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Abstract

This work proposes a novel smoothing method, called Bend, Mix and Release
(BMR), that extends two well-known smooth approximations of the convex opti-
mization literature: randomized smoothing and the Moreau envelope. The BMR
smoothing method allows to trade-off between the computational simplicity of ran-
domized smoothing (RS) and the approximation efficiency of the Moreau envelope
(ME). More specifically, we show that BMR achieves up to a v/d multiplicative
improvement compared to the approximation error of RS, where d is the dimension
of the search space, while being less computation intensive than the ME. For non-
convex objectives, BMR also has the desirable property to widen local minima,
allowing optimization methods to reach small cracks and crevices of extremely
irregular and non-convex functions, while being well-suited to a distributed setting.
This novel smoothing method is then used to improve first-order non-smooth op-
timization (both convex and non-convex) by allowing for a local exploration of
the search space. More specifically, our analysis sheds light on the similarities be-
tween evolution strategies and BMR, creating a link between exploration strategies
of zeroth-order methods and the regularity of first-order optimization problems.
Finally, we evidence the impact of BMR through synthetic experiments.

1 Introduction

First-order optimization is at the heart of most training algorithms in Machine Learning. Thanks to
backpropagation, neural networks have achieved a number of impressive successes over the past few
years, including natural language processing [1], image processing [2]], and reinforcement learning [3]].
However, training complex state of the art architectures remains difficult due to the highly non-smooth
and non-convex nature of their loss functions [4]. While stochastic gradient descent and its variants
(Adam [5]], RMSProp [6], or Nesterov’s accelerated gradient descent [7]]) showed surprisingly good
performance in many practical scenarios, these algorithms remain fragile for particularly non-smooth
or non-convex objectives []].

Smooth approximations, such as Randomized Smoothing (RS) [9] or the Moreau Envelope (ME) [10]],
provide an elegant solution to deal with both problems at the same time. In order to solve optimization
problems of the form min,cga f(z) where f : RY — R is a non-smooth (possibly non-convex)
and L-Lipschitz objective function, these methods replace the objective function with a smooth
approximation of it, which allows for accelerated convergence rates and parameter space exploration.
This idea was successfully used in convex [[11}12], distributed [13}|14]], composite [[15} 16, [17], and
non-convex optimization [18]] to improve convergence rates and significantly reduce computation
times. In distributed optimization, RS, defined by fs () = E[f(x + uX)] where X is a Gaussian
normal random variable, allowed to use extra computations to accelerate convergence [9, [13]. Its
simple form has the advantage of being easy to compute and parallelize. Unfortunately, RS suffers
from a v/d multiplicative factor in its approximation error, leading to a d'/* multiplicative term
in the convergence rate of distributed algorithms (e.g. DRS [13]] or PPRS [14]), which can be
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Table 1: Strengths and weaknesses of smoothing methods for convex L-Lipschitz functions. For ME,
we use the parameter ' = p/L to match the smoothness of RS.

Smoothing method Smoothness Approx. error Gradient comp.
Randomized smoothing L/u puLA/d Sampling (easy)
Moreau envelope L/u uL Opt. problem (hard)

a-BMR (ours) L/u ulL (% + 4/ W‘Z#La}) Biased sampling (med.)

prohibitive for high-dimensional problems. Removing this dependency in the dimension is yet an
open problem of the field. For composite optimization, the Moreau Envelope (ME), defined by
SME (2) = mingega f(y) + ﬁ ly — x||?, and its gradient the proximal operator [19}15[16} 20 10],
allowed to obtain smooth convergence rates even in the presence of non-smooth objectives of the form
min, f(x)+ g(x), where f is smooth and g is non-smooth but simple (i.e., prox friendly). While ME
is harder to compute, its theoretical guarantees are better, including a dimension-free approximation
error (see Table[T]for a comparison of smoothness and approximation error of RS, ME and our novel
smoothing operator for L-Lipschitz functions). Finally, in non-convex optimization, a relationship
between exploration and smoothing was investigated in a recent line of works [21} [22]], and provide
an elegant theoretical setting to understand exploration in stochastic gradient descent. Moreover, RS
was successfully applied to non-smooth non-convex optimization problems and provided the first
convergence rates in this particularly difficult setting [18]].

This work introduces a novel smooth approximation, called Bend, Mix and Release (BMR), that
benefits from the advantages of both techniques by biasing the expectation in RS towards low values
of the objective function. BMR thus allows to trade-off between computation complexity and quality
of the approximation (see Table[T). As for RS, its gradient can be approximated through sampling,
which allows to distribute its computation on parallel workers. Moreover, BMR also improves the
exploration of non-convex functions by widening deep local minima, and thus allows the optimization
algorithm to reach better local optima for particularly irregular objectives. Finally, we show that such
a smooth approximation can be used for distributed and non-convex optimization in order to improve
upon RS based algorithms.

This paper is organized as follows. First, we introduce BMR smoothing and highlight its key
properties in Section 2] including smoothness, approximation error and limit behavior. We then
discuss in Section [3how to use BMR for optimization, with a special focus on the approximation of
the gradient. Finally, in Section[d] we show the benefits of BMR over RS empirically on a synthetic
non-smooth and non-convex objectives. The proofs of all theorems are available in the supplementary
material.

2 Bend, Mix and Release

In this section, we introduce our novel smooth approximation, called Bend, Mix and Release (BMR).
We first recall useful notation and definitions, and then provide a formal definition of BMR. To
enhance intuition, we then provide alternative formulations before stating its main properties.

2.1 Notation and standard definitions

We denote as N(u, ) the multivariate Gaussian probability distribution of mean € R? and
(semi-definite positive) covariance matrix ¥ € R4*?, For simplicity, we assume hereafter that all
functions are measurable and differentiable. A function f : R? - Ris L-Lipschitz if, for all z € R?,
|V f(z)|l2 < L; is convex if, for all z, y € R?, f(y) — f(x) =V f(z) " (y —z) > 0; and is B-smooth
if its gradient is 3-Lipschitz continuous, or equivalently Vz, y € R,

—Sly—zl3 < fl)-f@)=Vi@) (y—2) < Fly—al. (1)

For non-convex functions, convergence results typically only require the second inequality, as it
ensures that the objective function is smaller that an auxiliary quadratic function. We thus relax this
property to that of partial smoothness defined below.
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Figure 1: Effect of the parameter o on BMR smoothing (with v = min{1, a~/2}). When oo — 0
(resp. a — +00), BMR tends to randomized smoothing (resp. Moreau envelope).

Definition 1 (Partial smoothness). Let f : R¢ — R be a (possibly non-convex) function and 3 > 0.
The function f is S-upper-smooth (resp. [-lower-smooth) if, for all z,y € R, f(y) — f(z) —
V@) (y—x) < 5lly — 23 Cesp. f(y) — f(x) = V(@) (y —x) > =5y — z[|3).

Remark 1. Convexity is equivalent to O-lower-smoothness, and if a function is both S-lower-smooth

and S-upper-smooth, it is then S-smooth. As a consequence, a convex function that is S-upper-smooth
is also (3-smooth.

2.2 BMR smoothing

Despite their differences, RS and ME share a common similarity: both operators are convolutions (in
the classical sense for RS, and in tropical geometry for ME). As tropical geometry replaces the sum
by a maximum, a natural strategy to interpolate between them consists in biasing the expectation of
RS towards the minimum of ME. Following this intuition, our smoothing operator uses a three step
procedure (Bend, Mix and Release) to achieve this interpolation: first, the function is bent to give
more importance to low values of the objective function. Then, the function is mixed on a Gaussian
neighborhood. Finally, the function is released using the inverse of the bending function.

Definition 2 (Bend, Mix and Release). Let o,y, L > 0 and f : R? — R be an L-Lipschitz function.
The BMR (Bend, Mix and Release) smoothing of f is defined as follows:

Fral@) = 63" (E [0a(f(z+7X))] ) @

where X ~ N(0, I) is a normal multivariate Gaussian variable and ¢, (z) = L=<

[e3

Alternative formulations of BMR smoothing provide three different insights into the regular-
ization: 1) Moment generating function: Using the definition of ¢,, Eq. simplifies to
fra(®)=—a"'InE [e*af (47X )] . This quantity can be interpreted as the logarithm of the mo-
ment generating function (also known as the cumulant generating function [23]) of f(z + vX), and
bears resemblance to the LogSumExp (or softmax) operator [24]]. Moreover, the simplicity of this nota-
tion makes it more convenient for practical computation. 2) Gaussian filter: By rewriting the expecta-
tion as a convolution with the Gaussian distribution, we get that f., o (z) = ¢ 0 ((¢a o f)*ps) (),
where * is the convolution and p,, is the Gaussian probability distribution of standard deviation +.
This notation shows that BMR smoothes by blurring the function ¢,, o f using a Gaussian filter,
and will be useful for the computation of derivatives. 3) L,-norm: Finally, using the notation

X, =E [|X|p]1/p for any p > 0, we have f., o(z) = —In ||e*f(””+“*x) Ha . This notation shows
that, as « increases, the logarithm of the smoothing operator tends to the maximum of the function
e~f. By choosing wisely 7 as « tends to +oco, we will show in Proposition that the expectation
in randomized smoothing tends to the minimum in the Moreau envelope, allowing a continuous
transition between the two smoothing operators.

While other bending functions (e.g. power laws) could, in principle, be used, ¢, has the crucial
advantage of being translation equivariant. This property increases the stability of the operator, and
is fundamental to prove the approximation bounds of Proposition 4}

Proposition 1. Let o,y > 0, and f : R? — R a function. The following properties hold:



1. Let 7,(x) = x + a be a translation by a constant a € RY. Then (a0 f)%a = Ta O fy,a and
(f o Ta)fy,a = f’y,a O Tq-

2. Let o.(x) = cx be a scaling function by a constant ¢ € R. Then (6.0 f)y,a = 0¢© fy.ca
and (f o o-c)'y,a - fcv,(x O O¢.
Finally, with the correct choice of parameters, BMR interpolates between RS and ME. More specifi-
cally, in order to recover ME, the size of noise - should decrease as the bending factor « increases.

Proposition 2 (Limit behavior). Let f : R? — R be a function. For any i > 0 and x € RY,
lim,_o fu,a(x) = ffs(x) and limg_, 4 f\/g7a(x) = fiVIE(x)

2.3 Smoothness and approximation error

As discussed in Section [T} smoothness and approximation error are the two key properties that are
necessary to use the operator for optimization. Fortunately, the theoretical analysis of BMR provides
a bounds for both quantities.

Proposition 3. If f is L-Lipschitz, its BMR smoothing f. . is min {%, a%{z }-upper-smaoth.

Note that, contrary to RS, the upper-smoothness of BMR is bounded by %ﬁ even for arbitrarily

large L. Moreover, if f is convex, then f , is min {L /7, 1/avy? }-smooth and smooth optimization
algorithms can be used to minimize it. Finally, the approximation error is bounded as follows.

Proposition 4. If f is L-Lipschitz, f . is an approximation of f in the following sense: Y € RY,

Oz"}/sz

| fra(z) — f2)] < +ALVd. 3)

With the choice of parameter v = min { /1 }, we have that f,  is %-upper-smooth and

1 d
|fy.a(z) = f(z)] < pL (2 + W) . 4)

As discussed in Section |1| this approximation error interpolates between that of RS (i.e., Lv/d)
and ME (i.e., uL), and thus allows to trade-off computation complexity with approximation error.

When pLa < 1, the approximation is in ;L\/d and BMR is similar to randomized smoothing. When
nLa > d, BMR approaches the Moreau envelope and benefits from a pL approximation error.

2.4 Widening of local minima

Finally, the Moreau envelope has the notable advantage of having no approximation error at the
minimum of the function. The same behavior can be observed for BMR as « tends to +oo. Effects of
the parameter a on the BMR smoothing is illustrated in Figure[T}

Proposition 5 (Approximation at the minimum). If f is L-Lipschitz and x* € min,epa f(z), then
2
0 < frale) = f@) < g5 (14m(142900)) (5)

For non-convex optimization, this result, combined with the smoothness of f., ., implies the widening
of all local minima, allowing the optimization algorithm to find cracks and crevices of the objective
function (see Section[]for an experimental validation).

Proposition 6 (Widening of local minima). Let ju > 0 and y € R®. If f is L-Lipschitz, then there
exists z € R such that ||y — z|| < pand, Yz € R?,

Fra@) < fW)+ &2+ (1+m (14 245)) ©

where v = min {1, /7= }.



In other words, for every local minima y € R of the objective function f, fry,a(x) will be small
(i.e., approximately f(y)) in a neighborhood of y of size u (see Figure for an example). As a
consequence, a good but thin local minimum will have its basin of attraction increased, and thus
be easier to reach by gradient descent (GD) even when the starting point x is far from the local
minimum. For example, consider f(z) = min{1,|z|}. Its gradient is zero for any = ¢ [—1,1],
which means that GD initialized outside this region will be stationary. Moreover, for large smoothing
parameters v, RS will tend to flatten the objective and thus lead to the same behavior. However, BMR
(with a sufficiently large «) will create an almost quadratic function in a region x € [—p, u], thus
allowing GD to converge even when initialized at distance . from the origin.

3 Application to first-order and distributed optimization

Using BMR for optimization simply consists in applying first-order methods to the smooth approx-
imation f, . instead of the objective function f. To do so, the optimization algorithm needs to
access the (approximate) gradients V£, . (z) for any z € R?. In this section, we first derive an
analytical formulation of the gradient of the smoothed function, propose two approximation schemes
and discuss the number of samples necessary to reach a sufficient approximation. Then, we use this
result to derive novel convergence rates for distributed optimization using BMR smoothing.

3.1 Gradient computation and approximation

The gradient of a BMR approximation is surprisingly simple, and a direct extension to that of
RS. While V ffs () = E[Vf(x +~vX)] is an expectation of the true gradient in a (Gaussian)
neighborhood of z, the gradient of a BMR approximation is an expectation of the true gradient
over a neighborhood of x biased towards low values of f. More precisely, let the random variable
Yira ~ q(y) oc e Wp, _(y), where p, - is the density of a Gaussian distribution N(z, yT).
Intuitively, Y, - « is a noisy version of the input = biased towards low values of the function. Then,
the following Lemma holds.

Lemma 1. For any function f : R? — R, the gradient of its BUR smoothing ¥ Sry,a is
Via(@) =E[Vf(Yenqa)l - @)

In practice, estimating this gradient requires to approximate the expectation in Eq. (7). This may
be achieved in multiple ways. We now discuss two approaches: 1) Langevin Monte-Carlo: A
natural approach to estimate V f, , consists in sampling the r.v. Y, . While the definition of its
density distribution (proportional to exp(g(z)) for a given function g) makes sampling relatively hard,
Langevin Monte Carlo [25] and MCMC [26] methods are particularly well suited to the sampling
of such random variables. However, this approach is difficult to parallelize due to the sequential
nature of Langevin Monte Carlo and MCMC methods, and we thus leave the implementation and
analysis of such approximation for future work. 2) Importance sampling: A second approach
consists in sampling another distribution (close to that of Y, - ,) and re-weighting the samples
accordingly. For simplicity, we now consider the Gaussian distribution, although more elaborate
distributions could lead to substantial improvements in practice. Approximating the gradient can
thus be achieved by sampling K noisy inputs Y3, = x; + vX}, where X}, ~ N(0, I) for k € [1, K].
Then, a weighted average of the gradients V f(Y}) provide an approximation of the smooth gradient:
Viya(@) =3, wpVF(Yy), where wy, = e~/ (V) /5™ e~/ for k € [1, K]. We discuss the
approximation error of this estimation in Section[3.4]

Remark 2. Quite surprisingly, BMR smoothing also enjoys a gradient-free approximation of its
gradient, allowing to use BMR smoothing for zeroth-order optimization:

1
Vf%a(l‘) = —W}E [Y:E,’Y,Ot — I] . (8)

For example, applying gradient descent to f., , with the optimal step-size n = a~y? (see Proposition
and Eq. (8) gives z441 = E [Y;, ~.]. The intuition is thus that, at each iteration, points in a Gaussian
neighborhood of x; are sampled and re-weighted to give more importance to low-values of the
objective. This scheme is central to evolutionary strategies such as simulated annealing [27], NES [28]
or CMA-ES [29], and provide an interesting alternative interpretation of such zeroth-order exploration
schemes as first-order optimization of well-chosen smooth approximations. A more detailed analysis
of the relationship between exploration and smoothing is left for future work.



Algorithm 1 BMR-GD

Input: iterations 7', samples K, gradient step 7, smoothing parameter -, distortion parameter .
Output: optimizer x

1: g = 0

2: fort=0toT —1do

3 Y, = xp + v X, where Xj, ~ N(0, I) for k € [1, K]

4: f* = miny f(Yk)

50wy = e*a(f(yk)*f*)/zl e~ a(FYD)=F") for k € [1, K]
6: Gy= Zk wiV f(Y)

7: Tiy1 = Tt — 77Gt

8: end for

9: return xp

Remark 3. The gradient of the Moreau envelope (or, more precisely, the proximal operator [30]])
is an important tool of non-smooth and composite optimization. Following the definition prox , , =

& — pV f}'F (x), we may extend the prox operator to prox; ., () = E[Yy ] - Using Eq. (7) and
Eq. (8), we have that E [V, 0] = E [ — ay?V f(Y; 4,) | which can be interpreted as a stochastic

equivalent of the formula prox , ;(x) = (I + 'V f)~"(x) that identifies proximal gradient descent to
an implicit optimization scheme and is central to its theoretical analysis [30,[19].

3.2 Gradient descent scheme

Alg.[I|describes BMR-GD, a (stochastic) gradient descent algorithm on the BMR smooth approxi-
mation of the objective. As the gradient V f,, . () cannot be computed exactly, we approximate it
using importance sampling (see Section [3.1)). Note that the purpose of step 4 in Alg.[T]is to provide
more stability to the computation of the weights wy,. The practical performance of this algorithm on
non-smooth and non-convex problems is discussed in Section 4]

3.3 Distributed optimization

For didactic purposes, let us now show how BMR can improve distributed optimization. In this
setting, parallelization can be used to improve the estimation of the gradient by increasing the number
of gradient samples K. When the number of workers is large, we may, as a first approximation,
neglect the gradient estimation error (this error is however discussed in the next section). Then,
accelerated gradient descent on a smooth approximation of the objective leads to an approximation
error E [f(24)] — min, f(x) < 24 + 2B||zo — 2*||*(t + 1)~2 (see [31}, Theorem 3.19]), where
A is the approximation error, B is the smoothness, and z* is an optimum value of the smooth
approximation. For RS, we have A = pLv/d and B = L/, and thus, with a proper choice of f,

|| /4
E[f(x)] - Inmin f(z) < 4L||z0t +J71 |d . o

Note that, even with an infinite number of workers (and thus no estimation error on the gradient), the
convergence rate depends on the dimension d. Using BMR allows to reduce this dependency in the
dimension, as we have, with a proper choice of p,

1/2
) AL||xo —2*|| (1 f d
E[f(2e)] — Hlmlnf(x) < i1 (2 + HMX{LNLO‘}> . (10)

When pLa =~ d, the dimension-dependent term disappears from the convergence rate, thus improving
the optimization of high-dimensional objectives. As discussed in the next section, this improvement
in convergence rate is at the cost of a more difficult estimation of the gradient, thus requiring more
workers / samples to estimate the gradient within a sufficient precision.

3.4 Gradient bias

The main difficulty with Alg.[T]is that the gradient estimator is biased. In this section, we quantify
this bias and show its dependency in the number of samples. This illustrates the trade-off between



dimensionality of the problem, number of data available to compute the gradient and parameters of
the smoothing.

Proposition 7 (Gradient bias). Let f : R? — R be a L-Lipschitz function. Then for any = € R?, any
sample size K > 0 and any € > 0, the estimate bias is bounded as follows:

HE [?wa,a(x)} - Vf““(x)H < ;iifz <1 + K‘T;E) , (11)

where c. > 0 and o, = std (e_“f(‘”“"yx)) /E [e_af(m“"yx)] is the normalized standard deviation
ofefaf(ZL’Jr"/X).

This result shows that the estimate bias is almost in 0(1 / VK ) The quality of the estimate is
impacted by the variations of the function around the current point, in particular if the largest
variations are concentrated in a small area, since a high value of o will make the estimate focus only
on a few sample points. Although the quality of the estimator could be degraded if a point is drawn
where the function is significantly lower, this could lead to a better descent direction in practice.
Finally, let us point out that the constant term c. is very sensitive to changes in the method parameters,
in particular ov. The detailed expression of ¢, may be found in the supplementary material.

4 Empirical Results

The goal of this section is to go beyond theoretical results and investigate how BMR properties impact
the derived optimization scheme. Computing the ME being too expensive in practice, we decided to
benchmark BMR mainly with RS.

It is worth mentioning that BMR can be easily distributed over a large number of workers in a similar
fashion than RS, making them competitive w.r.t. classical GD which can’t be distributed in this
setting (see Section[3.3). However, we decided to add GD as an example of local minima achieved
with such methods. Furthermore we select the learning rate, used for BMR and RS, based on GD
performances.

We benchmarked our approach on synthetic non-smooth functions that we believe are representative
of struggling problems arising with complex real world loss functions and deep learning losses.
Experiments being proofs of concepts, parameters are chosen big enough to distinguish among
the different methods but small enough for ease of computation, letting extensions to large scale
deep learning problems for future work. Optimization is thus done in a 10-dimensional space
and 10 data points are sampled at each iteration of the algorithms. We test the methods with
(v, ) € {0.01,0.1,1,10,100}2, we display only few of them for seek of readability but conclusion
remains the same for other values. In the following, optimization schemes are benchmarked using the

J(@o)—f(w4)

ratio 5o N =y s the performance criterion.

4.1 Approximation error and vy sensitivity

First, we confirm that BMR smoothing achieves indeed in practice a smaller approximation error than
RS, thanks to its a parameter which allows to go from a pL+/d error to a ;L one as a grows. This
non desirable behaviour of RS is outlined in Figure[Ta] where the minimum of the smoothed function
does not align with the minimum of the original function. In this first experiment, we emphasize this
difference by showing that even in the simple case of a convex function and for the same amount
of noise used in the smoothing operator, BMR can achieve the minimum of the function while RS
cannot. To this end, we consider the function fr(z,y) = ||z|l, + >, g(y;) where g(y;) = y; if
y; > 0 and —y; /10 otherwise. This simple, yet talkative, example of non-smooth and non-symmetric
function arise in deep learning losses using activation units such as ReLU variants.

Figure [2] shows that RS is falling in minimizing the task when v = 10, while BMR, even with a
relatively small «, reaches the optimum, what makes the optimization scheme less sensitive to the
choice of . Even if decreasing y solves the issue for RS, it implies a more refined hyperparameter
search and brings out the impact of BMR approximation error reduction.

We thus investigate the previously highlighted v amplitude sensitivity. Following Proposition 2] we
coupled the evolution of v and ~ by using a « exponential decay schedule and set o o< 2 in order
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Figure 2: Performances of BMR and RS while minimizing fr with different s

to smooth border effects. For this experiment we optimize a piecewise linear function constructed
by adding a fixed positive noise m to « — ||z||;. For each component, we select a set of points
a_n <..<ag=0< . <ay,and construct their respective images (b;);c[—n..n) Where bo; = [|az|
and bg; 1 = ||ag;|| + m;. We then construct a piecewise linear function and denote it fpwy .

Results are reported in Figure [3| which outlines the following advantages of BMR over RS: BMR
is less dependent than RS on the ~y parameter tuning and it finds better optima than RS. We notice
however that choosing a 7y too small makes either RS and BMR to converge to the same local minima
as GD, due to the lack of exploration.
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Figure 3: «-decaying schedule with different initial values while minimizing fpwr .

First synthetic experiments tend to show that the use of a scheduler ease the choice of v paying a low
time cost with no performance loss.

4.2 An a-opportunist method

In Section[2.3] we have seen that theoretically, other things being equal, increasing « should widen
local minima, the deepest ones being the widest. We see in this section that in practice, BMR indeed
converges quicker to local minima and better ones as « increases. To this end, we consider Fourier
inspired functions: let fr(z) = >, ; a;jcos(bjx;), where (c;, b)) je[1..10) are chosen randomly, and

fre(z) = min(1, fe(x)). ’

Results are reported in Figure 4| First, we see that for both fr and fgc, larger « leads to better
performance. At convergence, gradients around the reached local minima are also smaller and more
stable. Second, larger « are able to go against local gradients to reach the best local minima in the
neighborhood: in both examples, a = 100 clearly degrades its performances to reach better local
minima than o = 10. The larger the o the more opportunistic the method while RS tends to smoothly
increase the performances.

Converging to the nearest local minimum can however bring unwanted behavior. We can see for
instance on frc that BMR gets trapped in a decent local optimum but RS leads to better performance
in the long run. In such case, looking farther by increasing v may be necessary. Finding good
heuristics to smoothly transition from RS to ME (i.e. "+00"-BMR), and trying to get the best of both
methods is left for future work.

5 Conclusion

In this paper, we have introduced a novel smoothing procedure called BMR interpolating between
RS and ME. Theoretically, we have shown that this method was able to escape the v/d-dependency
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of RS approximation error, while working on non-convex functions as opposed to ME. From a
computational perspective, we have seen that BMR is easily computable contrary to ME and even
if it comes with an additional hyperparameter oo compared to RS, it eases the selection of the noise
amplitude -y by being more robust to it.

A promising application of this method would concern the Reinforcement Learning field, where
a set of methods, called Policy Gradient methods, apply first-order optimization techniques on a
non-convex loss function. Those methods are known to be prone to converge towards local optima
and would be thus a candidate of choice for applying BMR.

Broader Impact

As a method accelerating the optimization of non-smooth and non-convex functions, the BMR
smoothing operator may be applied to a wide range of applications, in particular for training deep
neural networks of which the induced loss function are highly non-smooth and non-convex and
of which applications are numerous: image, speech, natural language processing, reinforcement
learning... As a theoretical work however, it remains difficult to more precisely evaluate the impact
of this paper. Exhaustive experimental benchmarks assessing the performance of BMR smoothing
should first be conducted.
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