
We thank the reviewers for their constructive and inspiring feedback. We will improve the paper by incorporating the1

following responses. As we cannot see R2 (i.e., Reviewer #2), we respond to the reviews by R1, R3, and R4 only.2

[R1/R4] The correctness of autodiff systems defined in the paper could be misleading to practitioners. Any relationship3

between the correctness of autodiff systems and that of applications (e.g., gradient descent) built upon autodiff systems?4

We agree with the reviewers’ points that (i) the correctness of the applications built upon autodiff systems is as important5

as that of the underlying autodiff systems, but (ii) the former does not necessarily follow from the latter (especially6

as defined in the paper). These two notions of correctness address separate issues, and our work is mainly about the7

second notion (i.e., the correctness of autodiff systems). Also, we do not claim that our correctness condition is “the”8

gold standard. Rather we are just suggesting “a” correctness condition that can serve as a reasonable (possibly minimal)9

requirement for existing and future autodiff systems. We will clarify this limitation in the revised version of the paper.10

Here are detailed responses to the point (ii) on the applications mentioned in the reviews.11

• Gradient descent: As illustrated by R1’s example of f(x), our correctness condition for autodiff systems does not12

necessarily imply the correctness of the gradient descent based on those systems (i.e., that the gradient descent13

converges to Clarke critical points). This gives a partial answer to R3’s question on possible drawbacks of using14

intensional derivatives. On the other hand, we conjecture that if gradient descent is based on intensional derivatives15

and starts at randomly chosen initial points, it would be correct almost surely. This is an open problem.16

• Hamiltonian Monte Carlo (HMC) and variational inference (VI), possibly for probabilistic programming: We17

reiterate that PAP functions enjoy a nice property that they are analytic on each piece of domain, whose boundary is18

measure-zero. The property has been crucially used to design various methods of HMC and VI for non-differentiable19

densities and prove their correctness (e.g., [1, 2]). This signifies the importance of studying PAP functions. Whether20

the correctness claims in those works would still hold if intensional derivatives are used in place of standard ones, is21

another open problem. We will discuss these interesting open problems in the revised version of the paper.22

Although there remain a few open problems, we strongly believe that our work would serve as an important first step23

towards understanding and resolving those problems. Above all, as far as we know, this is the first work that (i) raises24

subtleties in the well-known chain rule when applied to almost-everywhere differentiable functions, (ii) gives concrete25

counterexamples illuminating those subtleties, and (iii) proves some reasonable (possibly minimal) correctness of26

existing autodiff systems that permits non-differentiable functions, using only elementary mathematics.27

[1] Discontinuous Hamiltonian Monte Carlo for discrete parameters and discontinuous likelihoods. Biometrika, 2020.28

[2] Reparameterization Gradient for Non-Differentiable Models. In NeurIPS, 2018.29

[R1] Is there any better correctness condition for autodiff systems that permits some non-differentiable functions but, at30

the same time, ensures nice behaviors of autodiff systems when applied to differentiable functions?31

This is a good question that would lead to interesting future work. We do not have concrete results, but a possible32

approach would be to divide PAP representations and intensional derivatives into “good” and “bad” ones, and consider33

a new correctness condition that involves only those “good” ones. A desired property of “good” intensional derivatives34

might be that they must be identical to the standard derivative if a given function is differentiable everywhere. Under the35

property, R1’s f(x) is considered a “bad” PAP representation. A promising idea to construct “good” PAP representations36

that induce “good” intensional derivatives is to put additional requirements to their domain partitions, such as that each37

piece of a domain partition should be a half-open interval if the entire domain is R; R1’s f(x) violates this requirement.38
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[R3] Plots of functions used in the proof of Proposition 1?39

Shown right are draft plots of the 1-Cantor function, and f and g in40

the proof of Proposition 1. We will add them to the paper.41

[R4] Implementation of relu, reciprocal_no_nan, and sqrt? Any connections to observed values of their “derivatives”?42

We checked that TensorFlow and PyTorch compute the “derivatives” of the three functions f , not by applying autodiff43

(or symbolic differentiation) to the implementation of f , but by evaluating a separately written implementation of D̃f .44

The implementations of f and D̃f , denoted by f and D̃f, are as follows.45

relu(x) D̃relu(x) recip(x) D̃recip(x) sqrt(x) D̃sqrt(x)

TensorFlow _max(x, 0) if (x > 0) 1 0 _div(1, x) _div(−1, x× x) _sqrt(x) 0.5/_sqrt(x)
PyTorch if (x ≤ 0) 0 x if (x ≤ 0) 0 1 N/A N/A _sqrt(x) 1/(2× _sqrt(x))

46

Here _max and _sqrt are functions provided by a standard math library, and _div(x1, x2) is implemented as if (x2 =47

0) 0 (x1/x2). If we interpret relu and D̃relu as PAP representations, one can see that (D̃relu) = D(relu) may48

fail depending on the implementation of _max (e.g., consider _max(x1, x2) = if (x1 ≥ x2) x1 x2). This suggests that49

“derivatives” of primitive functions f in autodiff systems could have nothing to do with the implementation of f .50


