
Supplementary for Interpretable and Personalized
Apprenticeship Scheduling: Learning Interpretable

Scheduling Policies from Heterogeneous User
Demonstrations

Anonymous Author(s)
Affiliation
Address
email

1 Additional Experiment Domain Details1

Synthetic Scheduling Environment The synthetic scheduling environment represents one of the2

hardest scheduling problems. In this environment, two agents must complete a set of 20 tasks which3

have upper- and lower-bound temporal constraints (i.e., deadline and wait constraints), proximity4

constraints (i.e., no two agents can be in the same place at the same time), and travel-time constraints.5

For the purposes of apprenticeship learning, an action is defined as the assignment of an agent to6

complete a task presently. The decision-maker must decide the optimal sequence of actions according7

to the decision-maker’s own criteria. For this environment, we construct a set of heterogeneous, mock8

decision-makers that schedule according to Equation 1.9

τ∗i = arg max
τj⊂τS

(ρ1HEDF (τj) + ρ2Hdist(τj) +HID(τj , ρ3)) (1)

In this equation, our decision-maker selects a task τ∗i from the set of tasks τS . The task-prioritization10

scheme is based on three criteria: HEDF prioritizes tasks according to deadline (i.e., “earliest-11

deadline first"), Hdist prioritizes the closest task, and HID prioritizes tasks according to a user-12

specified highest/lowest index or value based on ρ3 (i.e., ρ3(j) + (1− ρ3)(−j)). The heterogeneity13

in decision-making comes from the latent weighting vector ~ρ. Specifically, ρ1 ∈ R and ρ2 ∈ R14

weight the importance of HEDF and Hdist, respectively. ρ3 ∈ {0, 1} is a mode selector in which15

the highest/lowest task index is prioritized. By drawing ~ρ from a multivariate random distribution,16

we can create an infinite number of unique demonstrator types. This adapted environment differs17

from the synthetic, low-dimensional environment in that there are a rich set of temporal, spatial, and18

agent-based constraints modeling the job-shop scheduling problem; furthermore, the parameters of19

the demonstrator’s decision-making process is hidden and comprised of one discrete factor and two20

continuous factors. In this domain, counterfactuals are generated by consider specific task information21

such as availability, distance from agent, prerequisites satisfied.22

Real-world Data: Taxi Domain Our environment has three locations: the village, the airport, and23

the city. The taxi driver has the objective of picking up a passenger from the city or village. There is24

always a passenger at the city, but the taxi driver may encounter up to 60 minutes of traffic going into25

the city. There may be a wait time of up to 60 minutes to pick up a passenger at the village; however,26

there is no traffic on the way to the village, and the wait time is unknown to the taxi driver unless she27

is at the village. A dataset of 70 human-collected tree policies to solve this task (given with leaf node28

actions such as “Drive to the City", “Drive to the Airport", and “Wait for Passenger", and decision29

node criterion depending on the amount of wait time, traffic time, and current location) are used to30

generate heterogeneous trajectories. We originally collect 98 tree-based policies through an IRB-31

approved study. However, 28 of these do not produce successful trajectories. The tree-based policies32

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.



Table 1: Apprenticeship Performance in Imitating Robot Kinesthetic Ping Pong Demonstrations.

Environment Our Sammut Nikolaidis Tamar Hsiao InfoGAIL Gombolay
Method et al. et al. et al. et. al. Li et. al. et. al.

Ping-Pong 59.60% 18.14% 31.20% 26.17% 17.96% 36.70% 28.60%

can be found in this GitHub repository https://github.com/Personalized-Neural-Trees/Interpretable-33

and-Personalized-Apprenticeship-Scheduling-Learning-Interpretable-Scheduling-Policies.34

Kinesthetic Robot Table Tennis We collected a real-world data set consisting of 10 human demon-35

strators kinesthetically presenting four different table tennis strikes on a Rethink Robotics Sawyer.36

The table tennis strike variants consisted of push, topspin, slice, and lob and were conducted using37

a forehand motion, giving four different categories of motion. While our approach is primarily for38

discrete classification problems, such as decision making, it can naturally be extended to complex39

continuous domains, such as low-level robot joint control.40

To collect data, we first show each demonstrator a sample video of the table tennis strike and allow41

them to practice until she feels confident that she can return the ping pong ball over the net. Then, we42

reset the robotic arm to a preset initial position and allow the demonstrator to strike a ping pong ball43

launched from an automatic ball launcher. Throughout the demonstration, we record the position of44

the end-effector.45

Survey Scheduling Environment This domain describes a ND[ST-SR-TA] scheduling domain46

defined by Korsah [5]. In this domain, synthetic schedulers are given utilities of three tasks where47

utility U ∈ {1, 2, 3} and must choose the highest or lowest task index based on a pre-specified latent48

decision-making criteria. We generate a set of 100 schedules (each of length 20) from heterogeneous49

demonstrators.50

2 LfD Performance in Kinesthetic Robot Table Tennis51

Here, we show that Personalized Neural Trees can easily be extended to a variety of domains,52

increasing the data-efficiency, accuracy, and utility of learning-from-demonstration with multiple53

human demonstrators. We demonstrate this by using a PNT to learn kinesthetic robot table tennis54

demonstrations in Table 1. We received 40 demonstrations across 10 demonstrators, representing55

four different table tennis strikes. To clean the trajectory of the end effector prior to learning, we56

transformed our trajectories into a transformed three-dimensional space using Principal Components57

Analysis. Our data was then labeled by selecting the principal component in which the end effector58

moved most at each timestep (|A| = 6). As seen in row 4 of Table 1, our approach outperforms all59

other benchmarks.60

3 Sensitivity Analysis of PNTs61

To analyze the sensitivity of our framework, we use our synthetic scheduling environment and perturb62

the amount of data available to the PNT and the amount of noise (correctness) within the data. To63

provide a thorough analysis, we validate our approach using k-fold cross-validation. This entails both64

choosing a different subset of data to learn from and perturbing different truth-values of state-actions65

pairs each fold.66

As shown in Figure 1, our PNT is reasonably robust to noise for 2, 5, and 15 schedules as there is67

not a steep drop in accuracy. We do not see the typical trend where the effect of noise deteriorates68

as the amount of data increases. We posit the cause of this deviation as follows: As the number of69

demonstrators increases, the embedding space Ω of the PNT tends to represent a richer distribution.70

While the heterogeneity among the demonstrators may remain constant (represent the same number71

of modes), cases in which the PNT is unable to tease out the demonstrator mode from a single72

schedule are more likely (due to the increase in the number of schedules), leading to an embedding73

distribution with higher variance. Without noise, the PNT is able to make sense of the embedding74

space and learn with high performance; as the amount of noise increases, it is likely more difficult to75

2

https://github.com/Personalized-Neural-Trees/Interpretable-and-Personalized-Apprenticeship-Scheduling-Learning-Interpretable-Scheduling-Policies
https://github.com/Personalized-Neural-Trees/Interpretable-and-Personalized-Apprenticeship-Scheduling-Learning-Interpretable-Scheduling-Policies
https://github.com/Personalized-Neural-Trees/Interpretable-and-Personalized-Apprenticeship-Scheduling-Learning-Interpretable-Scheduling-Policies


Figure 1: Sensitivity analysis in the synthethic scheduling environment.

represent demonstrators compactly within the embedding space. We posit that this increased variance76

within the embedding space caused by the combined effect of an increased number of demonstrators77

and noise leads to a reduction in performance when noise is held constant and the amount of data78

increases.79

As expected, as the number of schedules increase, the PNTs have higher accuracy. However, from80

15 to 150 schedules (a 10x magnitude increase in data), for the case of 100% correct data, there is81

only a ∼ 2% increase in accuracy. This result provides support to the claim of data-efficiency in our82

apprenticeship scheduling framework.83

4 Evidence Lower Bound84

Here, we present the full derivation of the evidence lower bound (ELBO) that is used maximize the85

mutual information between ω and trajectories τ .86

G(ω; τ) = H(ω)−H(ω|τ) (2)

= Eω∼P (ω),atp∼fPNTθ|ω
[logP (ω|stp, atp)] +H(ω)

= Ea∼fPNT
θ|ω

[DKL(log(P (ωp|stp, atp))||log(qωζ|θ(stp, atp))) + Eω∼P (ω)log(q
ω
ζ|θ(s

t
p, a

t
p))] +H(ω)

≥ Eωp∼N (~µp,~σ2
p),a∼fPNTθ|ω

[log(qωζ|θ(ωp|stp, atp))] +H(ω) = LG(f
PNT
θ|ω ||qωζ|θ)

In our approach, we make use of continuous personalized embeddings which allow for greater87

expressivity in the embedding space, Ω. As such, we utilize a mean-squared error (MSE) loss88

between a sample from the approximate posterior (modeled as a normal distribution with constant89

variance) and the current embedding.90

We present the approximate normal distribution, Nqω
ζ|θ

, in Equation 3, where ω is the mean outputted91

by the posterior network, and σ is the standard deviation.92

Nqω
ζ|θ

=
1

σ
√

2π
e−

1
2

(x−ω)2

σ2 (3)

Theorem 4.1. Minimizing the mean-squared error between a sample from the approximate posterior93

and the current embedding is equivalent to maximizing the log-likelihood and therefore, the evidence94

lower bound.95

Proof. The mean-squared error (MSE) loss is (x− ω)2, where ω is the sample from the approximate96

posterior, and x is the current personalized embedding used to generate the predicted action. This is97

equivalent to the exponent numerator in Nqω
ζ|θ

. With constant variance, the exponential function is98

3



monotonic, and thus, minimizing the exponent will maximize the likelihood of the posterior. Thus,99

minimizing the MSE is equivalent to maximizing the likelihood of the posterior. This naturally100

extends to the multivariate case.101

5 Interpretability User Study Details102

Here, we present the details of our novel user study to assess the interpretability of our discretized103

PNTs. We design an online questionnaire that asks users to predict a task to schedule given an input104

using a decision-tree based method and a neural-network-based method. Each user is randomly105

assigned a reasoning level, standard, pointwise, or counterfactual. Standard and counterfactual106

reasoning are discussed in the main paper. Pointwise reasoning outputs a probability of taking a107

certain action given a feature vector describing that action, xta from state st, and a contextual feature108

vector capturing features common to all actions x̄t. We can generate pointwise features through109

Equation 4.110

zt,p := [ωp, x̄
t, xta], yta = 1 (4)

zt,p := [ωp, x̄
t, xta′ ], y

t
a′ = 0 (5)

The tree and neural network-based models were trained under minimal sizes that were capable of111

achieving near-perfect accuracy. Tree models are learned PNTs, which are then discretized. The NN112

models are generated by appending personalized embeddings to a NN and following the training113

methodology described in Algorithm 1 from the main paper. Then, comparison weights and model114

weights for the discrete trees and neural networks, respectively, were rounded to the nearest 0.25.115

Rounding yielded ∼ 2% loss in accuracy but allowed for the survey to be conducted within a116

reasonable time. For each type of decision-making framework, we provide instructions for how to117

utilize the framework to make a prediction. The order in which the user completes the neural network118

portion and decision tree portion is randomized. We explore additional hypothesis: counterfactual119

tree-based decision-making models are more interpretable (H4), quicker to validate (H5), and are120

more easily utilized (H6) than neural-network based models of any reasoning level. We then provide121

further comparisons between tree-based methods of different levels of reasoning.122

We use four metrics throughout our user study: interpretability of the decision-making model,123

interpretability of the overall decision-making process, time to compute an output, and correctness.124

To verify H4-H6, we must compare the counterfactual discretized PNT to a standard neural network,125

pointwise neural network, and pairwise neural network. As the first case is shown in the paper126

(standard neural network vs. discretized PNT), we provide the results for the other two scenarios127

here.128

6 Survey Results129

Our IRB-approved anonymous survey was sent out to adult university students. We collected 35130

responses, 14 of standard, 11 of pointwise, and 15 of counterfactual. We filter out responses that put131

in nonsensical answers (i.e., letters where numbers should be and repeated answers).132

H4: In comparing a NN with pointwise reasoning to a discretized PNT, we test for normality and133

homoscedasticity and do not reject the null hypothesis in either case, using Shapiro-Wilk (p > 0.9134

and p > 0.3) and Levene’s Test (p > 0.2 and p > 0.3). We perform a paired t-test and find that135

counterfactual tree-based models were rated statistically significantly higher than pointwise neural136

networks on users’ Likert scale ratings for model interpretability and overall process interpretability137

(p < 0.05 and p < 0.01). In comparing a NN with pairwise reasoning to a discretized PNT, we138

test for normality and homoscedasticity and do not reject the null hypothesis in either case, using139

Shapiro-Wilk (p > 0.1 and p > 0.1) and Levene’s Test (p > 0.4 and p > 0.4). We perform a paired140

t-test and find that counterfactual tree-based models were rated statistically significantly higher than141

pointwise neural networks on users’ Likert scale ratings for model interpretability and overall process142

interpretability (p < 0.01 and p < .05). These results support H4.143

H5: In comparing a NN with pointwise reasoning to a discretized PNT, we perform a Wilcoxon144

signed-rank test on the per-model time to determine an output and find that tree-based models were145

not statistically significantly quicker to validate than neural networks (p = 0.37). In comparing a146

4



NN with pairwise reasoning to a discretized PNT, we perform a Wilcoxon signed-rank test on the147

per-model time to determine an output and find that tree-based models were statistically significantly148

quicker to validate than neural networks (p = 0.001). This result provides partial support H5.149

H6: In comparing a NN with pointwise reasoning to a discretized PNT, we perform a Wilcoxon150

signed-rank test on the per-model time to determine an output and find that tree-based models were151

statistically significantly achieved higher overall correctness scores compared to NN based models152

(p < 0.05), supporting H6. In comparing a NN with pairwise reasoning to a discretized PNT, we153

test for normality and homoscedasticity and do not reject the null hypothesis in either case, using154

Shapiro-Wilk (p > 0.05) and Levene’s Test (p > 0.2). We perform a paired t-test and find that155

users using tree-based models statistically significantly achieved higher overall correctness scores156

compared to NN based models (p < 0.001), supporting H6.157

7 Hyperparameters and Architecture Details158

We compare our personalized apprenticeship scheduling approach to several baselines [2, 4, 6, 7, 10,159

11]. Throughout this section, we will discuss the architecture, implementation details, and learning160

rates for all baselines and our algorithm in each domain. The runtime mentioned is in respect to a161

desktop with a NVIDIA RTX 2080Ti GPU and an Intel i7 processor.162

7.1 Synthetic Low-Dimensional Environment163

Each apprenticeship learning algorithm below is given 50 schedules to learn from and tests on a set164

of 50 unseen demonstrations.165

• For the method of Sammut et al. [10], we utilize an multi-layer perceptron (MLP) with 3166

linear layers connected by ReLU activation functions. After the last linear layer, we utilize a167

log softmax function to compute the log probability of which task to schedule. Each linear168

layer has 10 hidden units. We utilize the Adam optimizer with a learning rate of 1e−3. The169

runtime for training and verifying this model is under 30 minutes.170

• For the method of Nikolaidis et al. [7], we utilize k-means clustering to separate the data into171

two clusters. Two neural networks (one for each cluster) are trained to imitate demonstrator172

data within the cluster. Each network utilizes the same architecture and learning rate used173

in the baseline of Sammut et al. [10]. The runtime for training and verifying this model is174

under 30 minutes.175

• For the method of Li et al. [6], we utilize an simulator-free version of infoGAIL. The policy,176

discriminator, and approximate posterior are modeled by MLPs with 2 linear layers (32177

hidden units) connected by a ReLU activation function, and an output activation function of178

a softmax, sigmoid, and softmax respectively. We initialize the number of discrete modes179

to 2. We utilize learning rates of 1e−4, 1e−3, 1e−4 respectively. For the hyperparameters180

of infoGAIL, we initialize λ1 to 1, γ to 0.95, and λ2 to 0. The runtime for training and181

verifying this model is under 30 minutes.182

• For the method of Tamar et al. [11], we utilize a neural network with 3 linear layers (10, 2,183

2 hidden units, respectively) connected by ReLU activation functions. We use N=5 samples184

as our hyperparameter to estimate the intention probability distribution P(z). We utilize185

a learning rate of 1e−3 alongside Stochastic Gradient Descent (SGD). The runtime for186

training and verifying this model is under 30 minutes.187

• For the method of Hsiao et al. [4], we utilize a bidirectional LSTM with attention followed188

by a linear layer as specified in their paper. For the decoder, we utilize three linear layers189

connected by ReLU activation functions. We utilize a learning rate of 1e−3 alongside190

Stochastic Gradient Descent (SGD). The runtime for training and verifying this model is191

under 30 minutes.192

• For the method of Gombolay et al. [2], we utilize a standard decision tree (counterfactuals193

are not possible when |A| ≤ 2) of depth 10. The runtime for training and verifying this194

model is under 30 minutes.195

• For our Personalized Neural Trees, we utilize a max depth of 6 (32 leaves) and embedding196

dimension of 2 (d = 2). We set learning rates of θ to 1e−3, ω to 1e−2, and ζ to 1e−3.197

5



We find empirically that setting the learning rate of ω slightly higher allows for better LfD198

accuracy. For our approximate posterior, qωζ|θ, we set the value of σp to zero. The runtime199

for training and verifying this model is under 30 minutes.200

7.2 Synthetic Scheduling Environment201

Each apprenticeship learning algorithm below is given 150 schedules to learn from and tests on a set202

of 100 unseen demonstrators.203

• For the method of Sammut et al. [10], we utilize an multi-layer perceptron (MLP) with six204

linear layers connected by ReLU activation functions. After the last linear layer, we utilize a205

log softmax function to compute the log probability of which task to schedule. Each linear206

layers have 128, 128, 32, 32, 32, and 20 hidden units, respectively. We utilize the Adam207

optimizer with a learning rate of 1e−4. The runtime for training and verifying this model is208

approximately 30 minutes.209

• For the method of Nikolaidis et al. [7], we utilize k-means clustering to separate the data210

into three clusters. Three neural networks (one for each cluster) are trained to imitate211

demonstrator data within the cluster. Each network utilizes the same architecture and212

learning rate used in the baseline of Sammut et al. [10]. The runtime for training and213

verifying this model is approximately 30 minutes.214

• For the method of Li et al. [6], we again utilize a simulator-free version of infoGAIL. The215

policy follows the same network structure used in the Sammut et al. [10] baseline. The216

discriminator and approximate posterior are modeled by MLPs with six linear layers (128,217

128, 128, 32, 32, 32 hidden units, respecitively) connected by a ReLU activation function,218

and an output activation function of a sigmoid, and softmax respectively. We initialize the219

number of discrete modes to 3. We utilize learning rates of 1e−4, 1e−3, 1e−4 respectively.220

For the hyperparameters of infoGAIL, we initialize λ1 to 1, γ to 0.95, and λ2 to 0. The221

runtime for training and verifying this model is approximately 24-48 hours.222

• For the method of Tamar et al. [11], we utilize a neural network with 5 linear layers (128,223

32, 32, 32, 32, 20, 2, 2 hidden units, respectively) connected by ReLU activation functions.224

We use N=5 samples as our hyperparameter to estimate the intention probability distribution225

P(z). We utilize a learning rate of 1e−3 alongside Stochastic Gradient Descent (SGD). The226

runtime for training and verifying this model is approximately 3 hours.227

• For the method of Hsiao et al. [4], we utilize a bidirectional LSTM with attention followed228

by a linear layer as specified in their paper. For the decoder, we utilize six linear layers229

connected by ReLU activation functions. We utilize a learning rate of 1e−3 alongside230

Stochastic Gradient Descent (SGD). The runtime for training and verifying this model is231

approximately 3 hours.232

• For the method of Gombolay et al. [2], we utilize a pairwise decision tree of depth 10. The233

counterfactuals are set to one-hot encodings of each action, as done in the original paper.234

The runtime for generating and verifying this model is approximately 5 minutes.235

• For our Personalized Neural Trees, we utilize a max depth of six (32 leaves) and embedding236

dimension of 3 (d = 3). We set learning rates of θ to 1e−2, ω to 1e−2, and ζ to 1e−2. We237

find empirically that pretraining the policy network first and then adding in the posterior238

at a later epoch results in both good performance and mutual information maximization.239

This is opposed to training both models at once from scratch. For our approximate posterior,240

qωζ|θ, we set the value of σp to zero. The runtime for training and verifying this model is241

approximately 24 hours.242

7.3 Taxi Domain243

Each apprenticeship learning algorithm below is given 25 successful trajectories from each user and244

tested on a set of 25 unseen trajectories from each demonstrator.245

• For the method of Sammut et al. [10], we utilize the same architecture and learning rate as246

that of the synthetic scheduling environment. The runtime for training and verifying this247

model is approximately 30 minutes.248

6



(a) Low-dim Environment (b) Survey Environment (counterfactual)

Figure 2: This figure depicts the learned PNT model after translation to an interpretable form.

• For the method of Nikolaidis et al. [7], we utilize k-means clustering to separate the data249

into three clusters. Three neural networks (one for each cluster) are trained to imitate250

demonstrator data within the cluster. Each network utilizes the same architecture and251

learning rate used in the baseline of Sammut et al. [10]. The runtime for training and252

verifying this model is approximately 30 minutes.253

• For the method of Li et al. [6], we utilize the same architecture and learning rate as that of254

the synthetic scheduling environment. The runtime for training and verifying this model is255

approximately 24-48 hours.256

• For the method of Tamar et al. [11], we utilize the same architecture and learning rate as257

that of the synthetic scheduling environment. The runtime for training and verifying this258

model is approximately 3 hours.259

• For the method of Hsiao et al. [4], we utilize the same architecture and learning rate as that260

of the synthetic scheduling environment. The runtime for training and verifying this model261

is approximately 3 hours.262

• For the method of Gombolay et al. [2], we utilize a pairwise decision tree of depth 13. The263

counterfactuals are set to one-hot encodings of each action, as done in the original paper.264

The runtime for generating and verifying this model is approximately 5 minutes.265

• For our Personalized Neural Trees, we utilize a max depth of 8 (128 leaves) and embedding266

dimension of 3 (d = 3). As counterfactual task information is not readily available, we267

utilize one-hot encodings for each action. We set learning rates of θ to 1e−2, ω to 1e−1,268

and ζ to 1e−2. We find empirically that pretraining the policy network first and then adding269

in the posterior at a later epoch results in both good performance and mutual information270

maximization. For our approximate posterior, qωζ|θ, we set the value of σp to zero. The271

runtime for training and verifying this model is approximately 12 hours.272

8 Interpretable Models273

As machine learning is being increasingly deployed into the real world, interpretability is required274

for these systems to gain human trust [1, 3, 8]. Interpretability refers to attempts that help the user275

understand why a machine learning model behaves the way it does. A clear visualization of a policy276

is one way to help a human form an accurate representation of its capabilities [9]. Furthermore, an277

interpretable model of resource allocation or planning tasks would be highly useful for a variety278

of reasons, from decision explanations to training purposes. In Figure 2, we display interpretable279

models generated through discretization for the low-dimensional environment and survey scheduling280

environment.281

9 Future Work282

During the deployment of a discretized PNT, we required pre-inferred embeddings to understand283

decision-maker behavior. As this involves a sample of the decision-maker’s data and the use of284

backpropagation with a pre-discretized PNT to infer demonstrator style, we feel this can be improved285

by producing the demonstrator embedding through the means of our approximate posterior qωζ|θ,286

modeled as a PNT \ ω. This can be discretized following the framework of Section 4.3 of our paper,287

producing an interpretable model that predicts a mean and covariance of an embedding given a single288

state-action pair. This discretized posterior then takes in a state-action pair and produce the latent289

7



embedding that generated this action. In this way, the interpretable discretized PNT has a method to290

naturally infer the demonstrator’s embedding.291

8



References292

[1] Lisa Anne Hendricks, Ronghang Hu, Trevor Darrell, and Zeynep Akata. Grounding visual explanations.293

In Proceedings of the European Conference on Computer Vision (ECCV), pages 264–279, 2018.294

[2] Matthew Gombolay, Reed Jensen, Jessica Stigile, Sung-Hyun Son, and Julie Shah. Decision-making295

authority, team efficiency and human worker satisfaction in mixed human-robot teams. In Proceedings296

of the International Joint Conference on Artificial Intelligence (IJCAI), New York City, NY, U.S.A., July297

9-15 2016.298

[3] Lisa Anne Hendricks, Ronghang Hu, Trevor Darrell, and Zeynep Akata. Generating counterfactual299

explanations with natural language. arXiv preprint arXiv:1806.09809, 2018.300

[4] Fang-I Hsiao, Jui-Hsuan Kuo, and Min Sun. Learning a multi-modal policy via imitating demonstrations301

with mixed behaviors. ArXiv, abs/1903.10304, 2019.302

[5] G. Ayorkor Korsah. Exploring bounded optimal coordination for heterogeneous teams with cross-schedule303

dependencies. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, January 2011.304

[6] Yunzhu Li, Jiaming Song, and Stefano Ermon. Infogail: Interpretable imitation learning from visual305

demonstrations. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and306

R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages 3812–3822. Curran307

Associates, Inc., 2017.308

[7] Stefanos Nikolaidis, Ramya Ramakrishnan, Keren Gu, and Julie Shah. Efficient model learning from309

joint-action demonstrations for human-robot collaborative tasks. In Proceedings of the Tenth Annual310

ACM/IEEE International Conference on Human-Robot Interaction, HRI ’15, pages 189–196, New York,311

NY, USA, 2015. ACM.312

[8] Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig Schubert, Katherine Ye, and Alexander313

Mordvintsev. The building blocks of interpretability. Distill, 3(3):e10, 2018.314

[9] Steffi Paepcke and Leila Takayama. Judging a bot by its cover: An experiment on expectation setting315

for personal robots. In Proceedings of the 5th ACM/IEEE International Conference on Human-robot316

Interaction, HRI ’10, pages 45–52, Piscataway, NJ, USA, 2010. IEEE Press. ISBN 978-1-4244-4893-7.317

[10] Claude Sammut, Scott Hurst, Dana Kedzier, and Donald Michie. Learning to Fly, page 171–189. MIT318

Press, Cambridge, MA, USA, 2002.319

[11] Aviv Tamar, Khashayar Rohanimanesh, Yinlam Chow, Chris Vigorito, Ben Goodrich, Michael Kahane, and320

Derik Pridmore. Imitation learning from visual data with multiple intentions. In International Conference321

on Learning Representations, 2018.322

9


	Additional Experiment Domain Details
	LfD Performance in Kinesthetic Robot Table Tennis
	Sensitivity Analysis of PNTs
	Evidence Lower Bound
	Interpretability User Study Details
	Survey Results
	Hyperparameters and Architecture Details
	Synthetic Low-Dimensional Environment
	Synthetic Scheduling Environment
	Taxi Domain

	Interpretable Models
	Future Work

