
Supplementary Material
SMYRF:

Efficient Attention using Asymmetric Clustering

Giannis Daras
Computer Science Department

The University of Texas at Austin
giannisdaras@utexas.edu

Augustus Odena
Google Research

augustusodena@google.com

Nikita Kitaev
Google Research

kitaev@cs.berkeley.edu

Alexandros G. Dimakis
ECE Department

The University of Texas at Austin
dimakis@austin.utexas.edu

9 NP-hardness of Attention Biclustering

To prove Theorem 1, we first prove the following lemma.

Lemma 1. The optimization problem:

min
CLt ∈CL

||P̂ε − P ||2F

is NP-hard.

Proof of Lemma 1. We will show that this problem is NP-hard, by showing that if we could solve in
polynomial time all instances of this problem, we could solve in polynomial time the 3-dimensional
matching problem (3-DM), which is known to be NP-complete. Following the notation of the main
paper, we define ε = e−a and P̂ε denotes the queries-keys product matrix with −a in positions that
correspond to queries and keys that do not belong to the same cluster.

It holds that:
min
CL
||P̂ε − P ||2F = min

CLt ∈CL

∑
(q,k) 6∈CLt

(q · k − (−a))2

= min
CLt ∈CL

 ∑
(q,k)∈Q×K

(q · k + a)
2 −

∑
(q,k)∈CLt

(q · k + a)
2

 = min
CLt ∈CL

− ∑
(q,k)∈CLt

(q · k + a)
2

= max
CLt ∈CL

∑
(q,k)∈CLt

(q · k + a)
2 (6)

Since for all given setsQ,K we can create (in polynomial time) setsQ′,K′ such that: (q · k + a)
2
=

q′ · k′, ∀(q, k) ∈ Q×K, (q′, k′) ∈ Q′ ×K′, the problem is equally hard to solving:

max
CLt ∈CL

∑
(q′,k′)∈CLt

q′ · k′ (7)

15

We can refer to this latest optimization problem as the max-mass problem.

Now consider the case where: |Q| = |K|, L = |Q|/2, i.e. for this problem instance we have the
same amount of queries and keys and we want to group them optimally to clusters with the constraint
that each cluster should contain exactly 2 queries and 2 keys.

Note that for 1 query and one key per cluster this becomes weighted bipartite matching (which is
efficiently solvable). For 1 query and m keys per cluster this is a generalized matching problem,
which is also polynomially solvable [69].

If we are able to solve the latter with a polynomial algorithm, then we can show that we can solve the
3-DM problem with a polynomial algorithm.

Any instance of the 3-DM problem can be expressed with finite, disjoint sets X,Y, Z and a set
T of triples (x, y, z) : x ∈ X, y ∈ Y, z ∈ Z. Visually, we can depict any instance of
a 3-DM as a graph with three disjoint vertex sets, with T containing the edges of the graph.
For example, the 3-DM instance X = {1red, 2red}, Y = {1blue, 2blue}, Z = {1green, 2green}, T =
{(1red, 1blue, 1green), (1red, 2blue, 2green), (2red, 1blue, 1green)} is shown in (1,1) of Figure 3. We are look-
ing for a set T ′ ⊆ T in which every vertex is covered exactly once. Finding this solution, in case it
exists, it is known to be an NP-hard problem. For this example, there is a valid solution, which is
shown in (1, 2) of Figure 3.

We can transform any instance in the following way: we create one query and one key vector for each
vertex x ∈ X with the property that their inner product is some large positive constant r1 ∈ R+. We
can visualize this using red edges, following the previous example where we denoted with red color
the vertices of X . We also set the inner product of any key vector that corresponds to vertex of X
with all the other query vectors to be 0. Visually, a “missing" edge means that the inner product of the
corresponding vectors is 0 (no-reward). We also create a key vector for each vertex y ∈ Y with the
property that if (x, y, z) ∈ T for some z, then the key vector for y and the query vector for x have
inner product r1, else 0. We can show the non-zero edges of this category visually with blue color,
following the previous example. Note that blue and red edges are equivalent in terms of the inner
product between the vertices they connect, since both have inner product r1. Finally, we create a
query vector for each z ∈ Z with the property that if (x, y, z) ∈ T for some x then the key vector for
y and the query vector for z have inner product r2, else 0 where r2 ∈ R+ is a small positive constant.
Again, we can show the non-zero edges of this category with green color, following the previous
example. For the given example, the transformation is shown in (2, 1) of Figure 3.

We have hypothesized that we have a polynomial algorithm to solve the max-mass problem of (7).
The key observation for our proof is that, by construction, the best cluster in terms of potential
accumulated mass is a cluster with one red, one blue and one green edge, as the ones shown right of
the dashed bar of Figure 4. Indeed, the only way to obtain a cluster of more mass is to group two blue
vertices with two red vertices, as shown in (1, 1) of Figure 4. By doing that, you earn one more r1
compared to the clustering shown in (1, 2) of Figure 4, but you lose 2 · r1, which are the rewards that
they red keys could give (as they are left with no connections). Thus, the two clusterings on the right
side of Figure 4 are preferable compared to any other potential two clustering that can be obtained by
choosing the left grouping.

Since we have proved that the best possible clustering is one with one red, one blue and one green
edge, it is now left to prove that if there is a 3-DM, then it is possible to group all queries and keys
into clusters with this optimality property. Indeed, if there is a 3-DM, we can cover each vertex
exactly one time, by matching any vertex of X with a vertex from Y and a vertex from Z. With our
transformation, this means that we can group each red node with itself and one blue and one green
vertex, which is an optimal cluster as it contains one red, one blue and one green edge. Thus, solving
polynomially our problem would mean that we could also solve in polynomial time the 3-DM, which
is known to be NP-hard.

Proof of Theorem 1. We will show that if we can solve in polynomial time the problem:
minCL ||σ(P̂0)−σ(P)||2F , then we can also solve in polynomial time the problem minCL ||P̂ε−P ||2F
(for an appropriate ε) which we have proven to be NP-hard.

16

Figure 3: (1, 1): Instance of 3−DM. We denote with red color the X vertex set, with blue the Y
vertex set and with green the Z vertex set. (2, 1): Ours transformation for the reduction. Red and
blue edges have reward r1, while green edges have reward r2 << r1. Missing edges have reward
0. We create one query and one key for each vertex of X . We also create one key (blue color) for
each vertex of Y and one query (green color) for each vertex of Z. Connections between red queries
and blue keys, as well as, connections between blue keys and green queries follow the problem
instance. (2, 2): Optimal queries, keys clustering in groups of 2 for the max-mass 7 problem. (1, 2):
Transformation of (2, 2) solution back to the 3−DM instance.

Figure 4: Illustration of potential clusterings. (1, 1): sub-optimal clustering. (1, 2): optimal
clusterings. Even though the clustering at the left side obtains more mass compared to any of the
clusterings in the right side, it loses entirely the rewards that red keys can give. Indeed, clustering
on the left side has one r1 reward more than any of the two clusterings on the right, but in further
clusterings red keys {1, 2} will not be matched with anything (by construction) and thus a total
reward of 2r1 will be lost.

We are given sets Q,K and a number L. For each qi ∈ Q, we create a key vector kqi such as

qj · kqi =
{
a, if i = j

−∞, o/w
, where a is a positive constant the choice of which we will determine

later in this proof.

We denote the augmented key set with K′.
We will now solve, with our hypothetical polynomial algorithm, the following optimization problem
for our new input set:

min
CL
||σ(P̂0)− σ(P)||2F

It holds that:

min
CL
||σ(P̂0)− σ(P)||2F = min

CLt ∈CL

∑
(q,k)6∈CLt

(
eq·k

qD

)2

+
∑

(q,k)∈CLt

(
eq·k

qD
− eq·k

qCLt

)2

= max
CLt ∈CL

∑
(q,k)∈CLt

e2q·k ·

(
2

qD · qCLt
− 1

q2CLt

)
,

17

where qD denotes the denominator of the dense softmax and qCL
t

denotes the denominator of the
cluster softmax, i.e. qD =

∑
k∈K e

q·k and qCL
t
=
∑
k∈CLt

eq·k for a given cluster CLt ∈ CL.

We will now show that for a proper choice of a, this problem is equivalent to:

max
CLt ∈C

∑
(q,k)∈CLt

e2q·k.

Let Rq = 2
qDqCL

t

− 1
q2
CL
t

. As we increase the value of a, the inner product of its query with its’

special key gets significantly bigger compared to other inner products and thus for large enough
values of a, we know that each query will get clustered with its’ special key. We can control
how close qD, qCLt are by setting appropriately the a value. Specifically, we choose a such that
qD(1− ε) < qCLt , ∀q ∈ Q, C

L
t ∈ CL, where ε = ε(a) a small positive constant the choice of which

we will determine soon. By definition, qCLt is always smaller than qD, and thus we for that choice of

a we have qD(1 − ε) < qCLt < qD. Then, Rq > 2
q2D
− 1

q2D(1−ε)2 = 1
q2D

(2 − 1
(1−ε)2) =

1−ε′
q2D

where

1 + ε′ = 1
(1−ε)2 . But also, Rq =

2qCL
t
−qD

q2
CL
t

qD
< 2qD−qD

q2
CL
t

qD
= 1

q2
CL
t

< 1
(1−ε)2qD = (1 + ε′) 1

q2D
. Then, we

have that:
1− ε′

q2D
< Rq <

1 + ε′

q2D
. (8)

Now consider the following optimization problems:{
P0 : max

∑
(q,k)∈CLt

e2qkRq

P1 : max
∑

(q,k)∈CLt
e2qk

qD

.

Let F (c), G(c) the objective functions of P0, P1 respectively.

Using (8), we get that:
(1− ε′)G(c) ≤ F (c) ≤ (1 + ε′)F (c). (9)

Our claim is that for a suitable choice of ε′, i.e. for a suitable choice of a, it holds that argmaxP0 =
argmaxP1

4.We prove that by contradiction. Let c1 be the optimal choice of P0 and c2 be the optimal
choice of P1. Then, we know that F (c1) > F (c2) and G(c2) > G(c1). Using (9), we get that:

(1− ε′)G(c1)− (1 + ε′)G(c2) < F (c1)− F (c2) < (1 + ε′)G(c1)− (1− ε′)G(c2). (10)

We denote with d the gap between the optimal value F (c1) and the non optimal solution F (c2), i.e.
d = F (c1)− F (c2). Then, from (10), we get that:

d < (1 + ε′)G(c1)− (1− ε′)G(c2)− (1− ε′)G(c1) + (1 + ε′)G(c2) = 2e′(G(c1) +G(c2)).

Let θ1 the maximum value of G(c1) +G(c2) among all the clusterings c1, c2 ∈ CL, i.e. among all
the possible valid clusterings in L groups. Then, d < 2ε′θ1. However, since F is a function that
maps from discrete clusterings to real numbers, two non-optimal solutions of F (c) differ for at least
a minimum distance. In that case, the minimum distance should be at least epminRmin, where pmin is
the minimum product between any query and any key and Rmin is the minimum value that R can
take for any clustering. Let θ2 = epminRmin. Then, d ≥ θ2. If we choose ε′ such that: 2ε′θ1 < θ2
then we have a contradiction. This is always possible since we can set the value of ε′ to arbitrarily
small values as we grow a arbitrarily big. Thus, we proved that the problems P0, P1 have the same
argmax for a proper choice of a. Then, for that choice of a the problem minCL ||σ(P̂0)− σ(P)||2F
is equivalent to P1 which is equivalent to the problem:

max
CLt ∈C

∑
(q,k)∈CLt

e2q·k,

since qD does not affect the choice of optimal clusters.
4We assume that if there is a set of optimal solutions, then we pick with the same order from that set for both

problems.

18

In the latter problem, we can replace all queries q and keys k with new vectors q′, k′ such that:
q′ · k′ = e2q·k. This is equally hard to solving:

max
CLt ∈C

∑
(q,k)∈CLt

q · k

which we proved to be NP-hard.

10 Code

To encourage further research in sparse attention models, we open-source all our code and
we release a Python package, named smyrf. The repository for the code is the following:
https://github.com/giannisdaras/smyrf . smyrf implements SMYRF attention for Pytorch [36]. We
plan to release implementation for Tensorflow [70] soon as well. smyrf contains various examples
on pre-training and finetuning state-of-the-art models for Computer Vision and Natural Language
Processing tasks. Regarding examples, at the moment smyrf includes:

• a TPU-compatible implementation of SMYRF-BigGAN, based on the official Pytorch
implementation (https://github.com/ajbrock/BigGAN-PyTorch) for GPUs.

• code for training SMYRF-BigGAN on Celeba-HQ on a single TPU device.
• interactive notebooks showing how to use a pre-trained BigGAN for image generation with

SMYRF on Celeba-HQ and ImageNet.
• tools to visualize cluster memberships for pixels of SMYRF generated images.
• code for replacing dense attention with SMYRF layers for state-of-the-art pre-trained NLP

models, compatible with HuggingFace’s Transformers [71] library.
• interactive notebooks for fine-tuning pre-trained NLP models on GLUE [25] and IMDB [52].
• tools for profiling SMYRF’s performance compared to dense attention.

We also share the weights of SMYRF-BigGAN trained on Celeba-HQ at resolutions 128 × 128
and at 256 × 256 with attention at 128 × 128, 256 × 256 respectively. Although these models are
outperformed by non-attention GANs (e.g. StyleGAN [72, 73]), we believe that releasing them will
help researchers understand better attention at higher resolutions. Hopefully, SMYRF will motivate
the usage of more attention layers on new GAN architectures.

11 Singular values decay for pre-trained models

As noted in the paper, row-wise softmax can change the rank of a matrix. For example, the matrix[
1 0
2 0

]
has rank 1, while the matrix σ

([
1 0
2 0

])
=

[
0.7311 0.2689
0.8808 0.1192

]
has rank 2. Back to the

context of attention, we have defined the product matrix P = Q ·KT , where Q : R|Q|×d represents
the queries matrix and K : R|K|×d the keys matrix. By the definition of rank, if the embeddings
dimension is smaller than the sequence length dimension, i.e. d < min(|Q|, |K|), then P is low rank.
However, the attention matrix after softmax, i.e. σ(P), could be a full rank matrix. In this section,
we provide experimental evidence that attention maps produced by pre-trained models are actually
near low-rank.

Figures 5, 6 depict the singular values of the attention maps (for a random input5) for a pre-trained
BigGAN (attention map dimensions: 4096× 1024) and a pre-trained BERT (shown attention map
dimensions: 64×64, 256×256). For the pre-trained BigGAN (Figure 5) the decay in singular values
is exponential. Specifically, in Figure 5 most singular values are very close to 0, which means that
the attention map is effectively low rank. Figure 6 shows decay of singular values for a pre-trained
BERT for sequence lengths: (a) 64, (b) 128. We illustrate decay for 144 heads (12 heads for each one
of the 12 layers). For the majority of heads, singular values decay exponentially. We also see that
the heads that do not demonstrate exponential decay in the singular values maintain this property

5We experimented with different random inputs and there is no qualitative difference in the decay of singular
values)

19

https://github.com/giannisdaras/smyrf
https://github.com/ajbrock/BigGAN-PyTorch

for both inputs (e.g. see the red line in both plots). In our experiments, we find that these heads are
harder to approximate with SMYRF.

Figure 5: Decay of singular values of the attention map (after softmax) of a pre-trained BigGAN.
Decay of singular values is exponential, which means that the matrix after softmax is effectively low
rank.

12 Cluster memberships for generated images of a pre-trained BigGAN

In this section, we visualize how SMYRF’s adaptive clustering algorithm assigns queries in clusters
for a pre-trained BigGAN. This inspection gives useful insights into how the algorithm actually works
in practice.

Top row of Figure 7 shows a random maltese dog generated by a pre-trained BigGAN [1]. The
second row, illustrates how a single SMYRF hashing round assigns queries and keys for this particular
image in two clusters: the first cluster is denoted with gray and the second with white color. As
shown, SMYRF assignments preserve locality while enabling the modeling of arbitrary complex
dependencies between input pixels. Indeed, pixels in the same neighborhoods are mostly organized
in the same cluster. This observation is even more pronounced for background pixels (see big gray
blocks). However, we also see that distant pixels sometime belong to the cluster as well. By only
looking at the assignments in clusters (second row), we can infer that the image is roughly separated
in three parts: the top part (mostly gray pixels), the middle part (mostly white pixels) and the bottom
part (mostly gray pixels). These parts correspond to the top background, the dogs’ face and the bottom
background respectively. Third row of Figure 7 illustrates (for the same image) assignments in 128
clusters. Each cluster contains 32 queries and is denoted with a distinct color. Again, we observe that
clusters are often local. Indeed, usually consecutive pixels or nearly consecutive pixels are denoted
with the same color. For such large number of clusters, it becomes very difficult to extract semantic
information from the clustering map without looking at the original image. However, by careful
looking at both the attention map and the generated image we can make interesting observations. For
instance, we see that distant background pixels are clustered together with much greater frequency
compared to other distant non-background pixels. In other words, SMYRF often clusters together
background pixels even if they belong to distant grid positions in the generated image (see for example
colors in top and last row of the grid).

20

(a)

(b)

Figure 6: Decay of singular values for a pre-trained BERT for sequence lengths: (a) 64, (b) 128. We
show decay of singular values 144 heads (12 heads for each one of the 12 layers). For the majority
of heads, singular values decay exponentially. We also see that the heads that do not demonstrate
exponential decay in the singular values maintain this property for both inputs (e.g. see the red line in
both plots). We find that these heads are harder to approximate with SMYRF.

21

(a) Generated maltese dog from a pre-trained BigGAN.

(b) Visualization of SMYRF cluster assignments for this image
(single hash). Total number of clusters: 2.

(c) Visualization of SMYRF cluster assignments for this image
(single hash). Total number of clusters: 128.

Figure 7: Visualization of clustering assignments for a generated image by a pre-trained BigGAN.

22

13 SMYRF Clustering

13.1 Asymmetric Locality Sensitive Hashing (ALSH)

SMYRF clusters depend on the hashing indices of asymmetrically transformed queries and keys.
As mentioned in the paper, we are looking for functions F : Rd → Rd′ , G : Rd → Rd′ such as:
||F (q) − G(k)||22 = D(q · k), ∀(q, k) where D : R → R a decreasing function that depends only
on the inner product q · k. Essentially, functions F,G are applied to queries and keys to convert the
problem of Maximum Inner Product Search (MIPS) to Nearest Neighbor Search (NNS). For the
latter problem, a lot lot of effective Locality Sensitive Hashing (LSH) functions have been proposed
(e.g. [35, 74, 53]). The novel idea of converting MIPS to NNS is called Asymmetric Locality
Sensitive Hashing (ALSH) and was first introduced in [32]. Since then, a lot of different asymmetric
transformations have been proposed [34, 35, 33]. In this section, we show why previously proposed
transformations are not suitable for our problem and how our novel asymmetric transformations,
defined in Equation 4, relate to previous work.

We list the asymmetric transformations that have been widely used to convert a MIPS to NNS:

[32]: F (qi) =
[
qi;

1
2 , ...;

1
2

]
, G(ki) =

[
Uki; ||Uki||22; ...; ||Uki||2

m

2

]
[33]: F (qi) = [qi; 0] , G(ki) =

[
ki;
√
M2
K − ||ki||22

]
[34]: F (q) = MK

||q||2 · [q; 0] , G(k) =
[
k;
√
M2
K − ||k||22

]
where MK = maxk ||k||2 and U a positive constant such as: ||U · ki||2

m+1

2 → 0, ∀ki ∈ K. The
corresponding Euclidean distances of the transformed vectors are given below:

[32]: ||F (qi)−G(ki)||22 = ||qi||22 + m
4 − 2Uqi · ki + ||U · ki||2

m+1

2

[33]: ||F (qi)−G(ki)||22 = ||qi||22 +M2
K − 2qi · ki

[34]: ||F (qi)−G(ki)||22 = 2 ·M2
K − 2MK

||qi|| · qi · k

In all these transformations the Euclidean distance of the transformed vectors, i.e. ||F (qi)−G(ki)||2
decreases linearly with the inner product qi · ki. However, an extra term, p(||qi||), appears. Indeed,
these transformations were proposed for the case of a single query (e.g. a user) and multiple keys (e.g.
movies) and for such applications ||qi|| is considered constant. On the contrary, for our setting, the
transformations of [32, 34, 33] cannot be applied since ||q||2 is no longer a constant. To illustrate this
better, consider the case where q1, q2 ∈ Q with q1 6= q2 and k ∈ K a key such as: q1 ·k = q2 ·k. Since
we are looking for big inner products, we expect to have transformations F,Q : ||F (q1)−G(k)||2 =
||F (q2)−G(k)||2. For [32, 33], if ||q1||2 < ||q2||2 then ||F (q1)−G(k)||2 < ||F (q2)−G(k)||2 and
for [34]: ||F (q1) −G(k)||2 > ||F (q2) −G(k)||2. Thus, all [32, 34, 33] do not satisfy our desired
property, i.e. ||F (q1)−G(k)||2 = ||F (q2)−G(k)||2. To solve this problem, we propose (see main
paper) the novel asymmetric functions:

F (qi) =
[
qi; 0;

√
M2
Q +M2

K − ||qi||22
]
, G(ki) =

[
ki;
√
M2
Q +M2

K − ||ki||22; 0
]

(11)

where we use the constants MQ = maxqi ||qi||2, MK = maxki ||ki||2, or any other upper bound
on the norms. With this transformation, all queries and keys are mapped to a (d+ 2)-dimensional

ball with radius
√
M2
Q +M2

K and the distance of the transformed vectors decreases linearly with the
inner product of the original vectors:

||F (qi)−G(ki)||22 = 2 ·
(
M2
Q +M2

K − qi · ki
)
. (12)

Note that the Euclidean distance of the transformed vectors depends only on the inner product of the
original vectors and not on individual norms ||qi||2 as in previous work.

23

13.2 Adaptive Clustering

The next step, after the asymmetric transformations, is to map the transformed queries F (q) and
keys G(k) to real numbers, so that if ||F (q) − G(k)||2 is small, then |h(F (q)) − h(G(k))| is also
small with high probability, where h : Rd′ → R is the mapping function. After mapping, we sort
independently queries and keys based on their hash and we split them into groups of equal size. There
are numerous hashing functions [54, 35, 74, 75] h : Rd′ → R that belong to the LSH family that we
can leverage to achieve that. One of the most widely adopted hash functions for locality sensitive
hashing is E2LSH [35]:

hE2LSH(u) =

⌊
(u · a) + b

r

⌋
(13)

where a = (a1, ..., a
′
d) ∈ Rd′ with ai ∈ N (0, 1) and b ∈ U(0, r) and r is a scalar parameter which

controls LSH sensitivity. Since we re-group vectors by sorting on their LSH index, the floor operator
and the division with r are not needed. Our simplified hashing function is defined as:

hours(u) = (u · a) + b (14)

We roughly removed a division by a constant. Thus, this simplified hashing function preserves the
locality-sensitive properties of E2LSH [35]. Namely, if ||u1 − v1||2 ≤ ||u2 − v2||2 then with high
probability: |h(u1)− h(v1)| ≤ |h(u2)− h(v2)|, ∀u1, u2, v1, v2 ∈ Rd′ .

13.3 Merging hashing rounds

In our experiments, we run multiple hashing rounds each time, similarly to [18]. Each time we
run LSH, we end up with a (possibly) different clustering assignment and thus (possibly) different
attention output. Specifically, we repeat the process H times (where H is usually a small constant,
e.g. 8) to reduce the probability that we miss big inner products. In this section, we explain how
we merge the partial attention outputs (made from different hashing rounds) into a single attention
output.

Without loss of generality, we will present the merging algorithm for a single query q. At each
clustering round h we get (from the adaptive clustering) a set of key vectors Khq ⊆ K. The
corresponding attention output is:

ohq =
∑
k∈Khq

wkvk, wk =
eq·k∑

k′∈Khq
eq·k′

We merge the attention outputs of the different rounds with a weighted sum. The weight, ah, for each
round h, is the fraction of the softmax mass that was acquired in this round to the total mass acquired
by all rounds. Formally the attention output o′q for query q is computed as:

o′q =

H∑
h=1

ah ·
∑
k∈Khq

wkvk, wk =
eq·k∑

k′∈Khq
eq·k′

, ah =

∑
k′∈Khq

eq·k
′∑H

n=1

∑
k′∈Knq

eq·k′
(15)

To explain this merging scheme, we will show that under certain assumptions, this merging scheme
can lead to exact approximation of the real attention output. We start by listing these assumptions.
Assumption 1 (Sparsity of weights). For any given query q ∈ Q, the key set K has at most T and at
least one vectors ki ∈ Kq such as:

ki ∈ Kq, kj 6∈ Kq ⇒
eq·kj

eq·ki
= 0

From Assumption 1, it follows that at most T and at least one key vector ki gets a non-zero score,
wi 6= 0, after softmax.
Assumption 2 (Fairness of LSH clustering). For any given query q ∈ Q and two keys k1, k2 ∈ K,
if wk1 6= 0 ∧ wk2 6= 0, then

∑H
n=1

∑
k1∈Knq

1 =
∑H
n=1

∑
k2∈Knq

1 where H denotes the hashing
rounds and Knq

denotes the chosen key set for query q at hash round n.

24

Assumption 2 simply states that each query is clustered the same number of times with all its’ big
inner products along the different hashing rounds.
Assumption 3 (Effectiveness of LSH clustering). There is a small constant H , which denotes the
number of hashing rounds, such as:

∀k ∈ K : wq 6= 0⇒ ∃n : 1 ≤ n ≤ H ∧ k ∈ Kqn .

The latter assumption states that we need a small number of hashing rounds H to catch all big inner
products of a given query.

We state the following theorem:
Theorem 2. If Assumptions 1, 2, 3 hold, then our approximation algorithm is exact.

Proof of Theorem 2. With our merging scheme (Equation 15), the attention output is:

o′q =

H∑
h=1

∑
k∈Khq

 ∑
k′∈Khq

eq·k
′∑H

n=1

∑
k′∈Knq

eq·k′
· eq·k∑

k′∈Khq
eq·k′

 · vk =

H∑
h=1

∑
k∈Khq

eq·k · vk∑H
n=1

∑
k′∈Knq

eq·k′

(16)

Under Assumption 1, the dense attention output for this query is the vector:

oq =
∑
k∈Kq

eq·k∑
k′∈Kq

eq·k′
· vk

where Kq is the set of keys ki for query q for which wi 6= 0.

Under Assumption 3, all keys that have big inner product with a given query q are clustered with that
query, at least one time. Also, under Assumption 2, all these keys are clustered the same amount of
times with each query. We will denote the amount of a query is clustered with each one of its’ big
inner products with Nq . It holds that:

H∑
n=1

∑
k′∈Knq

eq·k
′
= Nq ·

∑
k′∈Kq

eq·k
′

(17)

By substitution in Equation 17, we get:

oq =

∑H
n=1

∑
k∈Khq

eq·k · vq
Nq ·

∑
k′∈Kq

eq·k′
(18)

Under Assumptions 1, 2 small inner products get a zero-score and all big inner products are clustered
Nq times each. Thus, we can write for the nominator:

∑H
n=1

∑
k∈Khq

eq·k · vq = Nq
∑
k∈Kq

eq·k
′
.

Substituting to Equation 18, we get:

o′q =
∑
k∈Kq

eq·k∑
k′∈Kq

eq·k′
vk = oq

In this section, we explained in detail our merging scheme. We also showed that under certain
assumptions on the data, this scheme leads to exact approximations of dense attention output. We
fully understand that the assumptions are far too tight to hold in practice and since distortion is
introduced. However, as we demonstrated in the Experiments section, the distortion is negligible
even for large memory reductions, since SMYRF can perform on par (or even better, e.g. GLUE)
with dense attention, especially on downstream Natural Language Processing tasks, using a fraction
of the original memory.

25

14 Complexity analysis and speedups

In the paper, we presented shortly the complexity of our algorithm. In this section, we explain it in
more detail and we also include speed plots that demonstrate the effectiveness of SMYRF for long
sequences.

14.1 Complexity Analysis

For the complexity analysis, we assume for simplicity that |Q| = |K| = N , i.e. the number of
available queries is equal to the number of available keys.

We run the algorithm H times (i.e. rounds of LSH). Each run has two stages:

– Clustering in L clusters (of equal size). For clustering, we hash all points with LSH which
requires complexity O(N) and then we sort points based on their hash, which requires
complexity O(N · logN). Overall, the complexity is O(N · logN).

– Within clusters attention. Attention within each cluster has quadratic cost with respect to
the cluster size. Each cluster has size N

L , so the complexity of attention in a single cluster is
O(N

2

L2). We have L such clusters, and thus the overall complexity is O(N
2

L).

The total complexity is: O
(
H ·N · logN +H · N

2

L

)
. We choose L = O(N), i.e. each query

attends to a small constant number of keys. We obtain complexity: O(H ·N · logN).

14.2 Speedups

In this subsection, we present two speed plots to demonstrate the speed effectiveness of SMYRF for
large sequences. The first plot, Figure 8, shows elapsed time for SMYRF-BERT (base) GPU inference
for various batch-sequence length configurations. In all these experiments batch size×N = 65K,
where N denotes the sequence length. We underline that SMYRF has (almost) constant speed in
all these configurations while the speed of dense attention decreases rapidly us the sequence length
increases. Notably, SMYRF is already faster than dense attention in sequence length 1024 tokens.
The second plot, Figure 9, shows seconds per iteration for SMYRF-BERT (base) GPU inference for
various hashes-cluster configurations. In all these experiments, batch size is fixed to 1. As shown, all
different configurations significantly outperform (in terms of speed) dense attention as the sequence
length increases.

15 Experimental details

15.1 Natural Language Processing experiments

In this section, we provide some details about the experimental settings for the Natural Language
Processing experiments.

15.1.1 IMDB

IMDB [52] contains 25,000 train and 25,000 dev labeled movie reviews. The task is to identify if
a given movie review is positive or negative. The average sentence length in IMDB is 300 tokens
and the 95th percentile of context length is 705 tokens. In our experiments, we truncated/padded all
sentences to 512 tokens. For all our experiments, we trained for 3 epochs, with batch size 8. We
used Adam [76] as our optimizer with learning rate 3 · 10−5. The dataset is available publicly in this
link: https://ai.stanford.edu/ amaas/data/sentiment/. The experiments on IMDB run on a single GPU
provided by Google Colab.

15.1.2 GLUE

GLUE [25] is a standard multitask benchmark for Natural Language Processing. For a full description
of tasks, dataset statistics and files, please refer to the official website: https://gluebenchmark.com/.
Following previous literature (e.g. [9, 6, 5, 24]), for our GLUE experiments we truncate/pad all

26

https://ai.stanford.edu/~amaas/data/sentiment/
https://gluebenchmark.com/

Figure 8: Elapsed time for SMYRF-BERT (base) GPU inference for various batch-sequence length
configurations. Elapsed time for SMYRF is almost constant for all configurations. Elapsed time for
dense attention worsens a lot as we increase the sequence length.

input sentences to 128 tokens. For GLUE, we trained for 3 epochs at batch size 16, warming up
for 10% of the total training time. The learning rate was selected via grid search among the values
{5 · 10−5, 3 · 10−5, 2 · 10−5}. We run the GLUE experiments on TPUs.

15.2 Training SMYRF-BigGAN on Celeba-HQ

In the paper we presented results for training SMYRF-BigGAN from scratch on Celeba-HQ [29].
As explained, we trained on Celeba-HQ (and not ImageNet [37]) in order to save computational
resources. In this section, we provide the details for these experiments. First of all, as the name
suggests, we used as the underlying model, BigGAN [1]. For our experiments we disabled BigGAN’s
hierarchical latent codes, shared embeddings and skip-z connections since Celeba-HQ has one single
class (humans) and these architectural choices were introduced to model multiple classes (e.g. 1000
classes on ImageNet). We also found that for the single-class Celeba-HQ we didn’t have to use
very large batch sizes for stable training. For all our experiments, we used batch size 32. Following
the BigGAN paper, we used Two Time Scale Update Rule (TTUR) [39] with Adam [76] optimizer,
Glr = 2 · 10−4, Dlr = 5 · 10−5, β1 = 0 and β2 = 0.999.

BigGAN for resolutions {128× 128, 256× 256}, is trained with a single attention layer at resolution
64 × 64. The authors mention that they stick attention to low resolution to save computational
resources. We take advantage of SMYRF’s reduced memory requirements to train with attention at
resolution 128× 128 and 256× 256. For both experiments, we remove the dense attention layer and
we add a SMYRF attention layer. Since our goal is to demonstrate the ability of SMYRF layers to
train successfully from scratch, there is no reason to use higher (image) resolutions than the attention
resolution and thus SMYRF is the final layer (before Tanh [77]) in the architecture. In other words,
we train on image resolutions 128× 128, 256× 256 respectively. Training on resolution 128× 128
has the side-benefit that we can compare directly with the original BigGAN model (with dense
attention at 64× 64). As we demonstrated in the Experiments section of the paper, moving attention

27

Figure 9: Seconds/iteration for SMYRF-BERT (base) GPU inference for various hashes-cluster
configurations. In all experiments batch size is fixed to 1. SMYRF has approximate the same
speed with dense attention at 1024 tokens. However, as the number of tokens increases, SMYRF is
significantly faster than dense attention.

from 64× 64 to 128× 128 can lead to ≈ 4% FID [39] improvement after 120K training steps6. We
present random generated images from SMYRF-BigGAN with attention at resolution 256 × 256
at Figure 10. As explained in the Things that did not work section, training with SMYRF from
scratch is harder as the sequence length increases. The main reason is that during the early stages of
training attention maps are not sparse and thus our approximation’s algorithm output is not close to
the dense attention output. We noticed that the overall performance of SMYRF-BigGAN-256 is lower
compared to SMYRF-BigGAN-128 and the generated images seem slightly less realistic. Despite the
aforementioned shortcomings, this experiment demonstrated that it is possible to successfully train
an attention GAN with attention at 256× 256 resolution on a single TPUv3-8 device. The training at
128× 128 resolution lasts approximately 1.5 day and at 256× 256 resolution approximately 2 days.

16 Things that did not work

In this section, we discuss some negative results we encountered in the process of writing this paper.
Our goal is to share our experience with the research community about the observed shortcomings of
some approaches so that future research can re-formulate them, reject them or even contradict our
findings. We also include some suggestions on potential ways to alleviate such problems that we did
not have the time to explore in this paper.

6We note that in order to save computational resources we stopped training for both models on 120K
iterations, before mode-collapse. That means that further training could possibly lead to even better FID scores
for both models.

28

Figure 10: Generated images from SMYRF-BigGAN on Celeba-HQ-256. Attention at 256× 256.
The trained model uses 50% less memory compared to the memory dense attention would use.

16.1 Learning from scratch under extreme sparsity

Our initial goal was to train a SMYRF model from scratch with extreme memory reductions, e.g. to
the magnitude of 99%. Such reduction could enable the training of SMYRF-BigGAN with attention
at 1024 × 1024. However, our preliminary experiments with BigGAN [1], failed (mode-collapse
very early in the training process). We tried to investigate this further and we found that during the
early stages of the training the Frobenius norm of the difference between the SMYRF and the dense
attention map is really high. We believe that this is due to the non-sparsity of the attention maps in
the early stages of the training. It is also possible that their eigenvalues decay slower which means
that their effective rank is higher compared to pre-trained models. One way to solve the problem
is to dynamically adapt the memory reduction (e.g. by selecting the number of hashes) during the
training. One way to achieve that is to use as many hashes as need to achieve a certain bound for the
Frobenius norm. In the early stages of training, we expect that more hashes are needed for an accurate
reconstruction. The number of hashes should decay as the training progresses and the attention maps
become more sparse and have lower rank. One disadvantage of this approach is that at the early stages
of the training, more memory is needed. However, we observed that the period of time in which the
attention maps are not very sparse is minor compared to the whole training time for BigGAN and
thus this approach can lead to significant savings. We aim to explore this more in the future.

16.2 Better LSH based clustering schemes

The biggest advantage of clustering with an LSH-based scheme is that the attention complexity is
linear (compared to K-means clustering for example, see Routing Transformer [19]). However, while
inspecting SMYRF, we found that LSH-clustering is the biggest bottleneck to greater performances.
For example, if each query attends to at its’ top-k (in terms of inner product) keys (instead of the keys
assigned with LSH), the performance improves considerably. Finding exactly the top-k keys for each
query is expensive (especially in high dimensions) and thus this approach is not viable. However, this
observation motivates research in finding even more effective LSH-based clustering schemes. Even
though we tried other ALSH variants, we did not manage to find something that works better than
our proposed transformations till now. We consider this problem an interesting future direction since
ALSH has been widely explored only for the case of a single query and multiple keys. In this paper,
we did the first step in extending this to multiple queries, but we are inclined to believe that further
research can lead to even better results in this direction.

29

