Supplement: Proximity Operator of the Matrix Perspective Function and its Applications

Joong-Ho Won
Department of Statistics
Seoul National University
wonj@stats.snu.ac.kr

A Proofs

A. 1 A key lemma

Proofs of both Theorems 2 and 4 are based on the following key lemma, Lemma A. 1 Recall that $\phi(x)=x_{+}$for $x \in \mathbb{R}$ and $\phi^{\square}(\boldsymbol{X})=\boldsymbol{P} \operatorname{diag}\left(\phi\left(\lambda_{1}\right), \ldots, \phi\left(\lambda_{n}\right)\right) \boldsymbol{P}^{T}=\boldsymbol{X}_{+}$for $\boldsymbol{X}=$ $\boldsymbol{P} \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \boldsymbol{P}^{T} \in \mathbb{S}^{n}$ where \boldsymbol{P} satisfies $\boldsymbol{P}^{T} \boldsymbol{P}=\boldsymbol{P} \boldsymbol{P}^{T}=\boldsymbol{I}$. For any $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, $\phi^{[1]}(\boldsymbol{\lambda})$ is the $n \times n$ symmetric matrix with (i, j) entry

$$
\phi_{i j}^{[1]}(\boldsymbol{\lambda})= \begin{cases}\frac{\phi\left(\lambda_{i}\right)+\phi\left(\lambda_{j}\right)}{\left|\lambda_{i}\right|+\left|\lambda_{j}\right|}, & \lambda_{i} \neq 0 \text { or } \lambda_{j} \neq 0 \tag{18}\\ 0, & \lambda_{i}=\lambda_{j}=0\end{cases}
$$

Also recall that $\boldsymbol{C}(\mu)=\overline{\boldsymbol{X}}-\mu \boldsymbol{e} \boldsymbol{e}^{T}$ so that $f(\mu)=g^{\prime}(\mu)=1-\boldsymbol{e}^{T} \phi^{\square}(\boldsymbol{C}(\mu)) \boldsymbol{e}$. Lemma A. 1 provides a closed-form expression of the derivative of $f(\mu)$ when it exists, in terms of the matrix function (18).
Lemma A.1. Function f is differentiable at μ if and only if $\boldsymbol{e} \in \mathcal{N}(\boldsymbol{C}(\mu))^{\perp}$. In this case, the derivative is

$$
\begin{equation*}
f^{\prime}(\mu)=\boldsymbol{e}^{T} \boldsymbol{P}\left(\phi^{[1]}(\boldsymbol{\lambda}) \circ\left(\boldsymbol{P}^{T} \boldsymbol{e} \boldsymbol{e}^{T} \boldsymbol{P}\right)\right) \boldsymbol{P}^{T} \boldsymbol{e} \tag{A.1}
\end{equation*}
$$

for any $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{n}\right)^{T}$ and \boldsymbol{P} satisfying $\boldsymbol{C}(\mu)=\boldsymbol{P} \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \boldsymbol{P}^{T}, \boldsymbol{P}^{T} \boldsymbol{P}=\boldsymbol{P} \boldsymbol{P}^{T}=\boldsymbol{I}$.
To prove this lemma, we begin by recalling the definition of directional derivatives.
Definition A. 1 (Directional derivative). For a function $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{l}$ and $\boldsymbol{x}, \boldsymbol{h} \in \mathbb{R}^{m}$, the directional derivative of F at \boldsymbol{X} along \boldsymbol{h} is defined and denoted by

$$
F^{\prime}(\boldsymbol{x} ; \boldsymbol{h})=\lim _{t \downarrow 0} \frac{F(\boldsymbol{x}+t \boldsymbol{h})-F(\boldsymbol{x})}{t}
$$

if the limit exists. The F is called directionally differentiable at \boldsymbol{x} if $F^{\prime}(\boldsymbol{x} ; \boldsymbol{h})$ exists for all $\boldsymbol{h} \in \mathbb{R}^{m}$.
If F is differentiable at \boldsymbol{x} with Jacobian $\nabla F(\boldsymbol{x}) \in \mathbb{R}^{l \times m}$, then $F^{\prime}(\boldsymbol{x} ; \boldsymbol{h})=\nabla F(\boldsymbol{x}) \boldsymbol{h}$.
For index sets $J, K \subset\{1, \ldots, n\}$ and matrix $\boldsymbol{M} \in \mathbb{S}^{n}$, let $\boldsymbol{M}_{J K}$ be the submatrix of \boldsymbol{M} constructed from the rows in J and the columns in K. The following lemma can be deduced from Sun and Sun [2002, Theorem 4.7]:
Lemma A.2. Function ϕ^{\square} is directionally differentiable at any $\boldsymbol{X} \in \mathbb{S}^{n}$. Its directional derivative along $\boldsymbol{H} \in \mathbb{S}^{n}$ is

$$
\left(\phi^{\square}\right)^{\prime}(\boldsymbol{X} ; \boldsymbol{H})=\boldsymbol{P}\left[\begin{array}{cc}
\phi_{K K}^{[1]}(\boldsymbol{\lambda}) \circ \tilde{\boldsymbol{H}}_{K K} & \phi_{K J}^{[1]}(\boldsymbol{\lambda}) \circ \tilde{\boldsymbol{H}}_{K J} \\
\phi_{J K}^{[1]}(\boldsymbol{\lambda}) \circ \tilde{\boldsymbol{H}}_{J K} & {\left[\tilde{\boldsymbol{H}}_{J J}\right]_{+}}
\end{array}\right] \boldsymbol{P}^{T}
$$

where $\boldsymbol{X}=\boldsymbol{P} \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \boldsymbol{P}^{T} \in \mathbb{S}^{n}$ with \boldsymbol{P} satisfying $\boldsymbol{P}^{T} \boldsymbol{P}=\boldsymbol{P} \boldsymbol{P}^{T}=\boldsymbol{I}, K=\{i \in$ $\left.\{1, \ldots, n\}: \lambda_{i} \neq 0\right\}, J=\left\{i \in\{1, \ldots, n\}: \lambda_{i}=0\right\}$, and $\tilde{\boldsymbol{H}}=\boldsymbol{P}^{T} \boldsymbol{H} \boldsymbol{P}$. Furthermore, ϕ^{\square} is differentiable at \boldsymbol{X} if and only if \boldsymbol{X} is nonsingular, i.e., $J=\emptyset$.

Now we can prove the lemma:
Proof of Lemma A.1. Suppose f is differentiable at μ. Then if $\boldsymbol{C}(\mu)$ is nonsingular, $\mathcal{N}(\boldsymbol{C}(\mu))=\{\mathbf{0}\}$ and $\boldsymbol{e} \in \mathcal{N}(\boldsymbol{C}(\mu))^{\perp}$. If $\boldsymbol{C}(\mu)$ is singular, then the two one-sided limits

$$
\lim _{t \downarrow 0} \frac{f(\mu+t)-f(\mu)}{t} \quad \text { and } \quad \lim _{t \downarrow 0} \frac{f(\mu-t)-f(\mu)}{-t}
$$

must coincide. The first limit is equal to

$$
\begin{aligned}
-\boldsymbol{e}^{T} & \left(\lim _{t \downarrow 0} \frac{\phi^{\square}(\boldsymbol{C}(\mu+t))-\phi^{\square}(\boldsymbol{C}(\mu))}{t}\right) \boldsymbol{e}=-\boldsymbol{e}^{T}\left(\lim _{t \downarrow 0} \frac{\phi^{\square}\left(\boldsymbol{C}(\mu)-t \boldsymbol{e}^{T}\right)-\phi^{\square}(\boldsymbol{C}(\mu))}{t}\right) \boldsymbol{e} \\
& =-\boldsymbol{e}^{T}\left(\phi^{\square}\right)^{\prime}\left(\boldsymbol{C}(\mu) ;-\boldsymbol{e} \boldsymbol{e}^{T}\right) \boldsymbol{e} \\
& =\boldsymbol{e}^{T} \boldsymbol{P}\left[\begin{array}{cc}
\phi_{K K}^{[1]}(\boldsymbol{\lambda}) \circ\left(\boldsymbol{P}^{T} \boldsymbol{e} \boldsymbol{e}^{T} \boldsymbol{P}\right)_{K K} & \phi_{K J}^{[1]}(\boldsymbol{\lambda}) \circ\left(\boldsymbol{P}^{T} \boldsymbol{e} \boldsymbol{e}^{T} \boldsymbol{P}\right)_{K J} \\
\phi_{J K}^{1]}(\boldsymbol{\lambda}) \circ\left(\boldsymbol{P}^{T} \boldsymbol{e} \boldsymbol{e}^{T} \boldsymbol{P}\right)_{J K} & -\left[\left(\boldsymbol{P}^{T} \boldsymbol{e} \boldsymbol{e}^{T} \boldsymbol{P}\right)_{J J}\right]_{+}
\end{array}\right] \boldsymbol{P}^{T} \boldsymbol{e}
\end{aligned}
$$

by Lemma A.2, for a spectral decomposition of $\boldsymbol{C}(\mu)=\boldsymbol{P} \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \boldsymbol{P}^{T}$ satisfying the conditions of the lemma. Likewise, the second limit equals

$$
\boldsymbol{e}^{T}\left(\phi^{\square}\right)^{\prime}\left(\boldsymbol{C}(\mu) ; \boldsymbol{e} \boldsymbol{e}^{T}\right) \boldsymbol{e}=\boldsymbol{e}^{T} \boldsymbol{P}\left[\begin{array}{cc}
\phi_{K K}^{[1]}(\boldsymbol{\lambda}) \circ\left(\boldsymbol{P}^{T} \boldsymbol{e} \boldsymbol{e}^{T} \boldsymbol{P}\right)_{K K} & \phi_{K J}^{[1]}(\boldsymbol{\lambda}) \circ\left(\boldsymbol{P}^{T} \boldsymbol{e} \boldsymbol{e}^{T} \boldsymbol{P}\right)_{K J} \\
\phi_{J K}^{[1]}(\boldsymbol{\lambda}) \circ\left(\boldsymbol{P}^{T} \boldsymbol{e} \boldsymbol{e}^{T} \boldsymbol{P}\right)_{J K} & {\left[\left(\boldsymbol{P}^{T} \boldsymbol{e} \boldsymbol{e}^{T} \boldsymbol{P}\right)_{J J}\right]_{+}}
\end{array}\right] \boldsymbol{P}^{T} \boldsymbol{e} .
$$

Let $\boldsymbol{P}^{T} \boldsymbol{e}=\left[\boldsymbol{q}_{K}, \boldsymbol{q}_{J}\right]^{T}=\boldsymbol{q}$ where $\boldsymbol{q}_{K} \in \mathbb{R}^{|K|}$ and $\boldsymbol{q}_{J} \in \mathbb{R}^{|J|}$. Note $J \neq \emptyset$ since $\boldsymbol{C}(\mu)$ is singular. Then the two limits are equal if and only if $\boldsymbol{q}_{J}^{T}\left[\left(\boldsymbol{q} \boldsymbol{q}^{T}\right)_{J J}\right]_{+} \boldsymbol{q}_{J}=0$. It is immediate to see that $\left(\boldsymbol{q} \boldsymbol{q}^{T}\right)_{J J}=\boldsymbol{q}_{J} \boldsymbol{q}_{J}^{T} \succeq \mathbf{0}$, hence $\boldsymbol{q}_{J}^{T}\left[\left(\boldsymbol{q} \boldsymbol{q}^{T}\right)_{J J}\right]_{+} \boldsymbol{q}_{J}=\left\|\boldsymbol{q}_{J}\right\|^{4}$. This implies $\boldsymbol{q}_{J}=\mathbf{0}$. Finally, observe that $\boldsymbol{q}_{J}=\boldsymbol{P}_{J}^{T} \boldsymbol{e}$ where the columns of $\boldsymbol{P}_{J} \operatorname{span} \mathcal{N}(\boldsymbol{C}(\mu))$. Thus the condition $\boldsymbol{q}_{J}=\boldsymbol{P}_{J}^{T} \boldsymbol{e}=\mathbf{0}$ is equivalent to $\boldsymbol{e} \in \mathcal{N}(\boldsymbol{C}(\mu))^{\perp}$.
Now suppose $\boldsymbol{e} \in \mathcal{N}(\boldsymbol{C}(\mu))^{\perp}$. If $\boldsymbol{C}(\mu)$ is nonsingular, then Lemma A. 2 implies that f is differentiable at μ. If $\boldsymbol{C}(\mu)$ is singular, then $\boldsymbol{P}_{J}^{T} \boldsymbol{e}=\mathbf{0}$ and the two one-sided limits in the above paragraph coincide, i.e., f is differentiable at μ.
Equation A.1 is a consequence of the coincidence of the one-sided limits, that the common limit does not depend on the order of $\lambda_{1}, \ldots, \lambda_{n}$, and the definition of $\phi^{[1]}$ in equation (18).

A. 2 Proof of Theorem 2

For a solution μ^{\star} to the equation $f(\mu)=0$, define a collection of matrices related to the eigenvalues $\boldsymbol{\lambda}^{\star}=\left(\lambda_{1}^{\star}, \ldots, \lambda_{n}^{\star}\right)^{T}$ of $\boldsymbol{C}\left(\mu^{\star}\right)$:

$$
\mathcal{M}=\left\{\boldsymbol{M}=\left(m_{i j}\right) \in \mathbb{S}^{n}: m_{i j}=\phi^{[1]}\left(\boldsymbol{\lambda}^{\star}\right) \text { if } \lambda_{i}^{\star} \neq 0 \text { or } \lambda_{j}^{\star} \neq 0 ; m_{i j} \in[0,1] \text { if } \lambda_{i}^{\star}=0=\lambda_{j}^{\star}\right\} .
$$

Also define the set (Bouligand subdifferential)

$$
\partial_{B} f\left(\mu^{\star}\right)=\left\{\lim _{k \rightarrow \infty} f^{\prime}\left(\mu_{k}\right): \mu_{k} \rightarrow \mu^{\star}, \mu_{k} \in D_{f}\right\}
$$

where D_{f} denotes the set of points in which f is differentiable, so that $\partial f\left(\mu^{\star}\right)=\boldsymbol{\operatorname { c o n v }} \partial_{B} f\left(\mu^{\star}\right)$. The following lemma shows a representation of an element of this set in terms of \mathcal{M} :
Lemma A.3. Suppose a spectral decomposition of $\boldsymbol{C}\left(\mu^{\star}\right)$ is $\boldsymbol{P}^{\star} \operatorname{diag}\left(\lambda_{1}^{\star}, \ldots, \lambda_{n}^{\star}\right) \boldsymbol{P}^{\star T}$ with $\boldsymbol{P}^{\star T} \boldsymbol{P}^{\star}=\boldsymbol{P}^{\star} \boldsymbol{P}^{\star T}=\boldsymbol{I}$. Then, for any $v \in \partial_{B} f\left(\mu^{\star}\right)$, there exists $\boldsymbol{M} \in \mathcal{M}$ such that

$$
v=\boldsymbol{e}^{T} \boldsymbol{P}^{\star}\left(\boldsymbol{M} \circ\left(\boldsymbol{P}^{\star T} \boldsymbol{e} \boldsymbol{e}^{T} \boldsymbol{P}^{\star}\right)\right) \boldsymbol{P}^{\star T} \boldsymbol{e}
$$

Proof. By the definition of $\partial_{B} f\left(\mu^{\star}\right)$, there exists a sequence $\left\{\mu_{k}\right\}$ such that f is differentiable at each $\mu_{k}, \mu_{k} \rightarrow \mu^{\star}$, and $f^{\prime}\left(\mu_{k}\right) \rightarrow v$ as $k \rightarrow \infty$. Obviously $\mu_{k} \neq \mu$ for all k. Thus $\boldsymbol{C}\left(\mu_{k}\right)=$ $\overline{\boldsymbol{X}}-\mu_{k} \boldsymbol{e} \boldsymbol{e}^{T}=\boldsymbol{C}(\mu)-\left(\mu_{k}-\mu\right) \boldsymbol{e} \boldsymbol{e}^{T}$ is a symmetric rank-1 perturbation of $\boldsymbol{C}(\mu)$. Then, by Chen et al. [2003, Lemma 3.3], Rellich and Berkowitz [1969, Thm. 1], $\boldsymbol{C}\left(\mu_{k}\right)$ has a spectral decomposition $\boldsymbol{P}_{k} \operatorname{diag}\left(\lambda_{k, 1}, \ldots, \lambda_{k, n}\right) \boldsymbol{P}_{k}^{T}$ such that $\boldsymbol{P}_{k} \rightarrow \boldsymbol{P}^{\star}$ as $k \rightarrow \infty$, by passing to a subsequence of
$\left\{\mu_{k}\right\}$ if necessary. Since $\lambda_{k, i}=\left(\boldsymbol{P}_{k}^{T} \boldsymbol{C}\left(\mu_{k}\right) \boldsymbol{P}_{k}\right)_{i i}$ and $\boldsymbol{C}(\mu)$ is continuous in μ, it follows that $\lim _{k \rightarrow \infty} \lambda_{k, i}=\lambda_{i}$ as well, for $i=1, \ldots, n$.
By Lemma A.1.

$$
f^{\prime}\left(\mu_{k}\right)=\boldsymbol{e}^{T} \boldsymbol{P}_{k}\left(\phi^{[1]}\left(\boldsymbol{\lambda}_{k}\right) \circ\left(\boldsymbol{P}_{k}^{T} \boldsymbol{e} \boldsymbol{e}^{T} \boldsymbol{P}_{k}\right)\right) \boldsymbol{P}_{k}^{T} \boldsymbol{e}
$$

Let

$$
K=\left\{i \in\{1, \ldots, n\}: \lambda_{i}^{\star} \neq 0\right\}, \quad J=\left\{i \in\{1, \ldots, n\}: \lambda_{i}^{\star}=0\right\}
$$

and $\delta=\frac{1}{2} \min _{i \in K}\left|\lambda_{i}^{\star}\right|>0$. Then for all sufficiently large k, we have $\max _{i=1, \ldots, n}\left|\lambda_{k, i}-\lambda_{i}^{\star}\right| \leq \delta$. If $i \in K$ or $j \in K$, then $\lambda_{k, i} \neq 0$ or $\lambda_{k, j} \neq 0$, and

$$
\phi_{i j}^{[1]}\left(\boldsymbol{\lambda}_{k}\right)=\frac{\left(\lambda_{k, i}\right)_{+}+\left(\lambda_{k, j}\right)_{+}}{\left|\lambda_{k, i}\right|+\left|\lambda_{k, j}\right|} \rightarrow \frac{\left(\lambda_{i}^{\star}\right)_{+}+\left(\lambda_{j}^{\star}\right)_{+}}{\left|\lambda_{i}^{\star}\right|+\left|\lambda_{j}^{\star}\right|}=\phi_{i j}^{[1]}\left(\boldsymbol{\lambda}^{\star}\right) .
$$

If $i, j \in J$, then both $\lambda_{k, i}$ and $\lambda_{k, j}$ converge to 0 . Since $\phi_{i, j}\left(\lambda_{k}\right) \in[0,1]$ in this case, passing to a subsequence of $\left\{\mu_{k}\right\}$ if necessary, $\phi_{i, j}\left(\lambda_{k}\right)$ converges to a point $m_{i j} \in[0,1]$. This shows that $\phi^{[1]}\left(\boldsymbol{\lambda}_{k}\right) \rightarrow \boldsymbol{M} \in \mathcal{M}$.
Finally, by the continuity of matrix multiplications, we have

$$
v=\lim _{k \rightarrow \infty} f^{\prime}\left(\mu_{k}\right)=\boldsymbol{e}^{T} \boldsymbol{P}^{\star}\left(\boldsymbol{M} \circ\left(\boldsymbol{P}^{\star T} \boldsymbol{e} \boldsymbol{e}^{T} \boldsymbol{P}^{\star}\right)\right) \boldsymbol{P}^{\star T} \boldsymbol{e}
$$

The next lemma provides a technical result useful for proving Theorem 2
Lemma A.4. For $\boldsymbol{P}^{\star}=\left(p_{i j}\right)$ and $\lambda_{1}^{\star}, \ldots, \lambda_{n}^{\star}$ in the statement of Lemma A.3. let $K_{+}=\{i \in$ $\left.\{1, \ldots, n\}: \lambda_{i}^{\star}>0\right\}$. Then $K_{+} \neq \emptyset$ and

$$
\sum_{i \in K_{+}} p_{n i}^{2}>0
$$

Proof. Denote the i th column of \boldsymbol{P} by $\boldsymbol{p}_{i}=\left(p_{1 i}, \ldots, p_{n i}\right)^{T}$. Then $\phi^{\square}\left(\boldsymbol{C}\left(\mu^{\star}\right)\right)=\left[\boldsymbol{C}\left(\mu^{\star}\right)\right]_{+}=$ $\sum_{i \in K_{+}} \lambda_{i}^{\star} \boldsymbol{p}_{i} \boldsymbol{p}_{i}^{T}$. From the optimality condition

$$
1=\boldsymbol{e}^{T} \phi^{\square}\left(\boldsymbol{C}\left(\mu^{\star}\right)\right) \boldsymbol{e}=\sum_{i \in K_{+}} \lambda_{i}^{\star} p_{n i}^{2} .
$$

If $K_{+}=\emptyset$ then the rightmost hand side is zero, a contradiction. That $K_{+} \neq \emptyset$ and $\lambda_{i}^{\star}>0$ for all $i \in K_{+}$succumbs to the fact $\sum_{i \in K_{+}} p_{n i}^{2}>0$.

Now we are ready to prove the theorem.

Proof of Theorem 2. Let $v \in \partial f_{B}\left(\mu^{\star}\right)$. Also let J, K, and K_{+}be as defined in the proof of Lemma A. 3 and the statement of Lemma A.4. Define $K_{-}=K \backslash K_{+}$. Then by Lemma A. 3 there exists $\boldsymbol{M}=\left(m_{i j}\right) \in \mathbb{S}^{n}$ such that

$$
m_{i j}= \begin{cases}1, & \text { if } i \in K_{+}, j \in K_{+} \cup J, \text { or } i \in J, j \in K_{+}, \\ 0, & \text { if } i \in J, j \in K_{-}, \text {or } i \in K_{-}, j \in J \cup K_{-}, \\ \tau_{i j}=\frac{\lambda_{i}^{\star}}{\lambda_{i}^{\star}-\lambda_{j}^{\star}} \in(0,1), & \text { if } i \in K_{+}, j \in K_{-}, \text {or } i \in K_{-}, j \in K_{+}, \\ \in[0,1], & \text { if } i, j \in J .\end{cases}
$$

and

$$
v=\boldsymbol{e}^{T} \boldsymbol{P}^{\star}\left[\boldsymbol{M} \circ\left(\boldsymbol{P}^{\star T} \boldsymbol{e} \boldsymbol{e}^{T} \boldsymbol{P}^{\star}\right)\right] \boldsymbol{P}^{\star T} \boldsymbol{e}
$$

Then,

$$
\begin{aligned}
v & =\operatorname{Tr}\left(\boldsymbol{e}^{T} \boldsymbol{P}^{\star}\left[\boldsymbol{M} \circ\left(\boldsymbol{P}^{\star T} \boldsymbol{e} \boldsymbol{e}^{T} \boldsymbol{P}^{\star}\right)\right] \boldsymbol{P}^{\star T} \boldsymbol{e}\right) \\
& =\operatorname{Tr}\left(\boldsymbol{P}^{\star T} \boldsymbol{e} \boldsymbol{e}^{T} P\left[\boldsymbol{M} \circ\left(\boldsymbol{P}^{\star T} \boldsymbol{e} \boldsymbol{e}^{T} \boldsymbol{P}^{\star}\right)\right]\right) \\
& =\operatorname{Tr}(\boldsymbol{Q}[\boldsymbol{M} \circ \boldsymbol{Q}]), \quad \text { where } \boldsymbol{Q}=\boldsymbol{P}^{\star T} \boldsymbol{e} \boldsymbol{e}^{T} \boldsymbol{P}^{\star}=\left(q_{i j}\right) \\
& \geq \sum_{i \in K_{+}}\left(\sum_{j \in K_{+} \cup J} q_{i j}^{2}+\sum_{j \in K_{-}} \tau_{i j} q_{i j}^{2}\right) \quad\left(\text { since } m_{i j} \geq 0\right) \\
& \geq\left(\min _{i \in K_{+}, j \in K_{-}} \tau_{i j}\right) \sum_{i \in K_{+}} \sum_{j=1}^{n} q_{i j}^{2} .
\end{aligned}
$$

Since $\boldsymbol{P}^{\star T} \boldsymbol{e}=\left(p_{n 1}, \ldots, p_{n n}\right)^{T}$ is the last row of \boldsymbol{P}^{\star}, we have $q_{i j}=p_{n i} p_{n j}$ and

$$
\sum_{i \in K_{+}} \sum_{j=1}^{n} q_{i j}^{2}=\sum_{i \in K_{+}} \sum_{j=1}^{n} p_{n i}^{2} p_{n j}^{2}=\left(\sum_{i \in K_{+}} p_{n i}^{2}\right)\left(\sum_{j=1}^{n} p_{n j}^{2}\right)>0
$$

The quantity is the first pair of parentheses is positive due to Lemma A.4. The second quantity equals to $\boldsymbol{e}^{T} \boldsymbol{P}^{\star} \boldsymbol{P}^{\star T} \boldsymbol{e}=\boldsymbol{e}^{T} \boldsymbol{e}=1$. From this and $\tau_{i j}>0$ for all $i \in K_{+}$and $j \in K_{-}$, it follows that $v>0$.
Since $\partial_{B} f\left(\mu^{\star}\right)$ is compact and all the elements of this set is positive, and convex combination of its elements is also positve. It follows that every element of $\partial f\left(\mu^{\star}\right)=\boldsymbol{\operatorname { c o n v }} \partial_{B} f\left(\mu^{\star}\right)$ is positive.
The uniqueness of solution then follows from Clarke's inverse function theorem [Clarke, 1990, Thm. 7.1.1]; existence of solution is shown in Section 2 of the main text.

A. 3 Proof of Theorem 4

The proof of Theorem 4 also requires Lemma A. 1

Proof of Theorem 4. If f is differentiable at μ, then $\partial f(\mu)=\left\{f^{\prime}(\mu)\right\}$ and the result holds by Lemma A. 1 Otherwise, consider a sequence $\left\{\mu_{k}\right\}$ such that $\mu_{k} \downarrow \mu$ and f is differentiable at each μ_{k}. Such a sequence exists since f is Lipschitz hence almost everywhere differentiable [Rockafellar and Wets 2009, sec. 9J]. Obviously $\mu_{k}>\mu$ for all k. Thus $\boldsymbol{C}\left(\mu_{k}\right)=\overline{\boldsymbol{X}}-\mu_{k} \boldsymbol{e} \boldsymbol{e}^{T}=\boldsymbol{C}(\mu)-\left(\mu_{k}-\mu\right) \boldsymbol{e} \boldsymbol{e}^{T}$ is a symmetric rank-1 perturbation of $\boldsymbol{C}(\mu)$. Then, by Chen et al. [2003, Lemma 3.3], Rellich and Berkowitz [1969. Thm. 1], $\boldsymbol{C}\left(\mu_{k}\right)$ has a spectral decomposition $\boldsymbol{P}_{k} \operatorname{diag}\left(\lambda_{k, 1}, \ldots, \lambda_{k, n}\right) \boldsymbol{P}_{k}^{T}$ such that $\boldsymbol{P}_{k} \rightarrow \boldsymbol{P}$ as $k \rightarrow \infty$, by passing to a subsequence if necessary. Since $\lambda_{k, i}=\left(\boldsymbol{P}_{k}^{T} \boldsymbol{C}\left(\mu_{k}\right) \boldsymbol{P}_{k}\right)_{i i}$ and $\boldsymbol{C}(\mu)$ is continuous in μ, it follows that $\lim _{k \rightarrow \infty} \lambda_{k, i}=\lambda_{i}$ as well, for $i=1, \ldots, n$. Moreover, $\lambda_{k, i} \leq \lambda_{i}$ for all i [Bunch et al. 1978]. Thus if $\lambda_{i}=0=\lambda_{j}$, then $\lambda_{k, i}, \lambda_{k, j} \uparrow 0$, which implies that $\lim _{k \rightarrow \infty} \phi^{[1]}\left(\boldsymbol{\lambda}_{k}\right)=\phi^{[1]}(\boldsymbol{\lambda})$. Now since from LemmaA.1.

$$
f^{\prime}\left(\mu_{k}\right)=\boldsymbol{e}^{T} \boldsymbol{P}_{k}\left(\phi^{[1]}\left(\boldsymbol{\lambda}_{k}\right) \circ\left(\boldsymbol{P}_{k}^{T} \boldsymbol{e} \boldsymbol{e}^{T} \boldsymbol{P}_{k}\right)\right) \boldsymbol{P}_{k}^{T} \boldsymbol{e}, \quad \boldsymbol{\lambda}_{k}=\left(\lambda_{k, 1}, \ldots, \lambda_{k, n}\right)^{T},
$$

it follows that $\lim _{k \rightarrow \infty} f^{\prime}\left(\mu_{k}\right)=v$. From Definition 1, we see $v \in \partial f(\mu)$.

B Applications to proximal algorithms

B. 1 Heteroskedastic scaled lasso

In the heteroskedastic scaled lasso we want to minimize

$$
\begin{equation*}
\ell(\boldsymbol{\Omega}, \boldsymbol{\beta})=\phi(\boldsymbol{\Omega}, \boldsymbol{X} \boldsymbol{\beta}-\boldsymbol{y})+\frac{1}{2 \sqrt{N}}\|\boldsymbol{\Omega}\|_{F}+\lambda\|\boldsymbol{\beta}\|_{1} . \tag{B.1}
\end{equation*}
$$

If we define the affine map $\mathcal{K}:(\boldsymbol{\Omega}, \boldsymbol{\beta}) \mapsto(\boldsymbol{\Omega}, \boldsymbol{X} \boldsymbol{\beta}-\boldsymbol{y})$, then problem (B.1) has the form (5), where $f(\boldsymbol{\Omega}, \boldsymbol{\beta}) \equiv 0, g(\boldsymbol{\Omega}, \boldsymbol{\beta})=\frac{1}{2 \sqrt{N}}\|\boldsymbol{\Omega}\|_{F}+\lambda\|\boldsymbol{\beta}\|_{1}$, and $h=\phi$. The adjoint \mathcal{K}^{T} of the linear part of \mathcal{K}
maps $(\boldsymbol{\Theta}, \boldsymbol{\zeta}) \in \mathbb{S}^{p} \times \mathbb{R}^{p}$ to $\left(\boldsymbol{\Theta}, \boldsymbol{X}^{T} \boldsymbol{\zeta}\right)$. Thus the resulting PDHG iteration is

$$
\begin{aligned}
\boldsymbol{\Omega}^{k+1} & =\left(1-\frac{\tau /(2 \sqrt{N})}{\max \left[\|\boldsymbol{Y}\|_{F}, \tau /(2 \sqrt{N})\right]}\right) \boldsymbol{Y}, \quad \boldsymbol{Y}=\boldsymbol{\Omega}^{k}-\tau \boldsymbol{\Theta}^{k}, \\
\boldsymbol{\beta}^{k+1} & =S_{\tau \lambda}\left(\boldsymbol{\beta}^{k}-\tau \boldsymbol{X}^{T} \boldsymbol{\zeta}^{k}\right) \\
\tilde{\boldsymbol{\Omega}}^{k+1} & =2 \boldsymbol{\Omega}^{k+1}-\boldsymbol{\Omega}^{k}, \\
\tilde{\boldsymbol{\beta}}^{k+1} & =2 \boldsymbol{\beta}^{k+1}-\boldsymbol{\beta}^{k}, \\
\left(\boldsymbol{\Theta}^{k+1}, \boldsymbol{\zeta}^{k+1}\right) & =\operatorname{prox}_{\sigma \phi^{*}}\left(\boldsymbol{\Theta}^{k}+\sigma \tilde{\boldsymbol{\Omega}}^{k+1}, \boldsymbol{\zeta}^{k}+\sigma\left(\boldsymbol{X} \tilde{\boldsymbol{\beta}}^{k+1}-\boldsymbol{y}\right)\right)
\end{aligned}
$$

where $S_{\tau \lambda}$ is the usual soft-thresholding operator: $\left[S_{\tau \lambda}(\boldsymbol{x})\right]_{i}=\min \left(\max \left(x_{i}-\tau \lambda, 0\right), x_{i}+\tau \lambda\right)$. In order to determine the step sizes, note $\mathcal{K}^{T} \mathcal{K}:(\boldsymbol{\Omega}, \beta) \mapsto\left(\boldsymbol{\Omega}, \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{\beta}-\boldsymbol{X}^{T} \boldsymbol{y}\right)$. The norm of the linear part of this affine operator equals $\max \left(\left\|\boldsymbol{X}^{T} \boldsymbol{X}\right\|_{2}, 1\right)=\max \left(\|\boldsymbol{X}\|_{2}^{2}, 1\right) \leq \max \left(\|\boldsymbol{X}\|_{F}^{2}, 1\right)$.

Setup for experiments For all combinations of (N, p) in Table 2, data matrix $\boldsymbol{X} \in \mathbb{R}^{N \times p}$ were generated from zero-mean independent Gaussian. Each \boldsymbol{x}_{i} was then scaled to have norm $1 / \sqrt{p}$, so that $\|\boldsymbol{X}\|_{F}=1$. Response vector \boldsymbol{y} was generated by setting $\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$, where the first five components of $\boldsymbol{\beta}$ were independently generated from $\mathcal{N}\left(0,10^{2}\right)$ and the rest set to zero; noise vector ϵ was generated from zero-mean n-variate Gaussian with covariance matrix of compound symmetry

$$
\boldsymbol{\Sigma}=\left[\begin{array}{ccccc}
1 & \rho & \rho & \ldots & \rho \\
\rho & 1 & \rho & \ldots & \rho \\
\vdots & & \ddots & & \vdots \\
\rho & \rho & \rho & \ldots & 1
\end{array}\right]
$$

with $\rho=0.5$. The regularization parameter $\lambda=0.005$. The PDHG iteration was initialized by $\boldsymbol{\Omega}^{0}=\boldsymbol{I}_{N}, \boldsymbol{\beta}^{0}=\mathbf{0}, \boldsymbol{\Theta}^{0}=\mathbf{0}$, and $\boldsymbol{\zeta}^{0}=\mathbf{0}$. The step size parameters are $\tau=0.99$ and $\sigma=0.99$. Convergence was declared when the relative change of the primal variables $\left(\boldsymbol{\Omega}^{k}, \boldsymbol{\beta}^{k}\right)$ was less than 10^{-6} for $p<300$ and 10^{-5} for $p \geq 300$. The maximum number of iterations was set to 50000 .

B. 2 Gaussian joint likelihood estimation

Joint maximum likelihood estimation (MLE) of Gaussian natural parameters $(\boldsymbol{\Omega}, \boldsymbol{\eta})$ under the variance constraints

$$
\begin{array}{ll}
\operatorname{minimize} & \ell(\boldsymbol{\Omega}, \boldsymbol{\eta})=-\log \operatorname{det} \boldsymbol{\Omega}+\operatorname{Tr}(\boldsymbol{\Omega} \boldsymbol{S})-2 \overline{\boldsymbol{\mu}}^{T} \boldsymbol{\eta}+\phi(\boldsymbol{\Omega}, \boldsymbol{\eta})+\frac{\epsilon}{2}\|\boldsymbol{\Omega}\|_{F}^{2} \\
\text { subject to } & \boldsymbol{c}_{i}^{T} \boldsymbol{\Omega}^{-1} \boldsymbol{c}_{i} \leq 1, \quad i=1, \ldots, m \tag{B.2}
\end{array}
$$

(the ridge penalty $\frac{\epsilon}{2}\|\boldsymbol{\Omega}\|_{F}^{2}$ is added to ensure existence of the solution) has the form (5) if we define

$$
\begin{gathered}
f(\boldsymbol{\Omega}, \boldsymbol{\eta})=0 \\
g(\boldsymbol{\Omega}, \boldsymbol{\eta})=-\log \operatorname{det} \boldsymbol{\Omega}+\operatorname{Tr}(\boldsymbol{\Omega} \boldsymbol{S})-2 \overline{\boldsymbol{\mu}}^{T} \boldsymbol{\eta}+\frac{\epsilon}{2}\|\boldsymbol{\Omega}\|_{F}^{2} \\
h\left(\boldsymbol{Z}_{0}, \boldsymbol{Z}_{1}, \cdots, \boldsymbol{Z}_{m}, \boldsymbol{\eta}\right)=\phi\left(\boldsymbol{Z}_{0}, \boldsymbol{\eta}\right)+\sum_{i=1}^{m} \iota_{C_{i}}\left(\boldsymbol{Z}_{i}\right), \quad C_{i}=\left\{\boldsymbol{\Omega} \in \mathbb{S}^{p}: \boldsymbol{c}_{i}^{T} \boldsymbol{\Omega}^{-1} \boldsymbol{c}_{i} \leq 1\right\},
\end{gathered}
$$

and the linear map $\mathcal{K}:(\boldsymbol{\Omega}, \boldsymbol{\eta}) \mapsto(\boldsymbol{\Omega}, \boldsymbol{\Omega}, \ldots, \boldsymbol{\Omega}, \boldsymbol{\eta}) \in \prod_{i=0}^{m} \mathbb{S}^{p} \times \mathbb{R}^{p}$.

Since the adjoint \mathcal{K}^{T} of \mathcal{K} maps $\left(\boldsymbol{\Theta}_{0}, \boldsymbol{\Theta}_{1}, \ldots, \boldsymbol{\Theta}_{m}, \boldsymbol{\zeta}\right) \in \prod_{i=0}^{m} \mathbb{S}^{p} \times \mathbb{R}^{p}$ to $\left(\sum_{i=0}^{m} \boldsymbol{\Theta}_{i}, \boldsymbol{\zeta}\right)$, the PDHG iteration for problem (B.2) entails

$$
\begin{aligned}
\boldsymbol{\Omega}^{k+1} & =\operatorname{prox}_{-\frac{\tau}{1+\epsilon \tau}} \log \operatorname{det}(\cdot) \\
\boldsymbol{\eta}^{k+1} & =\boldsymbol{\eta}^{k}-\tau \boldsymbol{\zeta}^{k}+2 \tau \overline{\boldsymbol{\mu}} \\
\tilde{\boldsymbol{\Omega}}^{k+1} & =2 \boldsymbol{\Omega}^{k+1}-\boldsymbol{\Omega}^{k} \\
\tilde{\boldsymbol{\eta}}^{k+1} & =2 \boldsymbol{\eta}^{k+1}-\boldsymbol{\eta}^{k} \\
\left(\boldsymbol{\Theta}_{0}^{k+1}, \boldsymbol{\zeta}^{k+1}\right) & \left.=\operatorname{prox}_{\sigma \phi^{*}}\left(\boldsymbol{\Theta}_{0}^{k}+\sigma \tilde{\boldsymbol{\Omega}}^{k+1}, \boldsymbol{\Theta}_{i}^{k}-\tau \boldsymbol{S}\right)\right) \\
\boldsymbol{\Theta}_{i}^{k+1} & =\operatorname{prox}_{\sigma \iota_{C_{i}}^{*}}\left(\boldsymbol{\Theta}_{i}^{k}+\sigma \tilde{\boldsymbol{\Omega}}^{k+1}\right), \quad i=1, \ldots, m
\end{aligned}
$$

It is well-known that

$$
\operatorname{prox}_{-\tau \log \operatorname{det}(\cdot)}(\boldsymbol{M})=\boldsymbol{Q} \operatorname{diag}\left(\frac{\mu_{1}+\sqrt{\mu_{1}^{2}+4 \tau}}{2}, \ldots, \frac{\mu_{p}+\sqrt{\mu_{p}^{2}+4 \tau}}{2}\right) \boldsymbol{Q}^{T}
$$

if the eigenvalue decomposition of $\boldsymbol{M} \in \mathbb{S}^{p}$ is $\boldsymbol{Q} \operatorname{diag}\left(\mu_{1}, \ldots, \mu_{p}\right) \boldsymbol{Q}^{T}$.
It remains to compute $\operatorname{prox}_{\sigma_{L_{C_{i}}}^{*}}$. The following result shows it has a closed-form expression.
Proposition B.1. Let $S_{\boldsymbol{c}, \alpha}=\left\{\boldsymbol{\Omega} \in \mathbb{S}^{p}: \phi(\boldsymbol{\Omega}, \boldsymbol{c}) \leq \alpha\right\}$ where $\alpha>0$. Then $S_{\boldsymbol{c}, \alpha}$ is closed and convex. Furthermore, the projection of $\boldsymbol{Z} \in \mathbb{S}^{p}$ onto $S_{c, \alpha}$ is

$$
P_{S_{c, \alpha}}(\boldsymbol{Z})=\left(\boldsymbol{Z}-\frac{1}{2 \alpha} \boldsymbol{c} \boldsymbol{c}^{T}\right)_{+}+\frac{1}{2 \alpha} \boldsymbol{c c ^ { T }}
$$

Therefore, from the Moreau decomposition (7), for $i=1, \ldots, m$,

$$
\begin{aligned}
\operatorname{prox}_{\sigma \iota_{C_{i}}^{*}}(\boldsymbol{Y}) & =\boldsymbol{Y}-\sigma P_{S_{c_{i}, 1 / 2}}\left(\sigma^{-1} \boldsymbol{Y}\right)=\sigma\left(\frac{1}{\sigma} \boldsymbol{Y}-\boldsymbol{c}_{i} \boldsymbol{c}_{i}^{T}\right)-\sigma\left(\frac{1}{\sigma} \boldsymbol{Y}-\boldsymbol{c}_{i} \boldsymbol{c}_{i}^{T}\right)_{+} \\
& =-\sigma\left(\boldsymbol{c}_{i} \boldsymbol{c}_{i}^{T}-\frac{1}{\sigma} \boldsymbol{Y}\right)_{+}
\end{aligned}
$$

Finally, to determine the step sizes, note $\mathcal{K}^{T} \mathcal{K}:(\boldsymbol{\Omega}, \boldsymbol{\eta}) \mapsto((m+1) \boldsymbol{\Omega}, \boldsymbol{\eta})$. Hence $\left\|\mathcal{K}^{T} \mathcal{K}\right\|_{2}=m+1$.
Proof of Proposition B.1. Convexity and closedness of $S_{c, \alpha}$ follows from those of ϕ. The projection operator is

$$
\begin{aligned}
P_{S_{c, \alpha}}(\boldsymbol{Z}) & =\underset{\boldsymbol{\Omega} \in \mathbb{S}^{p}}{\arg \min } \frac{1}{2}\|\boldsymbol{Z}-\boldsymbol{\Omega}\|_{F}^{2} \text { subject to } \phi(\boldsymbol{\Omega}, \boldsymbol{c}) \leq \alpha \\
& =\underset{\boldsymbol{\Omega} \in \mathbb{S}^{p}}{\arg \min } \frac{1}{2}\|\boldsymbol{Z}-\boldsymbol{\Omega}\|_{F}^{2} \text { subject to } \frac{1}{2} \boldsymbol{c}^{T} \boldsymbol{\Omega}^{\dagger} \boldsymbol{c} \leq \alpha, \boldsymbol{c} \in \mathcal{R}(\boldsymbol{\Omega}) \\
& =\underset{\boldsymbol{\Omega} \in \mathbb{S}^{p}}{\arg \min } \frac{1}{2}\|\boldsymbol{Z}-\boldsymbol{\Omega}\|_{F}^{2} \text { subject to } \alpha-\frac{1}{2} \boldsymbol{c}^{T} \boldsymbol{\Omega}^{\dagger} \boldsymbol{c} \geq 0, \boldsymbol{c} \in \mathcal{R}(\boldsymbol{\Omega}) \\
& =\underset{\boldsymbol{\Omega} \in \mathbb{S}^{p}}{\arg \min } \frac{1}{2}\|\boldsymbol{Z}-\boldsymbol{\Omega}\|_{F}^{2} \text { subject to } \boldsymbol{\Omega}-\frac{1}{2 \alpha} \boldsymbol{c} \boldsymbol{c}^{T} \succeq \mathbf{0} \\
& =\underset{\boldsymbol{\Omega} \in \mathbb{S}^{p}}{\arg \min } \frac{1}{2}\left\|\boldsymbol{Z}-\frac{1}{2 \alpha} \boldsymbol{c} \boldsymbol{c}^{T}-\left(\boldsymbol{\Omega}-\frac{1}{2 \alpha} \boldsymbol{c} \boldsymbol{c}^{T}\right)\right\|_{F}^{2} \text { subject to } \boldsymbol{\Omega}-\frac{1}{2 \alpha} \boldsymbol{c} \boldsymbol{c}^{T} \succeq \mathbf{0} \\
& =\left(\boldsymbol{Z}-\frac{1}{2 \alpha} \boldsymbol{c} \boldsymbol{c}^{T}\right)_{+}+\frac{1}{2 \alpha} \boldsymbol{c} \boldsymbol{c}^{T} .
\end{aligned}
$$

The fourth equality is due to the Schur complements of

$$
\left[\begin{array}{cc}
\boldsymbol{\Omega} & -\frac{1}{\sqrt{2}} \boldsymbol{c} \\
-\frac{1}{\sqrt{2}} \boldsymbol{c}^{T} & \alpha
\end{array}\right] \succeq \mathbf{0} .
$$

The last equality is from the fact $\arg \min _{\boldsymbol{X} \succeq \mathbf{0}} \frac{1}{2}\|\boldsymbol{Z}-\boldsymbol{X}\|_{F}^{2}=\boldsymbol{Z}_{+}$.

Setup for experiments For all combinations of (N, p) in Table 2, data $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N} \in \mathbb{R}^{p}$ were generated from zero-mean multivariate Gaussian with covariance matrix of compound symmetry

$$
\boldsymbol{\Sigma}=\left[\begin{array}{ccccc}
1 & \rho & \rho & \ldots & \rho \\
\rho & 1 & \rho & \ldots & \rho \\
\vdots & & \ddots & & \vdots \\
\rho & \rho & \rho & \ldots & 1
\end{array}\right]
$$

with $\rho=0.3$. The PDHG iteration used $\epsilon=10 / p^{2}$ and was initialized by

$$
\begin{aligned}
\boldsymbol{\Omega}^{0} & =\left(\boldsymbol{S}-\boldsymbol{\mu} \boldsymbol{\mu}^{T}+10^{-2} \boldsymbol{I}_{p}\right)^{-1} \\
\boldsymbol{\eta}^{0} & =\boldsymbol{\Omega}^{0} \overline{\boldsymbol{\mu}} \\
\boldsymbol{\Theta}_{i}^{0} & =\boldsymbol{\Omega}^{0}, \quad i=0,1, \ldots, m \\
\boldsymbol{\zeta}^{0} & =\boldsymbol{\eta}^{0} .
\end{aligned}
$$

The step size parameters are $\tau=1$ and $\sigma=1 /(m+1)$. Convergence was declared when the relative change of the primal variables $\left(\boldsymbol{\Omega}^{k}, \boldsymbol{\eta}^{k}\right)$ was less than 10^{-5}. The maximum number of iterations was set to 50000 .

B. 3 Graphical model selection

Recall from equation (3) we want to minimize

$$
\begin{equation*}
-\frac{1}{N} P L(\boldsymbol{\Omega})+\lambda|\boldsymbol{\Omega}|_{1}=-\frac{1}{2} \sum_{i=1}^{p} \log \omega_{i i}+\phi(\mathcal{K} \boldsymbol{\Omega})+\lambda \sum_{i<j}\left|\omega_{i j}\right| . \tag{B.3}
\end{equation*}
$$

This has the form (5) if we define $f(\boldsymbol{\Omega}) \equiv 0, g(\boldsymbol{\Omega})=-\frac{1}{2} \sum_{i=1}^{p} \log \omega_{i i}+\lambda \sum_{i<j}\left|\omega_{i j}\right|, h=\phi$, and the linear map $\mathcal{K}: \boldsymbol{\Omega} \mapsto \frac{1}{N}\left(\boldsymbol{I}_{N} \otimes \boldsymbol{\Omega}_{D}, \operatorname{vec}\left(\boldsymbol{\Omega} \boldsymbol{Y}^{T}\right)\right)$. The adjoint of \mathcal{K} is

$$
\mathcal{K}^{T}:(\boldsymbol{M}, \operatorname{vec}(\boldsymbol{Z})) \mapsto \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{M}_{i i, D}+\frac{1}{2 N}\left(\boldsymbol{Z} \boldsymbol{Y}+\boldsymbol{Y}^{T} \boldsymbol{Z}^{T}\right)
$$

for symmetric block matrix $\boldsymbol{M}=\left(\boldsymbol{M}_{i j}\right) \in \mathbb{S}^{N p}$ with $\boldsymbol{M}_{i j}=\boldsymbol{M}_{j i}^{T} \in \mathbb{R}^{p \times p}$, and $\boldsymbol{Z} \in \mathbb{R}^{p \times N}$. Then the PDHG iteration for problem (B.3) is

$$
\begin{aligned}
\boldsymbol{\Omega}^{k+1} & =\operatorname{prox}_{\tau g}\left(\boldsymbol{\Omega}^{k}-\frac{\tau}{N}\left(\sum_{i=1}^{N} \boldsymbol{\Theta}_{i i, D}^{k}+\frac{1}{2} \boldsymbol{Z}^{k} \boldsymbol{Y}+\frac{1}{2} \boldsymbol{Y}^{T}\left[\boldsymbol{Z}^{k}\right]^{T}\right)\right) \\
\tilde{\boldsymbol{\Omega}}^{k+1} & =2 \boldsymbol{\Omega}^{k+1}-\boldsymbol{\Omega}^{k} \\
\left(\boldsymbol{\Theta}^{k+1}, \operatorname{vec}\left(\boldsymbol{Z}^{k+1}\right)\right) & =\operatorname{prox}_{\sigma \phi^{*}}\left(\boldsymbol{\Theta}^{k}+\frac{\sigma}{N}\left(\boldsymbol{I}_{N} \otimes \tilde{\boldsymbol{\Omega}}_{D}^{k+1}\right), \operatorname{vec}\left(\boldsymbol{Z}^{k}+\frac{\sigma}{N} \tilde{\boldsymbol{\Omega}}^{k+1} \boldsymbol{Y}^{T}\right)\right)
\end{aligned}
$$

where $\boldsymbol{\Omega}^{k}, \tilde{\boldsymbol{\Omega}}^{k} \in \mathbb{S}^{p}, \boldsymbol{Z}^{k} \in \mathbb{R}^{p \times N}$, and $\boldsymbol{\Theta}^{k}=\left(\boldsymbol{\Theta}_{i j}^{k}\right) \in \mathbb{S}^{N p}$, with $\boldsymbol{\Theta}_{i j}=\boldsymbol{\Theta}_{j i}^{T} \in \mathbb{R}^{p \times p}$. Operator $\operatorname{prox}_{\tau g}$ has a closed form expression. For $\boldsymbol{W}=\left(w_{i j}\right)$,

$$
\left[\operatorname{prox}_{\tau g}(\boldsymbol{W})\right]_{i j}= \begin{cases}\frac{1}{2}\left(w_{i i}+\sqrt{w_{i i}^{2}+2 \tau}\right), & i=j \\ S_{\tau \lambda / 2}\left(w_{i j}\right), & i \neq j\end{cases}
$$

It is easy to see that $\mathcal{K}^{T} \mathcal{K}: \boldsymbol{\Omega} \mapsto \frac{1}{N} \boldsymbol{\Omega}_{D}+\frac{1}{2 N^{2}}\left(\boldsymbol{\Omega} \boldsymbol{Y}^{T} \boldsymbol{Y}+\boldsymbol{Y}^{T} \boldsymbol{Y} \boldsymbol{\Omega}\right)$. Then $\operatorname{vec}\left(\frac{1}{N} \boldsymbol{\Omega}_{D}+\right.$ $\left.\frac{1}{2 N^{2}}\left[\boldsymbol{\Omega} \boldsymbol{Y}^{T} \boldsymbol{Y}+\boldsymbol{\Omega} \boldsymbol{Y}^{T} \boldsymbol{Y}\right]\right)=\left(\frac{1}{N} \boldsymbol{A}+\frac{1}{2 N^{2}}\left(\boldsymbol{Y}^{T} \boldsymbol{Y} \otimes \boldsymbol{I}_{p}+\boldsymbol{I}_{p} \otimes \boldsymbol{Y}^{T} \boldsymbol{Y}\right)\right) \operatorname{vec}(\boldsymbol{\Omega})$ where \boldsymbol{A} satis-
fies $\operatorname{vec}\left(\boldsymbol{\Omega}_{D}\right)=\boldsymbol{A} \operatorname{vec}(\boldsymbol{\Omega})$. It follows that $\boldsymbol{A}^{T} \boldsymbol{A}=\boldsymbol{I}_{p^{2}}$ and $\|\boldsymbol{A}\|_{2}=1$. Therefore,

$$
\begin{aligned}
\left\|\mathcal{K}^{T} \mathcal{K}\right\|_{2} & =\left\|\frac{1}{N} \boldsymbol{A}+\frac{1}{2 N^{2}}\left(\boldsymbol{Y}^{T} \boldsymbol{Y} \otimes \boldsymbol{I}_{p}+\boldsymbol{I}_{p} \otimes \boldsymbol{Y} \boldsymbol{Y}^{T}\right)\right\|_{2} \\
& \leq \frac{1}{N}\|\boldsymbol{A}\|_{2}+\frac{1}{2 N^{2}}\left\|\boldsymbol{Y}^{T} \boldsymbol{Y} \otimes \boldsymbol{I}_{p}\right\|_{2}+\frac{1}{2 N^{2}}\left\|\boldsymbol{I}_{p} \otimes \boldsymbol{Y}^{T} \boldsymbol{Y}\right\|_{2} \\
& =\frac{1}{N}(1)+\frac{1}{2 N^{2}} \lambda_{\max }\left(\boldsymbol{Y}^{T} \boldsymbol{Y}\right)+\frac{1}{2 n^{2}} \lambda_{\max }\left(\boldsymbol{Y}^{T} \boldsymbol{Y}\right) \\
& =\frac{1}{N}+\frac{1}{N^{2}}\|\boldsymbol{Y}\|_{2}^{2} \\
& \leq \frac{1}{N}+\frac{1}{N^{2}}\|\boldsymbol{Y}\|_{F}^{2}
\end{aligned}
$$

which determines the step size.
Setup for experiments For all combinations of (N, p) in Table 2, data $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{N} \in \mathbb{R}^{p}$ were generated from zero-mean multivariate Gaussian with precision matrix

$$
\boldsymbol{\Omega}=10 \boldsymbol{I}_{p}+\boldsymbol{\Xi}+\boldsymbol{\Xi}^{T}
$$

where $\boldsymbol{\Xi}$ is a $p \times p$ sparse random Gaussian matrix with 1 percent sparsity level. The regularization parameter $\lambda=0.1$. The PDHG iteration was initialized by

$$
\begin{aligned}
& \boldsymbol{\Omega}^{0}=\left(\boldsymbol{S}+10^{-2} \boldsymbol{I}_{p}\right)^{-1} \\
& \boldsymbol{\Theta}_{i}^{0}=\boldsymbol{I}_{N} \otimes \boldsymbol{\Omega}_{D}^{0} \\
& \boldsymbol{Z}^{0}=\boldsymbol{\Omega}^{0} \boldsymbol{Y}^{T}
\end{aligned}
$$

The step size parameters are $\tau=2$ and $\sigma=1 /\left(2 L_{K}\right)$ where $L_{K}=1 / N+\|\boldsymbol{Y}\|_{F}^{2} / N^{2}$. Convergence was declared when the relative change of the primal variable $\boldsymbol{\Omega}^{k}$ was less than 10^{-5}. The maximum number of iterations was set to 50000 . For the symmetric lasso used for comparison the implementation in the gconcord R package (https://cran.r-project.org/web/packages/gconcord/ index.html) was used with the same input.

References

James R Bunch, Christopher P Nielsen, and Danny C Sorensen. Rank-one modification of the symmetric eigenproblem. Numer. Math., 31(1):31-48, 1978.

Xin Chen, Houduo Qi, and Paul Tseng. Analysis of nonsmooth symmetric-matrix-valued functions with applications to semidefinite complementarity problems. SIAM J. Optim., 13(4):960-985, 2003.

Frank H Clarke. Optimization and Nonsmooth Analysis. Society for Industrial and Applied Mathematics, Philadelphia, USA, 1990.

Franz Rellich and Jerome Berkowitz. Perturbation Theory of Eigenvalue Problems. Gordon and Breach, New York, 1969.

R Tyrrell Rockafellar and Roger J-B Wets. Variational Analysis, volume 317 of Grundlehren der mathematischen Wissenschaften. Springer Science \& Business Media, New York, 2009.

Defeng Sun and Jie Sun. Semismooth matrix-valued functions. Math. Oper. Res., 27(1):150-169, 2002.

