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Abstract

Learning-based methodologies increasingly find applications in safety-critical do-
mains like autonomous driving and medical robotics. Due to the rare nature of
dangerous events, real-world testing is prohibitively expensive and unscalable. In
this work, we employ a probabilistic approach to safety evaluation in simulation,
where we are concerned with computing the probability of dangerous events. We
develop a novel rare-event simulation method that combines exploration, exploita-
tion, and optimization techniques to find failure modes and estimate their rate of
occurrence. We provide rigorous guarantees for the performance of our method
in terms of both statistical and computational efficiency. Finally, we demonstrate
the efficacy of our approach on a variety of scenarios, illustrating its usefulness
as a tool for rapid sensitivity analysis and model comparison that are essential to
developing and testing safety-critical autonomous systems.

1 Introduction

Data-driven and learning-based approaches have the potential to enable robots and autonomous
systems that intelligently interact with unstructured environments. Unfortunately, evaluating the
performance of the closed-loop system is challenging, limiting the success of such methods in safety-
critical settings. Even if we produce a deep reinforcement learning agent better than a human at
driving, flying a plane, or performing surgery, we have no tractable way to certify the system’s quality.
Thus, currently deployed safety-critical autonomous systems are limited to structured environments
that allow mechanisms such as PID control, simple verifiable protocols, or convex optimization to
enable guarantees for properties like stability, consensus, or recursive feasibility (see e.g. [33, 69, 14]).
The stylized settings of these problems and the limited expressivity of guaranteeable properties are
barriers to solving unstructured, real-world tasks such as autonomous navigation, locomotion, and
manipulation.

The goal of this paper is to efficiently evaluate complex systems that lack safety guarantees and/or
operate in unstructured environments. We assume access to a simulator to test the system’s perfor-
mance. Given a distribution X ⇠ P0 of simulation parameters that describe typical environments for
the system under test, our governing problem is to estimate the probability of an adverse event

p� := P0(f(X)  �). (1)
The parameter � is a threshold defining an adverse event, and f : X ! R measures the safety of a
realization x of the agent and environment (higher values are safer). In this work, we assume P0 is
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known; the system-identification and generative-modeling literatures (e.g. [6, 82]) provide several
approaches to learn or specify P0. A major challenge for solving problem (1) is that the better an
agent is at performing a task (i.e. the smaller p� is), the harder it is to confidently estimate p�—one
rarely observes events with f(x)  �. For example, when P0 is light-tailed, the sample complexity
of estimating p� using naive Monte Carlo samples grows exponentially [19].

Problem (1) is often solved in practice by naive Monte Carlo estimation methods, the simplest of
which explore the search space via random samples from P0. These methods are unbiased and
easy to parallelize, but they exhibit poor sample complexity. Naive Monte Carlo can be improved
by adding an adaptive component exploiting the most informative portions of random samples
drawn from a sequence of approximating distributions P0, P1, . . . , PK . However, standard adaptive
Monte Carlo methods (e.g. [20]), though they may use first-order information on the distributions Pk

themselves, fail to use first-order information about f to improve sampling; we explicitly leverage
this to accelerate convergence of the estimate through optimization.

Naive applications of first-order optimization methods in the estimation problem (1)—for example
biasing a sample in the direction �rf(x) to decrease f(x)—also require second-order information
to correct for the distortion of measure that such transformations induce. Consider the change of
variables formula for distributions ⇢(y) = ⇢(g�1(y)) · | det Jg�1(y)| where y = g(x). When g(x) is
a function of the gradient rf(x), the volume distortion | det Jg�1(y)| is a function of the Hessian
r2f(x). Hessian computation, if even defined, is unacceptably expensive for high-dimensional
spaces X and/or simulations that involve the time-evolution of a dynamical system; our approach
avoids any Hessian computation. In contrast, gradients rf(x) can be efficiently computed for many
closed-loop systems [1, 80, 107, 59] or through the use of surrogate methods [105, 28, 36, 8].

To that end, we propose neural bridge sampling, a technique that combines exploration, exploitation,
and optimization to efficiently solve the estimation problem (1). Specifically, we consider a novel
Markov-chain Monte Carlo (MCMC) scheme that moves along an adaptive ladder of intermediate
distributions Pk (with corresponding unnormalized densities ⇢k(x) and normalizing constants Zk :=R
X ⇢k(x)dx). This MCMC scheme iteratively transforms the base distribution P0 to the distribution

of interest P0I{f(x)  �}. Neural bridge sampling adaptively balances exploration in the search
space (via r log ⇢0) against optimization (via rf ), while avoiding Hessian computations. Our final
estimate p̂� is a function of the ratios Zk/Zk�1 of the intermediate distributions Pk, the so-called
“bridges” [10, 66]. We accurately estimate these ratios by warping the space between the distributions
Pk using neural density estimation.

Contributions and outline Section 2 presents our method, while Section 3 provides guarantees
for its statistical performance and overall efficiency. A major focus of this work is empirical, and
accordingly, Section 4 empirically demonstrates the superiority of neural bridge sampling over
competing techniques in a variety of applications: (i) we evaluate the sensitivity of a formally-verified
system to domain shift, (ii) we consider design optimization for high-precision rockets, and (iii) we
perform model comparisons for two learning-based approaches to autonomous navigation.

1.1 Related Work

Safety evaluation Several communities [27] have attempted to evaluate the closed-loop perfor-
mance of cyber-physical, robotic, and embodied agents both with and without learning-based com-
ponents. Existing solutions are predicated on the definition of the evaluation problem: verification,
falsification, or estimation. In this paper we consider a method that utilizes interactions with a
gradient oracle in order to solve the estimation problem (1). In contrast to our approach, the ver-
ification community has developed tools (e.g. [56, 24, 4]) to investigate whether any adverse or
unsafe executions of the system exist. Such methods can certify that failures are impossible, but
they require that the model is written in a formal language (a barrier for realistic systems), and they
require whitebox access to this formal model. Falsification approaches (e.g. [40, 31, 5, 108, 34, 83])
attempt to find any failure cases for the system (but not the overall probability of failure). Similar to
our approach, some falsification approaches (e.g. [1, 107]) utilize gradient information, but their goal
is to simply minimize f(x) rather than solve problem (1). Adversarial machine learning is closely
related to falsification; the key difference is the domain over which the search for falsifying evidence
is conducted. Adversarial examples (e.g. [61, 53, 95, 99]) are typically restricted to a p-norm ball
around a point from a dataset, whereas falsification considers all possible in-distribution examples.
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Both verification and falsification methods provide less information about the system under test
than estimation-based methods: they return only whether or not the system satisfies a specification.
When the system operates in an unstructured environment (e.g. driving in an urban setting), the mere
existence of failures is trivial to demonstrate [93]. Several authors (e.g. [76, 104]) have proposed that
it is more important in such settings to understand the overall frequency of failures as well as the
relative likelihoods of different failure modes, motivating our approach.

Sampling techniques and density estimation When sampling rare events and estimating their
probability, there are two main branches of related work: parametric adaptive importance sampling
(AIS) [63, 75] and nonparametric sequential Monte Carlo (SMC) techniques [32, 30]. Both of
these literatures are advanced forms of variance reduction techniques, and they are complementary
to standard methods such as control variates [91, 46]. Parametric AIS techniques, such as the
cross-entropy method [90], postulate a family of distributions for the optimal importance-sampling
distribution. They iteratively perform heuristic optimization procedures to update the sampling
distribution. SMC techniques perform sampling from a sequence of probability distributions defined
nonparametrically by the samples themselves. The SMC formalism encompasses particle filters,
birth-death processes, and smoothing filters [29]. Our technique blends aspects of both of these
communities: we include parametric warping distributions in the form of normalizing flows [82]
within the SMC setting.

Our method employs bridge sampling [10, 66], which is closely related to other SMC techniques
such as umbrella sampling [23], multilevel splitting [16, 20], and path sampling [41]. The operational
difference between these methods is in the form of the intermediate distribution used to calculate
the ratio of normalizing constants. Namely, the optimal umbrella sampling distribution is more
brittle than that of bridge sampling [23]. Multilevel splitting employs hard barriers through indicator
functions, whereas our approach relaxes these hard barriers with smoother exponential barriers. Path
sampling generalizes bridge sampling by taking discrete bridges to a continuous limit; this approach
is difficult to implement in an adaptive fashion.

The accuracy of bridge sampling depends on the overlap between intermediate distributions Pk.
Simply increasing the number of intermediate distributions is inefficient, because it requires running
more simulations. Instead, we employ a technique known as warping, where we map intermediate
distributions to a common reference distribution [102, 65]. Specifically, we use normalizing flows
[86, 54, 81, 82], which efficiently transform arbitrary distributions to standard Gaussians through a
series of deterministic, invertible functions. Normalizing flows are typically used for probabilistic
modeling, variational inference, and representation learning. Recently, Hoffman et al. [47] explored
the benefits of using normalizing flows for reparametrizing distributions within MCMC; our warping
technique encompasses this benefit and extends it to the SMC setting.

Beyond simulation This paper assumes that the generative model P0 of the operating domain
is given, so all failures are in the modeled domain by definition. When deploying systems in the
real world, anomaly detection [22] can discover distribution shifts and is complementary to our
approach (see e.g. [26, 68]). Alternatively, the problem of distribution shift can be addressed offline
via distributional robustness [39, 70, 84], where we analyze the worst-case probability of failure
under an uncertainty set composed of perturbations to P0.

2 Proposed approach

As we note in Section 1, naive Monte Carlo measures probabilities of rare events inefficiently. Instead,
we consider a sequential Monte Carlo (SMC) approach: we decompose the rare-event probability
p� into a chain of intermediate quantities, each of which is tractable to compute with standard
Monte Carlo methods. Specifically, consider K distributions Pk with corresponding (unnormalized)
probability densities ⇢k and normalizing constants Zk :=

R
X ⇢k(x)dx. Let ⇢0 correspond to the

density for P0 and ⇢1(x) := ⇢0(x)I{f(x)  �} be the (unnormalized) conditional density for the
region of interest. Then, we consider the following decomposition:

p� := P0(f(X)  �) = EPK


ZK

Z0

⇢1(X)

⇢K(X)

�
,

ZK

Z0
=

KY

k=1

Zk

Zk�1
. (2)
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Algorithm 1 Neural bridge sampling

Input: N samples x0
i

i.i.d.⇠ P0, MCMC steps T , step size ↵ 2 (0, 1), stop condition s 2 (0, 1)
Initialize k  0, �0  0, log(p̂�) 0
while 1

N

P
i I{f(x

k
i )  �} < s do

�k+1  solve problem (8)
for i = 1 to N , in parallel

x
k+1
i

i.i.d.⇠ Mult({⇢k+1(x
k
i )/⇢k(x

k
i )}) // multinomial resampling

for t = 1 to T

for i = 1 to N , in parallel
x
k+1
i  WarpedHMC(xk

i , ✓k) // Appendix A
✓k+1  argmin problem (6) // train normalizing flow on {xk+1

i } via SGD
log(p̂�) log(p̂�) + log(Zk+1/Zk) // warped bridge estimate (5)
k  k + 1

log(p̂�) log(p̂�) + log( 1
N

P
i I{f(x

k
i )  �})

Although we are free to choose the intermediate distributions arbitrarily, we will show below that
our estimate for each ratio Zk/Zk�1 and thus p� is accurate insofar as the distributions sufficiently
overlap (a concept we make rigorous in Section 3). Thus, the intermediate distributions act as
bridges that iteratively steer samples from P0 towards PK . One special case is the multilevel splitting
approach [50, 16, 104, 74], where ⇢k(x) := ⇢0(x)I{f(x)  Lk} for levels 1 =: L0 > L1 . . . >
LK := �. In this paper, we introduce an exponential tilting barrier [94]

⇢k(x) := ⇢0(x) exp
�
�k [� � f(x)]�

�
, (3)

which allows us to take advantage of gradients rf(x). Here we use the “negative ReLU” function
defined as [x]� := �[�x]+ = xI{x < 0}, and we assume that the measure of non-differentiable
points, e.g. where rf(x) does not exist or f(x) = �, is zero (see Appendix A for a detailed
discussion of this assumption). We set �0 := 0 and adaptively choose �k > �k�1. The parameter
�k tilts the distribution towards the distribution of interest: ⇢k ! ⇢1 as �k ! 1. In what follows,
we describe an MCMC method that combines exploration, exploitation, and optimization to draw
samples Xk

i ⇠ Pk. We then show how to compute the ratios Zk/Zk�1 given samples from both Pk�1

and Pk. Finally, we describe an adaptive way to choose the intermediate distributions Pk. Algorithm
1 summarizes the overall approach.

MCMC with an exponential barrier Gradient-based MCMC techniques such as the Metropolis-
adjusted Langevin algorithm (MALA) [89, 88] or Hamiltonian Monte Carlo (HMC) [35, 73] use
gradients r log ⇢0(x) to efficiently explore the space X and avoid inefficient random-walk behav-
ior [37, 25]. Classical mechanics inspires the HMC approach: HMC introduces an auxiliary random
momentum variable v 2 V and generates proposals by performing Hamiltonian dynamics in the
augmented state-space X ⇥ V . These dynamics conserve volume in the augmented state-space, even
when performed with discrete time steps [58].

By including the barrier exp
�
�k [� � f(x)]�

�
, we combine exploration with optimization; the mag-

nitude of �k in the barrier modulates the importance of rf (optimization) over r log ⇢0 (exploration),
two elements of the HMC proposal (see Appendix A for details). We discuss the adaptive choice
for �k below. Most importantly, we avoid any need for Hessian computation because the dynam-
ics conserve volume. As Algorithm 1 shows, we perform MCMC as follows: given N samples
xk�1
i ⇠ Pk�1 and a threshold �k, we first resample using their importance weights (exploiting the

performance of samples that have lower function value than others) and then perform T HMC steps.
In this paper, we implement split HMC [92] which is convenient for dealing with the decomposition
of log ⇢k(x) into log ⇢0(x) + �k[� � f(x)]� (see Appendix A for details).

Estimating Zk/Zk�1 via bridge sampling Bridge sampling [10, 66] allows estimating the ratio
of normalizing constants of two distributions by rewriting

Ek :=
Zk

Zk�1
=

Z
B
k /Zk�1

Z
B
k /Zk

=
EPk�1 [⇢

B
k (X)/⇢k�1(X)]

EPk [⇢
B
k (X)/⇢k(X)]

, bEk =

PN
i=1 ⇢

B
k (x

k�1
i )/⇢k�1(x

k�1
i )

PN
i=1 ⇢

B
k (x

k
i )/⇢k(x

k
i )

, (4)

where ⇢Bk is the density for a bridge distribution between Pk�1 and Pk, and ZB
k is its associated

normalizing constant. We employ the geometric bridge ⇢Bk (x) :=
p
⇢k�1(x)⇢k(x). In addition to
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being simple to compute, bridge sampling with a geometric bridge enjoys the asymptotic performance
guarantee that the relative mean-square error scales inversely with the Bhattacharyya coefficient,
G(Pk�1, Pk) =

R
X

q
⇢k�1(x)
Zk�1

⇢k(x)
Zk

dx 2 [0, 1] (see Appendix B for a proof). This value is closely

related to the Hellinger distance, H(Pk�1, Pk) =
p
2� 2G(Pk�1, Pk). In Section 3, we analyze

the ramifications of this fact on the overall convergence of our method.

Neural warping Both HMC and bridge sampling benefit from warping samples xi into a different
space. As Betancourt [11] notes, HMC mixes poorly in spaces with ill-conditioned geometries.
Girolami and Calderhead [42] and Hoffman et al. [47] explore techniques to improve mixing efficiency
by minimizing shear in the corresponding Hamiltonian dynamics. One way to do so is to transform
to a space that resembles a standard isotropic Gaussian [62].
Conveniently, transforming Pk to a common distribution (e.g. a standard Gaussian) also benefits
the bridge-sampling estimator (4). As noted above, the error of the bridge estimator grows with
the Hellinger distance between the distributions H(Pk�1, Pk). However, normalizing constants Zk
are invariant to (invertible) transformations. Thus, transformations that warp the space between
distributions reduce the error of the bridge-sampling estimator (4). Concretely, we consider invertible
transformations Wk such that yki = Wk(xk

i ). For clarity of notation, we write probability densities
over the space Y as �, the corresponding distributions for Y k as Qk, and the the inverse transfor-
mations W�1

k (y) as Vk(y). Then we can write the bridge-sampling estimate (4) in terms of the
transformed variables y. The numerator and denominator are as follows:

EQk�1


�
B
k (Y )

�k�1(Y )

�
= EQk�1

"s
�k(Y )

�k�1(Y )

#
= EQk�1

"s
⇢k(Vk(Y ))| det JVk (Y )|

⇢k�1(Vk�1(Y ))| det JVk�1(Y )|

#
, (5a)

EQk


�
B
k (Y )

�k(Y )

�
= EQk

"s
�k�1(Y )
�k(Y )

#
= EQk

2

4
s

⇢k�1(Vk�1(Y ))| det JVk�1(Y )|
⇢k(Vk(Y ))| det JVk (Y )|

3

5 . (5b)

By transforming all Pk into Qk to resemble standard Gaussians, we reduce the Hellinger distance
H(Qk�1, Qk)  H(Pk�1, Pk). Note that the volume distortions in the expression (5) are functions of
the transformation Vk, so they do not require computation of the Hessian r2f . However, computing
⇢k(Vk(y)) requires evaluations of f (e.g. calls of the simulator). We consider the cost-benefit analysis
of warping in Section 3.

Classical warping techniques include simple mean shifts or affine scaling [102, 65]. Similar to
Hoffman et al. [47], we consider normalizing flows, a much more expressive class of transformations
that have efficient Jacobian computations [82]. Specifically, given samples xk

i , we train masked
autoregressive flows (MAFs) [81] to minimize the empirical KL divergence between the transformed
samples yki and a standard Gaussian DKL(QkkN (0, I)). Parametrizing Wk by ✓k, this minimization
problem is equivalent to:

minimize✓
NX

i=1

� log
��det JWk

�
xk
i ; ✓

���+ 1

2

��Wk

�
xk
i ; ✓

���2
2
. (6)

The KL divergence is an upper bound to the Hellinger distance; we found minimizing the former to
be more stable than minimizing the latter. Furthermore, to improve training efficiency, we exploit
the iterated nature of the problem and warm-start the weights ✓k with the trained values ✓k�1 when
solving problem (6) via stochastic gradient descent (SGD). As a side benefit, the trained flows can be
repurposed as importance-samplers for the ladder of distributions from nominal behavior to failure.

Adaptive intermediate distributions Because we assume no prior knowledge of the system under
test, we exploit previous progress to choose the intermediate �k online; this is a key difference to
our approach compared to other forms of sequential Monte Carlo (e.g. [71, 72]) which require a
predetermined schedule for �k. We define the quantities

ak :=
PN

i I{f(xk
i )  �}/N, bk(�) :=

PN
i=1 exp

�
(� � �k)[� � f(xk

i )]�
�
/N. (7)

The first is the fraction of samples that have achieved the threshold. The second is an importance-
sampling estimate of Ek+1 given samples xk

i ⇠ Pk, written as a function of �. For fixed fractions
↵, s 2 (0, 1) with ↵ < s, �k+1 solves the following optimization problem:

maximize � s.t. {bk(�) � ↵, ak/bk(�)  s}. (8)

5



Since bk(�) is monotonically decreasing and bk(�) � ak, this problem can be solved efficiently via
binary search. The constant ↵ tunes how quickly we enter the tails of P0 (smaller ↵ means fewer
iterations), whereas s is a stop condition for the last iteration. Choosing �k+1 via (8) yields a crude
estimate for the ratio Zk+1/Zk as ↵ (or aK�1/s for the last iteration). The bridge-sampling estimate
bEk+1 corrects this crude estimate once we have samples from the next distribution Pk+1.

3 Performance analysis

We can write the empirical estimator of the function (2) as

p̂� =
KY

k=1

bEk
1

N

NX

i=1

⇢1(xK
i )

⇢K(xK
i )

, (9)

where bEk is given by the expression (4) without warping, or similarly, as a Monte Carlo estimate
of the expression (5) with warping. We provide guarantees for both the time complexity of running
Algorithm 1 (i.e. the iterations K) as well as the overall mean-square error of p̂� . For simplicity, we
provide results for the asymptotic (large N ) and well-mixed MCMC (large T ) limits. Assuming these
conditions, we have the following:
Proposition 1. Let K0 := blog(p�)/ log(↵)c. Then, for large N and T , s � 1/3, and p� < s, the
total number of iterations in Algorithm 1 approaches K a.s.! K0 + I{p�/↵K0 < s}. Furthermore,
for the non-warped estimator, the asymptotic relative mean-square error E[(p̂�/p� � 1)2] is

2
N

KX

k=1

✓
1

G(Pk�1, Pk)2
� 1

◆
� 2

N

K�1X

k=1

✓
G(Pk�1, Pk+1)

G(Pk�1, Pk)G(Pk, Pk+1)
� 1

◆
+

1� s

sN
+ o

✓
1
N

◆
. (10)

In particular, if the inverse Bhattacharyya coefficients are bounded such that 1
G(Pk�1,Pk)2

 D (with

D � 1), then the asymptotic relative mean-square error satisfies E[(p̂�/p� � 1)2]  2KD/N . For
the warped estimator, replace G(Pi, Pj) with G(Qi, Qj) in the expression (10).

See Appendix B for the proof. We provide some remarks about the above result. Intuitively, the first
term in the bound (10) accounts for the variance of bEk. The denominator of bEk�1 and numerator
of bEk both depend on xk

i ; the second sum in (10) accounts for the covariance between those terms.
Furthermore, the quantities in the bound (10) are all empirically estimable, so we can compute the
mean-square error from a single pass of Algorithm 1. In particular,

G(Pk�1, Pk)
2 =

ZB
k

Zk�1

ZB
k

Zk
,

G(Pk�1, Pk+1)

G(Pk�1, Pk)G(Pk, Pk+1)
=

ZC
k

Zk

Zk

ZB
k

Zk

ZB
k+1

, (11)

where ZC
k /Zk = EPk

⇥
⇢Bk (X)⇢Bk+1(X)/⇢k(X)2

⇤
. The last term in the bound (10) is the relative

variance of the final Monte Carlo estimate
P

i I{f(xK
i )  �}/N .

Overall efficiency The statistical efficiency outlined in Proposition 1 is pointless if it is accompa-
nied by an overwhelming computational cost. We take the atomic unit of computation to be a query
of the simulator, which returns both evaluations of f(x) and rf(x); we assume other computations
to be negligible compared to simulation. As such, the cost of Algorithm 1 is N(1 +KT ) evaluations
of the simulator without warping and N(1 +KT ) + 2KN with warping. Thus, the relative burden
of warping is minimal, because training the normalizing flows to minimize DKL(QkkN (0, I)) re-
quires no extra simulations. In contrast, directly minimizing DKL(Qk�1kQk) would require extra
simulations at each training step to evaluate ⇢k(Vk(y)).

Our method can exploit two further sources of efficiency. First, we can employ surrogate models
for gradient computation and/or function evaluation during the T MCMC steps. For example, using
a surrogate model for a fraction d  1 � 1/T of the MCMC iterations reduces the factor T to
Ts := (1� d)T in the overall cost. Surrogate models have an added benefit of making our approach
amenable for simulators that do not provide gradients. The second source of efficiency is parallel
computation. Given C processors, the factor N in the cost drops to Nc := dN/Ce.

The overall efficiency of the estimator (9)—relative error multiplied by cost [44]—depends on p� as
log(p�)2. In contrast, the standard Monte Carlo estimator has cost N to produce an estimate with
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(a) Samples colored by iteration (b) p̂�test vs. �test
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(c) Ratio of variance vs. p�test

Figure 1. Experiments on a synthetic problem. 10 trials are used to calculate the 99% confidence
intervals in (b) and variance ratios in (c). All adaptive methods perform similarly in this well-conditioned
search space except at very small �, where NB performs the best.

relative error 1�p�

p�N
. Thus, the relative efficiency gain for our estimator (9) over naive Monte Carlo is

O(1/(p� log(p�)2)): the efficiency gains over naive Monte Carlo increase as p� decreases.

4 Experiments

We evaluate our approach in a variety of scenarios, showcasing its use in efficiently evaluating the
safety of autonomous systems. We begin with a synthetic problem to illustrate the methodology
concretely as well as highlight the pitfalls of using gradients naively. Then, we evaluate a formally-
verified neural network controller [48] on the OpenAI Gym continuous MountainCar environment [67,
17] under a domain perturbation. Finally, we consider two examples of using neural bridge sampling
as a tool for engineering design in high-dimensional settings: (a) comparing thruster sizes to safely
land a rocket [13] in the presence of wind, and (b) comparing two algorithms on the OpenAI Gym
CarRacing environment (which requires a surrogate model for gradients) [55].

We compare our method with naive Monte Carlo (MC) and perform ablation studies for the effects
of neural warping (denoted as NB with warping and B without). We also provide comparisons with
adaptive multilevel splitting (AMS) [16, 104, 74]. All methods are given the same computational
budget as measured by evaluations of the simulator. This varies from 50,000-100,000 queries to run
Algorithm 1 as determined by p� (see Appendix C for details of each experiment’s hyperparameters).
However, despite running Algorithm 1 with a given �, we evaluate estimates p̂�test for all �test � �.
Larger �test require fewer queries to evaluate p̂�test (as Algorithm 1 terminates early). Thus, we adjust
the number of MC queries accordingly for each �test. Independently, we calculate the ground-truth
values p�test for the non-synthetic problems using a fixed, very large number of MC queries.

Synthetic problem We consider the two-dimensional function f(x) = �min(|x[1]|, x[2]), where
x[i] is the ith dimension of x 2 R2. We let �=�3 and P0=N (0, I) (for which p� = 3.6 · 10�6).
Note that r2f(x) = 0 almost everywhere, yet rf(x) has negative divergence in the neighborhoods
of x[2]= |x[1]|. Indeed, gradient descent collapses xi⇠P0 to the lines x[2]= |x[1]|, and the ill-defined
nature of the Hessian makes it unsuitable to track volume distortions. Thus, simple gradient-based
transformations used to find adversarial examples (e.g. minimize f(x)) should not be used for
estimation in the presence of non-smooth functions, unless volume distortions can be quantified.

Figure 1(a) shows the region of interest in pink and illustrates the gradual warping of ⇢0 towards ⇢1
over iterations of Algorithm 1. Figures 1(b) and 1(c) indicate that all adaptive methods outperform
MC for p�test < 10�3. For larger p�test , the overhead of the adaptive methods renders MC more
efficient (Figure 1(c)). The linear trend of the yellow MC/NB line in Figure 1(c) aligns with the
theoretical efficiency gain discussed in Section 3. Finally, due to the simplicity of the search space
and the landscape of f(x), the benefits of gradients and warping are not drastic. Specifically, as
shown in Figure 1(c), all adaptive methods have similar confidence in their estimates except at very
small p�test < 10�5, where NB outperforms AMS and B. The next example showcases the benefits
of gradients as well as neural warping in a more complicated search space.

Sensitivity of a formally-verified controller under domain perturbation We consider a minimal
reinforcement learning task, the MountainCar problem [67] (Figure 2(a)). Ivanov et al. [48] created
a formally-verified neural network controller to achieve reward > 90 over all initial positions
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Figure 2. Experiments on the MountainCar environment. The dashed horizontal line in (b) is the line
along which the controller is formally verified. 10 trials are used for the variance ratios in (c). The
irregular geometry degrades performance of AMS and B, but B benefits slightly from gradients over
AMS. NB uses gradients and neural warping to outperform all other techniques.

(a) Rocket landing (b) Failure rates
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Figure 3. Rocket design experiments. NB’s high-confidence estimates enable quick design iterations
to either increase the landing pad radius or consider a third rocket that fails with probability < 10�5.
Low-dimensional visualization shows that Rocket2’s failure types are more concentrated than those of
Rocket1, even though Rocket2 has a higher overall probability of failure.

2 [�0.59,�0.4] and 0 initial velocity (see Appendix C). The guarantees of formal verification
hold only with respect to the specified domain; even small domain perturbations can affect system
performance [49]. We illustrate this sensitivity by adding a small perturbation to the initial velocity
⇠ N (0, 10�4) and seek p� := P0(reward  90) for P0 =Unif(�0.59,�0.4)⇥N (0, 10�4). We
measure the ground-truth failure rate as p� = 1.6 · 10�5 using 50 million naive Monte Carlo samples.

Figure 2(b) shows contours of f(x). Notably, the failure region (dark blue) is an extremely irregular
geometry with pathological curvature, which renders MCMC difficult for AMS and B [11]. Quantita-
tively, poor mixing adversely affects the performance of AMS and B, and they perform even worse
than MC (Figure 2(c)). Whereas gradients help B slightly over AMS, gradients and neural warping
together help NB outperform all other methods. We next move to higher-dimensional systems.

Rocket design We now consider the problem of autonomous, high-precision vertical landing of
an orbital-class rocket (Figure 3(a)), a technology first demonstrated by SpaceX in 2015. Rigorous
system-evaluation techniques such as our risk-based framework are powerful tools for quickly
exploring design tradeoffs. In this experiment, the amount of thrust which the rocket is capable of
deploying to land safely must be balanced against the payload it is able to carry to space; stronger
thrust increases safety but decreases payloads. We consider two rocket designs and we evaluate their
respective probabilities of failure (not landing safely on the landing pad) for landing pad sizes up to
15 meters in radius. That is, �f(x) is the distance from the landing pad’s center at touchdown and
� = �15. We evaluate whether the rockets perform better than a threshold failure rate of 10�5.

We let P0 be the 100-dimensional search space parametrizing the sequence of wind-gusts during the
rocket’s flight. Appendix C contains details for this parametrization and the closed-loop simulation
of the rocket’s control law (based on industry-standard approaches [13, 87]). Figure 3(b) shows the
estimated performance of the two rockets. We show only MC and NB for clarity; comparisons with
other methods are in Table 1 (with ground-truth values calculated using 50 million naive Monte Carlo
simulations). Whereas both NB and MC confidently estimate Rocket2’s failure rate as higher than
10�4, only NB confidently estimates Rocket1’s failure rate as higher than 10�5, letting engineers
quickly judge whether to increase the size of the landing pad or build a better rocket.

We can also distinguish between the modes of failure for the rockets. Namely, Figure 3(c) shows
a PCA projection of failures (with �test = �15) onto 2 dimensions. Analysis of the PCA modes
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Figure 4. CarRacing experiments. MC cannot distinguish between the policies below �test = 160.
NB’s high-confidence estimates enable model comparisons at extreme limits of failure. Low-dimensional
visualization of the failure modes shows that the algorithms fail in distinct ways.

Table 1: Relative mean-square error E[(p̂�/p� � 1)2] over 10 trials
Synthetic MountainCar Rocket1 Rocket2 AttentionAgentRacer WorldModelRacer

MC 1.1821 0.2410 1.1039 0.0865 1.0866 0.9508
AMS 0.0162 0.5424 0.0325 0.0151 1.0211 0.8177
B 0.0514 0.3856 0.0129 0.0323 0.9030 0.7837
NB 0.0051 0.0945 0.0102 0.0078 0.2285 0.1218

p� 3.6 · 10�6 1.6 · 10�5 2.3 · 10�5 2.4 · 10�4 ⇡ 2.5 · 10�5 ⇡ 9.5 · 10�6

indicates that failures are dominated by high altitude and medium altitude gusts. Even though Rocket2
has a higher probability of failure, its failure mode is more concentrated than Rocket1’s failures.

Car racing The CarRacing environment (Figure 4(a)) is a challenging reinforcement-learning
task with a continuous action space and pixel observations. Similar observation spaces have been
proposed for real autonomous vehicles (e.g. [7, 60, 103]). We compare two recent approaches,
AttentionAgentRacer [98] and WorldModelRacer [43] that have similar average performance: they
achieve average rewards of 903± 49 and 899± 46 respectively (mean ± standard deviation over 2
million trials). Both systems utilize one or more deep neural networks to plan in image-space, so
neither has performance guarantees. We evaluate the probability of getting small rewards (� = 150).

The 24-dimensional search space P0 parametrizes the generation of the racing track (details are in
Appendix C). This environment does not easily provide gradients due to presence of a rendering engine
in the simulation loop. Instead, we fit a Gaussian process surrogate model to compute rf(x) (see
Appendix C). As these experiments are extremely expensive (taking up to 1 minute per simulation),
we only use 2 million naive Monte Carlo samples to compute the ground-truth failure rates. Figure
4(b) shows that, even though the two models have very similar average performance, their catastrophic
failure curves are distinct. Furthermore, MC is unable to distinguish between the policies below
rewards of 160 due to its high uncertainty, whereas NB clearly shows that WorldModelRacer is
superior. Note that, because even the ground-truth has non-negligible uncertainty with 2 million
samples, we only report the variance component of relative mean-square error in Table 1.

As with the rocket design experiments, we visualize the modes of failure (defined by �test = 225) via
PCA in Figure 4(c). The dominant eigenvectors involve large differentials between radii and angles
of consecutive checkpoints that are used to generate the racing tracks. AttentionAgentRacer has two
distinct modes of failure, whereas WorldModelRacer has a single mode.

5 Conclusion

There is a growing need for rigorous evaluation of safety-critical systems which contain components
without formal guarantees (e.g. deep neural networks). Scalably evaluating the safety of such systems
in the presence of rare, catastrophic events is a necessary component in enabling the development
of trustworthy high-performance systems. Our proposed method, neural bridge sampling, employs
three concepts—exploration, exploitation, and optimization—in order to evaluate system safety with
provable statistical and computational efficiency. We demonstrate the performance of our method on
a variety of reinforcement-learning and robotic systems, highlighting its use as a tool for continuous
integration and rapid engineering design. In future work, we intend to investigate how efficiently
sampling rare failures—like we propose here for evaluation—could also enable the automated repair
of safety-critical reinforcement-learning agents.
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Broader Impact

This paper presents both foundational theory and methods for efficiently evaluating the performance
of safety-critical autonomous systems. By definition, such systems can cause injury or death if they
malfunction [15]. Thus, improving the tools that practitioners have to perform risk-estimation has
the potential to provide a strong positive impact. On the other hand, the improved scalability of
our method could be used to more efficiently find (zero-day) exploits and failure modes in P0 (the
model of the operational design domain). However, we note that adversarial examples or exploits can
also be found via a variety of purely optimization-based methods [3]. The nuances of our method
are primarily concerned with the frequency of adverse events, an extra burden; thus, we anticipate
they will be of little interest to malicious actors who can manipulate the observations and sensor
measurements of complex systems. Another potential concern about the use of our method is with
respect to the identification of P0, which we specifically assume to be known in this paper. The gap
between P0 in simulation and the real distribution of the environment could lead to overconfidence
in the capabilities of the system under test. In Section 1.1 we outline complementary work in
anomaly detection and distributionally robust optimization which could mitigate such risks. Still,
more work needs to be done to standardize the operational domain of specific tasks by regulators and
technology-stakeholders. Nevertheless, we believe that our method will enable the comparison of
autonomous systems in a common language—risk—across the spectrum from engineers to regulators
and the public.

The applications of our technology are diverse (cf. Corso et al. [27]), ranging from testing autonomous
vehicles [76, 74] and medical devices [77] to evaluating deep neural networks [104] and reinforcement-
learning agents [101]. In the case of autonomous vehicles, Sparrow and Howard [97] argue that it will
be morally wrong not to deploy self-driving technology once performance exceeds human capabilities.
Our work is an important tool for determining when this performance threshold is achieved due to the
rare nature of serious accidents [51]. While the widespread availability of autonomy-enabled devices
could narrowly benefit public health, there are many external risks associated with their development.
First, many learning-based components of these systems will require massive and potentially invasive
data collection [85]; preserving privacy of the public via federated learning [64] and differential
privacy-based mechanisms [38] should remain important initiatives within the machine-learning
community. A second potential negative consequence of the applications like autonomous vehicles is
the use of the real-world as a “simulator” within a reinforcement-learning scheme by releasing “beta”
autonomy features (e.g. Tesla Autopilot [52]). Unlike established industries such as aerospace [100],
many potential applications currently lack regulation and standards; it is important to ensure that
industry works with policy makers to develop safety standards in a way that avoids regulatory capture.
If widely adopted in regulatory frameworks, our tool would enable rational decisions about the impact,
positive or negative, of safety-critical autonomous systems before real lives are affected.

More broadly, the advent of autonomy could spark significant societal changes. For example, the
autonomous applications described previously could become core components of weapons systems
and military technology that are incompatible with (modern interpretations of) just war theory [96].
Similarly, the automation of the transportation industry has the potential to rapidly destroy the
economics of public infrastructure and cost millions of jobs [97]. Thus, Benkler [9] highlights
that there is a growing need for the academic community to take action on defining the broader
performance criteria to which we will hold AI applications. Brundage et al. [18] and Wing [106]
outline broad research agendas which are necessarily interdisciplinary. Still, much more work needs
to be done to empower researchers to influence policy. These efforts will require systemic initiatives
by research institutions and organizations to engage with local, national, and international governing
bodies.
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