in §3. The
functions f and g are PAP (and thus g ◦ f is so). Although g′ is undefined at 0, we can extend it to an
intensional derivative dg ∈ ∂•g such that dg is defined everywhere (even at 0) and coincides with g′
at all but countably many inputs. With such dg , the following version of the chain rule holds almost
everywhere:

(g ◦ f)′(x) = dg(f(x)) · f ′(x) for almost all x ∈ (0, 1).

This is because we have the chain rule for intensional derivatives and and these intensional derivatives
and standard derivatives coincide almost everywhere (Propositions 8 and 10).

A.3 Comments on the proof of Proposition 3

The functions f , g, and g ◦ f in the proof do not contradict to our results. Neither f nor g is a PAP
function (Proposition 5). Hence, our results do not guarantee the validity of our version of the chain
rule for g ◦ f .

B Comments on and Proofs for Results in §3

Let X ,Xf ,Xg ⊆ Rn and Y ⊆ Rm be arbitrary sets.

B.1 Comments on the proof of Proposition 5

We prove the following argument used in the proof of Proposition 5: the functions listed in the proof
satisfy the sufficient condition (i) or (ii) mentioned in the proof.
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First, consider (i). To show that a function h : X → Rm satisfies (i) with k = 2, it suffices to show
the claim that the set

S = {x ∈ X | h′ is undefined or discontinuous at x}

has positive measure. For the λ-Cantor function φλ with λ ∈ (0, 1), S is a full measure subset of Cλ
due to the following: φ′λ(x) = 1/(1− λ) 6= 0 for almost all x ∈ Cλ; φ′λ(x) = 0 for all x /∈ Cλ; and
Cλ ⊂ (0, 1) has no interior. Since Cλ has measure 1− λ > 0, the claim holds for φλ. For f in the
proof of Proposition 1, S is a full measure subset of C1/2 due to similar reasons. So the claim holds
for f . For Volterra’s function, S is known to have positive measure [18, Example 8.35]. So the claim
holds for Volterra’s function.

Next, consider (ii). Observe that the 1-Cantor function and g in the proof of Proposition 1 are both
defined on (0, 1) ⊆ R and non-differentiable exactly on C1 (for the non-differentiability of g, see
§A.1). Since C1 is uncountable, the two functions satisfy (ii) with k = 1. This completes the proof
of the argument.

As a side note, we remark that Volterra’s function V is more pathological than the λ-Cantor function
φλ for λ ∈ (0, 1), in that V ′ is discontinuous on a set of positive measure even though V is
differentiable everywhere and V ′ is bounded. Contrast this with the fact that φ′λ is also discontinuous
on a set of positive measure, but φλ is differentiable just almost everywhere, not everywhere. In
fact, there even exists a more pathological function W : (0, 1) → R such that W is differentiable
everywhere and W ′ is bounded, but W ′ is discontinuous almost everywhere [10, Exercise 5:5.5].
Certainly, W is an another example for Proposition 5: it is continuous and differentiable almost
everywhere, but not PAP.

B.2 Interior and subinterior of analytic partition

Definition 9 (Interior of Analytic Partition). Let A = {Ai}i∈[I] be an analytic partition of X . The
interior of A, int(A), is defined by the following open subset of Rn:

int(A) =
⋃
i∈[I]

int(Ai;Rn),

where int(Ai;Rn) denotes the largest open subset of Rn that is included in Ai.

Definition 10 (Subinterior of Analytic Partition). Let A = {Ai}i∈[I] be an analytic partition of X
with I ∈ (Z>0 ∪ {∞}). Suppose that a subset X ′ ⊆ X and a partition B = {Bt}t∈[T ] of X ′ satisfy
the following conditions:

(i) T ∈ (Z>0 ∪ {∞}).
(ii) For all t ∈ [T ], Bt is subanalytic. That is, for all t ∈ [T ], there exist Jt, Lt ∈ Z≥0 and analytic

functions g+t,j : X+
t,j → R and g−t,l : X−t,l → R over open domains X+

t,j ,X
−
t,l ⊆ Rn (j ∈ [Jt],

l ∈ [Lt]) such that: X−t,l is connected in Rn and (g−t,l)
−1({0}) 6= X−t,l for all l ∈ [Lt]; and

Bt =
( ⋂
j∈[Jt]

(g+t,j)
−1(R>0)

)
∩
( ⋂
l∈[Lt]

(g−t,l)
−1(R<0)

)
. (5)

(iii) Let Ct ⊆ Rn be the set defined as follows:

Ct =
( ⋂
j∈[Jt]

(g+t,j)
−1(R>0)

)
∩
( ⋂
l∈[Lt]

(g−t,l)
−1(R≤0)

)
.

Then, C = {Ct}t∈[T ] is a finer partition of X than {Ai}i∈[I]. That is, C is a partition of X ,
and for all t ∈ [T ], Ct ⊆ Ai for some i ∈ [I].

We call the set X ′ a subinterior of A, and the partition B a subanalytic partition of X ′. We use
subint(A) to denote the set of all subinteriors of A.

Lemma 14. Let A = {Ai}i∈[I] be an analytic partition of X with I ∈ (Z>0 ∪ {∞}). Then,
subint(A) 6= ∅. Furthermore, for any X ′ ∈ subint(A), the following hold:

(a) There is an analytic partition B = {Bt}t∈[T ] of X ′ with T ∈ (Z>0 ∪ {∞}) and int(B) = X ′.
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(b) X ′ ⊆ int(A) and X ′ is open in Rn.
(c) X \ X ′ is contained in some measure-zero set.
(d) X \ int(A) is contained in some measure-zero set.
Proof. We first prove that subint(A) 6= ∅. Consider any i ∈ [I]. Since Ai is analytic, there exist
Ji, Li ∈ Z>0 and analytic functions g+i,j : X+

i,j → R and g−i,l : X−i,l → R over open domains
X+
i,j ,X

−
i,l ⊆ Rn (j ∈ [Ji], l ∈ [Li]) such that

Ai =
( ⋂
j∈[Ji]

(g+i,j)
−1(R>0)

)
∩
( ⋂
l∈[Li]

(g−i,l)
−1(R≤0)

)
.

We use the following fact: any open set in Rn is a union of countably many open balls in Rn, thereby
a union of countably many disjoint connected open sets in Rn. For every l ∈ [Li], since X−i,l is open
in Rn, there exists a partition {X−i,〈l,tl〉}tl∈[∞] of X−i,l such that X−i,〈l,tl〉 is connected and open in Rn.
For each 〈t1, . . . , tLi

〉 ∈ [∞]Li , let

Bi,〈t1,...,tLi
〉 =

( ⋂
j∈[Ji]

(g+i,j)
−1(R>0)

)
∩
( ⋂
l∈[Li]

(g−i,〈l,tl〉)
−1(R<0)

)
Ci,〈t1,...,tLi

〉 =
( ⋂
j∈[Ji]

(g+i,j)
−1(R>0)

)
∩
( ⋂
l∈[Li]

(g−i,〈l,tl〉)
−1(R≤0)

)
where g−i,〈l,tl〉 : X−i,〈l,tl〉 → R denotes the restriction of g−i,l to X−i,〈l,tl〉. Here, if (g−i,〈l,tl〉)

−1({0}) =

X−i,〈l,tl〉 for some i, l, tl, then we set g−i,〈l,tl〉 to the constant function −1 on the domain X−i,〈l,tl〉. Then,
every g−i,〈l,tl〉 is analytic on its connected open domain X−i,〈l,tl〉, and (g−i,〈l,tl〉)

−1({0}) 6= X−i,〈l,tl〉.
Finally, let

X ′ =
⋃

i∈[I], 〈t1,...,tLi
〉∈[∞]Li

Bi,〈t1,...,tLi
〉

B = {Bi,〈t1,...,tLi
〉 | i ∈ [I], 〈t1, . . . , tLi

〉 ∈ [∞]Li}
C = {Ci,〈t1,...,tLi

〉 | i ∈ [I], 〈t1, . . . , tLi
〉 ∈ [∞]Li}.

Then, X ′ is a subinterior of A, and B is a subanalytic partition of X ′, because of the following:

• B is a partition of X ′.
• {〈i, t1, . . . , tLi

〉 | i ∈ [I], 〈t1, . . . , tLi
〉 ∈ [∞]Li} is a countable set.

• For all i ∈ [I] and 〈t1, . . . , tLi
〉 ∈ [∞]Li , Bi,〈t1,...,tLi

〉 is subanalytic.
• C is a finer partition of X than A. This holds because {Ai}i∈[I] is a partition of X , and
{Ci,〈t1,...,tLi

〉}〈t1,...,tLi
〉∈[∞]Li is a partition of Ai for all i ∈ [I], by its construction.

This completes the proof that subint(A) 6= ∅.

We now prove the remaining claims. Let X ′ ∈ subint(A) and B = {Bt}t∈[T ] be a subanalytic
partition of X ′ that satisfies the equations in Definition 10.

Proof of (a). By the definition of subanalytic partition, and since h(x) < 0⇐⇒ −h(x) > 0 for any
function h and input x, B is an analytic partition of X ′ with T ∈ (Z>0 ∪ {∞}). We argue that for
any t ∈ [T ], Bt is open in Rn. Recall the equation (5):

Bt =
( ⋂
j∈[Jt]

(g+t,j)
−1(R>0)

)
∩
( ⋂
l∈[Lt]

(g−t,l)
−1(R<0)

)
.

Since g+t,j : X+
t,j → R and g−t,l : X−t,l → R are continuous, and R>0 and R<0 are open in R, we

have that (g+t,j)
−1(R>0) and (g−t,l)

−1(R<0) are open in X+
t,j and X−t,l, respectively, by the definition

of continuity. Furthermore, since X+
t,j and X−t,l are open in Rn, we have that (g+t,j)

−1(R>0) and
(g−t,l)

−1(R<0) are open in Rn as well. Since any finite intersection of open subsets is again open, Bt

is open in Rn. Hence,

int(B) =
⋃
t∈[T ]

int(Bt;Rn) =
⋃
t∈[T ]

Bt = X ′.
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Proof of (b). We continue the proof from (a). Since Bt is open in Rn, and Bt ⊆ Ai for some i ∈ [I]
(by the definition of subanalytic partition), we have Bt ⊆ int(Ai;Rn). From this, we obtain

X ′ =
⋃
t∈[T ]

Bt ⊆
⋃
i∈[I]

int(Ai;Rn) = int(A).

Moreover, since any union of open sets is again open, X ′ =
⋃
t∈[T ]B

t is open in Rn.

Proof of (c). For this, we use the following theorem [32]: for any open connected U ⊆ Rn and
analytic function f : U → R, the zero set {x ∈ U | f(x) = 0} of f is either U or contained in some
measure-zero set. Observe that

X \ X ′ =
( ⋃
t∈[T ]

Ct
)
\
( ⋃
t∈[T ]

Bt
)

=
⋃
t∈[T ]

(
Ct \Bt

)
⊆
⋃
t∈[T ]

( ⋂
l∈[Lt]

(g−t,l)
−1(R≤0) \

⋂
l∈[Lt]

(g−t,l)
−1(R<0)

)
⊆
⋃
t∈[T ]

⋃
l∈[Lt]

(
(g−t,l)

−1(R≤0) \ (g−t,l)
−1(R<0)

)
=
⋃
t∈[T ]

⋃
l∈[Lt]

(g−t,l)
−1({0}).

Since each g−t,l is analytic, and not everywhere-zero, on its connected open domain X−t,l (by the
definition of subanalytic partition), the above theorem and equation imply that (g−t,l)

−1({0}) is
contained in some measure-zero set. Since any countable union of measure-zero sets has measure
zero, X \ X ′ is contained in some measure-zero set.

Proof of (d). This follows immediately from (b) and (c).

B.3 Proofs of Proposition 4 and Proposition 8 (part I)

We remind the reader that the notation D(f)(x) means the standard derivative of f at x.
Definition 11 (Interior of PAP Representation). Let γ = {〈Ai, f i〉}i∈[I] be a PAP representation
from X to Y . The interior and subinterior of γ are defined by:

int(γ) = int({Ai}i∈[I]), subint(γ) = subint({Ai}i∈[I]).
Lemma 15. Let f : X → Y be a PAP function, γ be a PAP representation of f , and k ∈ Z≥0. Then,
for all x ∈ int(γ), f has the k-th order standard derivative at x. Furthermore, the derivative agrees
with the k-th order intensional derivative of γ at x:

D(k)(f)(x) = 〈〈D(k)(γ)〉〉(x) for all x ∈ int(γ),

where F (k) denotes the k-time composition of the operator F .
Proof. Consider any x ∈ int(γ). By the definition of int(γ), we have x ∈ int(Ai;Rn) for some
i ∈ [I]. So there exists an open neighbourhood U ⊆ Rn of x such that U ⊆ Ai. Since γ is a
representation of f and U ⊆ Ai, we have f = f i on U for the i-th component function of γ. Now
focus on f i. Since f i is analytic on U (due to γ being PAP), f i is infinitely differentiable on U and,
in particular, has the k-th order standard derivative at x, namely D(k)(f i)(x). By the definition of
intensional derivative, D(k)(f i)(x) = 〈〈D(k)(γ)〉〉(x). Since x ∈ U , U is open in Rn, and f = f i on
U , we obtain that D(k)(f)(x) = D(k)(f i)(x) = 〈〈D(k)(γ)〉〉(x).

Proposition 16. Let f : X → Y be a PAP function and k ∈ Z≥0. Then, f has the k-th order
standard derivative almost everywhere. Moreover, the first-order standard derivative Df agrees with
any first-order intensional derivative df ∈ ∂•f almost everywhere.
Proof. By Lemma 14(d), the interior of any PAP representation of f has the full measure in X .
Hence, Lemma 15 implies the first claim. For the second claim, let df ∈ ∂•f . By the definition of
∂•f , there exists a PAP representation γ of f such that df = 〈〈Dγ〉〉. Applying Lemma 15 to f , γ,
and k = 1 gives the second claim, since int(γ) has the full measure in X .

17



B.4 Proof of Proposition 8 (part II)

Lemma 17. Let f : Xf → Y and g : Xg → Y be PAP functions, and γf and γg be their PAP
representations. If f(x) = g(x) for all x ∈ int(γf ) ∩ int(γg), then

D(f)(x) = D(g)(x) for all x ∈ int(γf ) ∩ int(γg),

where both sides are well-defined for each x.

Proof. Let U = int(γf ) ∩ int(γg), and consider any x ∈ U . Since x ∈ U and U is open in Rn, we
have D(f)(x) = D(g)(x) if both sides are well-defined. Indeed, they are well-defined by Lemma 15
with k = 1, since γf and γg are PAP representations of f and g, respectively.

Lemma 18. Let f : X → Y be a PAP function. Then, for any intensional derivative df ∈ ∂•f , there
exists a PAP representation γdf of df such that

df (x) = D(f)(x) for all x ∈ int(γdf ).

Proof. By the definition of ∂•f , there exists a PAP representation γf of f such that df = 〈〈Dγf 〉〉. By
Lemma 15 with k = 1, we haveD(f)(x) = 〈〈Dγf 〉〉(x) = df (x) for all x ∈ int(γf ). Let γdf = Dγf .
Since df = 〈〈Dγf 〉〉 = 〈〈γdf 〉〉 and γf is PAP, γdf is a PAP representation of df . Moreover, by the
definition of Dγf , we have int(γdf ) = int(γf ). Hence, the claim holds with γdf .

Definition 12 (Refinement of Representation). Let γf = {〈Ai, f i〉}i∈[I] be a representation of a
function from Xf to Y , and B = {Bj}j∈[J] be a partition of Xg. The refinement of γf with B is
defined by:

refine(γf ;B) = {〈Ai ∩Bj , f i〉}〈i,j〉∈[I]×[J].

Moreover, for any representation γg = {〈Cl, gl〉}l∈[L] of a function from Xg to Z , the refinement of
γf with γg is defined by:

refine(γf ; γg) = refine(γf ; {Cl}l∈[L]).

Lemma 19. Let f : Xf → Y be a PAP function, γ be a PAP representation of f , andB = {Bj}j∈[J]
be an analytic partition of Xg with J ∈ (Z>0 ∪ {∞}). Let γ′ = refine(γ;B). Then, γ′ is a PAP
representation of f |Xf∩Xg with

int(γ′) = int(γ) ∩ int(B).

Proof. Let γ = {〈Ai, f i〉}i∈[I]. Since γ is PAP and B is an analytic partition, {Ai ∩Bj}〈i,j〉∈[I]×[J]
is an analytic partition. Also, since [J ] is countable, [I]× [J ] is also countable. Thus, γ′ is PAP. Since⋃

〈i,j〉∈[I]×[J]

(Ai ∩Bj) = (
⋃
i∈[I]

Ai) ∩ (
⋃
j∈[J]

Bj) = Xf ∩ Xg,

γ′ is a representation of f |Xf∩Xg
. Finally, we obtain the last claim as follows:

int(γ′) =
⋃

〈i,j〉∈[I]×[J]

int(Ai ∩Bj ;Rn)

=
⋃

〈i,j〉∈[I]×[J]

int(Ai;Rn) ∩ int(Bj ;Rn)

=
( ⋃
i∈[I]

int(Ai;Rn)
)
∩
( ⋃
j∈[J]

int(Bj ;Rn)
)

= int(γ) ∩ int(B).

For the second equality, we use the following fact: int(S1 ∩ S2;X) = int(S1;X) ∩ int(S2;X) for
any S1, S2 ⊆ X .

Lemma 20. Let f : X → Y be a PAP function. Consider any PAP representation γ of f , and
any subinterior X ′ ∈ subint(γ). Then, X ′ ⊆ X is open in Rn and X \ X ′ is contained in a
measure-zero set. Moreover, for all k ∈ Z≥0, D(k)(f |X ′) is a total function on X ′, and there exists a
PAP representation γkD of D(k)(f |X ′) such that int(γkD) = X ′.

18



Proof. Let k ∈ Z≥0. By Lemma 14(b) and 14(c), X ′ ⊆ int(γ) ⊆ X is open in Rn and X \ X ′ is
contained in a measure-zero set. This proves the first claim. Since X ′ ⊆ int(γ), Lemma 15 implies
that D(k)(f)(x) exists for all x ∈ X ′. Since X ′ is open in Rn, D(k)(f |X ′)(x) = D(k)(f)(x) for all
x ∈ X ′. This proves the second claim that D(k)(f |X ′) is a total function on X ′.
We now prove the last claim. By Lemma 14(a), there exists an analytic partition B = {Bj}j∈[J] of
X ′ such that J ∈ (Z>0 ∪ {∞}) and int(B) = X ′. Let γ′ = refine(γ;B). By Lemma 19, γ′ is a
PAP representation of f |X ′ with int(γ′) = int(γ) ∩ int(B) = X ′. Consider

γkD = D(k)(γ′).

We show that it satisfies the last claim. Since f |X ′ : X ′ → Y is a PAP function with a PAP
representation γ′, Lemma 15 implies that D(k)(f |X ′)(x) = 〈〈D(k)(γ′)〉〉(x) = 〈〈γkD〉〉(x) for all
x ∈ int(γ′) = X ′. Hence, γkD is a representation of D(k)(f |X ′). The rest of the claim also holds as
follows: γkD is PAP since γ′ is PAP; and int(γkD) = int(γ′) = X ′ by the definition of D(γ′).
Lemma 21. Let f : X → Y be a PAP function and X ′ ⊆ X be a set described in Lemma 20,
which has full measure in X . Consider any k ∈ Z≥0. Then, for any df k ∈ ∂k•f , there exists a PAP
representation γkd of df k such that

df k(x) = D(k)(f)(x) for all x ∈ int(γkd ) ∩ X ′.
Proof. The proof proceeds by induction on k. For k = 0, we have df k = D(k)(f) = f . So any PAP
representation γkd of df k = f satisfies the claim. Now suppose k > 0. By the definition of ∂k•f , there
exists df k−1 ∈ ∂k−1• f such that df k ∈ ∂•(df k−1). We construct the desired PAP representation γkd
as follows. First, focus on df k−1 ∈ ∂k−1• f . By the induction hypothesis on k − 1 for df k−1, there
exists a PAP representation γk−1d of df k−1 such that

df k−1(x) = D(k−1)(f)(x) for all x ∈ int(γk−1d ) ∩ X ′.

By Lemma 20, D(k−1)(f |X ′) is a total function on X ′ and there exists a PAP representation γk−1D

of D(k−1)(f |X ′) such that int(γk−1D ) = X ′. Since X ′ is open in Rn by Lemma 20, D(k−1)(f) =

D(k−1)(f |X ′) over X ′. Combining the two results gives that

df k−1(x) = D(k−1)(f |X ′)(x) for all x ∈ int(γk−1d ) ∩ int(γk−1D ),

where γk−1d and γk−1D are PAP representations of df k−1 and D(k−1)(f |X ′), respectively. By
Lemma 17 applied to this result, we obtain

D(df k−1)(x) = D(k)(f |X ′)(x) for all x ∈ int(γk−1d ) ∩ int(γk−1D ).

Since D(k)(f |X ′) = D(k)(f) over X ′ (as X ′ is open in Rn), and int(γk−1D ) = X ′, we have

D(df k−1)(x) = D(k)(f)(x) for all x ∈ int(γk−1d ) ∩ X ′.

Next, focus on df k ∈ ∂•(df k−1). By Lemma 18 applied to df k, there exists a PAP representation
γ′kd of df k such that

df k(x) = D(df k−1)(x) for all x ∈ int(γ′kd ).

Combining the last two equations, we obtain

df k(x) = D(k)(f)(x) for all x ∈ int(γ′kd ) ∩ int(γk−1d ) ∩ X ′.

Now let γkd = refine(γ′kd ; γk−1d ). By Lemma 19 applied to γkd , we have that γkd is a PAP representation
of df k with int(γkd ) = int(γ′kd ) ∩ int(γk−1d ). From this, we obtain the desired claim:

df k(x) = D(k)(f)(x) for all x ∈ int(γkd ) ∩ X ′.

Proposition 22. Let f : X → Y be a PAP function and k ∈ Z≥0. Then, any k-th order intensional
derivative df k ∈ ∂k•f satisfies the following:

df k(x) = D(k)(f)(x) for almost all x ∈ X .
Proof. The claim follows from Lemma 21 and the following: X ′ and int(γkd ) described in Lemma 21
have the full measure in X , by Lemma 21 and Lemma 14(d).
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B.5 Additional property on PAP functions

Proposition 23. Let f : X → Y be a PAP function, and k ∈ Z>0. Let Nf,k ⊆ X be the set defined
by {x ∈ X | D(k)(f)(x) is undefined}. If n = 1, then Nf,k is countable. But if n > 1, then it could
be uncountable.

Proof. Suppose n = 1. Recall the following two well-known results: (i) if g : U → R is an
analytic function on an open interval U ⊆ R and is not everywhere-zero, then its zero set Zg =
{x ∈ U | g(x) = 0} contains none of the limit points of Zg [25, Corollary 1.2.7]; (ii) if X is a
second-countable space and S ⊆ X contains none of the limit points of S, then S is countable. Since
R is second-countable, every g satisfying the assumption of (i) has at most countably many zeros.

Now return to our claim. By the statement and proof of Lemma 14(c) and Lemma 15, there are
countably many analytic functions {gj : Uj → R}j defined over connected open subsets of R, such
that every gj is not everywhere-zero and Nf,k ⊆

⋃
j Zgj . Since any connected open subset of R is

an open interval, gj satisfies the assumption of (i), and thus each Zgj is countable by the above result.
Hence, Nf,k is countable, since a countable union of countable sets is countable.

Suppose n > 1. Consider f : R2 → R defined by f(x) = |x1 − x2|, and k = 1. Then, f is PAP,
since the following is a PAP representation of f :

{ 〈{x ∈ R2 | x1 > x2}, x ∈ R2 7−→ x1 − x2〉,
〈{x ∈ R2 | x1 = x2}, x ∈ R2 7−→ 0〉,
〈{x ∈ R2 | x1 < x2}, x ∈ R2 7−→ x2 − x1〉 }.

However, Nf,k = {〈x, y〉 ∈ R2 | x = y} is uncountable.

C Proofs for Results in §4

Proposition 11. For every program e, its denotation JeK is a PAP function from RN to R.

Proof. The proof is by induction on the structure of e. The cases of e ≡ c and e ≡ xi follow from
the fact that both constant functions and projections are PAP. For the case of e ≡ f(e1, . . . , en), we
note two facts about PAP functions: the composition of two PAP functions is PAP (Proposition 9);
and for PAP functions g1, . . . , gn : RN → R, the function v 7−→ 〈g1(v), . . . , gn(v)〉 of type
RN → Rn is PAP again, mainly because any finite intersection of open sets is again open. By
these two facts, the claimed property of the proposition holds in this case. The only remaining
case is e ≡ (if (e1 > 0) e2 e3). By induction hypothesis, all of Je1K, Je2K, and Je3K are PAP. Let
γ1 = {〈Ai, f i〉}i∈[I], γ2 = {〈Bj , gj〉}j∈[J], and γ3 = {〈Ck, hk〉}k∈[K] be their PAP representations,
and define their conditional composition cond(γ1, γ2, γ3) as follows:

cond(γ1, γ2, γ3) = {〈E〈i,j,k,l〉, t〈i,j,k,l〉〉}〈i,j,k,l〉∈([I]×[J]×[K]×{0,1}),

E〈i,j,k,l〉 = Ail ∩Bj ∩ Ck, t〈i,j,k,l〉 = if (l = 1) then gj else hk

where Ai1 = {v ∈ Ai | f i(v) > 0} and Ai0 = {v ∈ Ai | f i(v) ≤ 0}. Then, {E〈i,j,k,l〉}〈i,j,k,l〉
is an analytic partition of RN , every t〈i,j,k,l〉 is an analytic function, and its domain is an open set
containing E〈i,j,k,l〉. Thus, cond(γ1, γ2, γ3) is a PAP representation. Furthermore, its evaluation
〈〈cond(γ1, γ2, γ3)〉〉 is equal to Jif (e1 > 0) e2 e3K. Hence, the proposition holds in this case.

Theorem 12. If D̃f ∈ ∂•f for all primitive functions f, then JeK∇ ∈ ∂•JeK for all programs e.

Proof. The proof is by induction on the structure of e. When e ≡ c, the trivial partition {RN}
and the constant function v 7−→ c form a PAP representation of JeK. The intensional derivative of
this representation is {〈RN , v 7−→ ~01×N 〉}, and its evaluation is JcK∇, as claimed by the theorem.
The other base case is e ≡ xi. We use the trivial partition again with the projection function
v 7−→ vi, and form a PAP representation of JeK. The intensional derivative of this representation is
{〈RN , v 7−→ [~0(i−1)×1;~11×1;~0(N−i)×1]>〉}, and its evaluation is JxiK∇.

The next case is e ≡ f(e1, . . . , en). By induction hypothesis, JeiK∇ is an intensional derivative
of JeiK for every i ∈ [n]. Let g : RN → Rn and dg : RN → Rn×N be functions defined by
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g(v) = 〈Je1Kv, . . . , JenKv〉 and dg(v) = [Je1K∇ v; . . . ; JenK∇ v] for all v. Then, dg is an inten-
sional derivative of g. Also, Jf(e1, . . . , en)K = f ◦ g. Therefore, by the chain rule for intensional
derivative (Proposition 10), the function v 7−→ (D̃f)(g(v)) · dg(v) is an intensional derivative of
Jf(e1, . . . , en)K = f ◦ g. Here we use the assumption that D̃f is an intensional derivative of f. Note
that the function is equal to Jf(e1, . . . , en)K∇. So, the theorem holds.

The last case is e ≡ (if (e1 > 0) e2 e3). By induction hypothesis, JeiK∇ is an intensional derivative
of JeiK for all i ∈ [3]. Let γ1, γ2, and γ3 be the PAP representations of Je1K, Je2K, and Je3K such that

〈〈Dγ2〉〉 = Je2K∇ and 〈〈Dγ3〉〉 = Je3K∇. (6)

Let cond(γ1, γ2, γ3) be the conditionally composed representation defined in the proof of Propo-
sition 11. Then, it is a PAP representation of Jif (e1 > 0) e2 e3K. But by the equations in (6)
and the definitions of J−K∇ , cond(−,−,−), and 〈〈D−〉〉, we have 〈〈Dcond(γ1, γ2, γ3)〉〉(v) =
Jif (e1 > 0) e2 e3K∇v for all v ∈ RN . Hence, the theorem holds in this case as well.

Corollary 13. Assume that an autodiff system for the language in §4 satisfies the two requirements in
§4. Then, for each program e, there exists an intensional derivative df in ∂•JeK such that if the system
performs forward-mode (or reverse-mode) autodiff with a tangent vector w ∈ RN (or a cotangent
vector u ∈ R), it computes the Jacobian-vector product df (v)·w ∈ R (or the vector-Jacobian product
u>· df (v) ∈ RN ) for every input v ∈ RN . Furthermore, the computed entity is the corresponding
Jacobian-vector product (or vector-Jacobian product) with the standard derivative of JeK for almost
all inputs v ∈ RN .

Proof. Suppose that the two requirements are met, and let e be a program. Consider the case when the
system performs forward-mode autodiff. Let df = JeK∇. Then, by Theorem 12, df is an intensional
derivative in ∂•JeK. Moreover, by the second requirement, the output of the system for e with a
tangent vector w ∈ RN is (JeK∇v) · w = df (v) · w ∈ R for all inputs v ∈ RN . This proves the first
part of the corollary. The other part of the corollary follows immediately from Proposition 8. The
proof for the case when reverse-mode autodiff is performed is essentially the same, so we omit it.
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