Supplement: Proximity Operator of the Matrix Perspective Function and its Applications

Joong-Ho Won Department of Statistics Seoul National University wonj@stats.snu.ac.kr

A Proofs

A.1 A key lemma

Proofs of both Theorems 2 and 4 are based on the following key lemma, Lemma A.1. Recall that $\phi(x) = x_+$ for $x \in \mathbb{R}$ and $\phi^{\Box}(X) = P \operatorname{diag}(\phi(\lambda_1), \dots, \phi(\lambda_n))P^T = X_+$ for $X = P \operatorname{diag}(\lambda_1, \dots, \lambda_n)P^T \in \mathbb{S}^n$ where P satisfies $P^T P = PP^T = I$. For any $\lambda = (\lambda_1, \dots, \lambda_n)$, $\phi^{[1]}(\lambda)$ is the $n \times n$ symmetric matrix with (i, j) entry

$$\phi_{ij}^{[1]}(\boldsymbol{\lambda}) = \begin{cases} \frac{\phi(\lambda_i) + \phi(\lambda_j)}{|\lambda_i| + |\lambda_j|}, & \lambda_i \neq 0 \text{ or } \lambda_j \neq 0, \\ 0, & \lambda_i = \lambda_j = 0. \end{cases}$$
(18)

Also recall that $C(\mu) = \bar{X} - \mu e e^T$ so that $f(\mu) = g'(\mu) = 1 - e^T \phi^{\Box}(C(\mu))e$. Lemma A.1 provides a closed-form expression of the derivative of $f(\mu)$ when it exists, in terms of the matrix function (18).

Lemma A.1. Function f is differentiable at μ if and only if $e \in \mathcal{N}(C(\mu))^{\perp}$. In this case, the derivative is

$$f'(\mu) = \boldsymbol{e}^T \boldsymbol{P}(\phi^{[1]}(\boldsymbol{\lambda}) \circ (\boldsymbol{P}^T \boldsymbol{e} \boldsymbol{e}^T \boldsymbol{P})) \boldsymbol{P}^T \boldsymbol{e}, \tag{A.1}$$

for any $\boldsymbol{\lambda} = (\lambda_1, \dots, \lambda_n)^T$ and \boldsymbol{P} satisfying $\boldsymbol{C}(\mu) = \boldsymbol{P} \operatorname{diag}(\lambda_1, \dots, \lambda_n) \boldsymbol{P}^T$, $\boldsymbol{P}^T \boldsymbol{P} = \boldsymbol{P} \boldsymbol{P}^T = \boldsymbol{I}$.

To prove this lemma, we begin by recalling the definition of directional derivatives.

Definition A.1 (Directional derivative). For a function $F : \mathbb{R}^m \to \mathbb{R}^l$ and $x, h \in \mathbb{R}^m$, the directional derivative of F at X along h is defined and denoted by

$$F'(\boldsymbol{x};\boldsymbol{h}) = \lim_{t \downarrow 0} \frac{F(\boldsymbol{x}+t\boldsymbol{h}) - F(\boldsymbol{x})}{t}$$

if the limit exists. The F *is called directionally differentiable at* x *if* F'(x; h) *exists for all* $h \in \mathbb{R}^m$.

If F is differentiable at x with Jacobian $\nabla F(x) \in \mathbb{R}^{l \times m}$, then $F'(x; h) = \nabla F(x)h$.

For index sets $J, K \subset \{1, ..., n\}$ and matrix $M \in \mathbb{S}^n$, let M_{JK} be the submatrix of M constructed from the rows in J and the columns in K. The following lemma can be deduced from Sun and Sun [2002, Theorem 4.7]:

Lemma A.2. Function ϕ^{\square} is directionally differentiable at any $X \in \mathbb{S}^n$. Its directional derivative along $H \in \mathbb{S}^n$ is

$$(\phi^{\Box})'(\boldsymbol{X};\boldsymbol{H}) = \boldsymbol{P} \begin{bmatrix} \phi_{KK}^{[1]}(\boldsymbol{\lambda}) \circ \tilde{\boldsymbol{H}}_{KK} & \phi_{KJ}^{[1]}(\boldsymbol{\lambda}) \circ \tilde{\boldsymbol{H}}_{KJ} \\ \phi_{JK}^{[1]}(\boldsymbol{\lambda}) \circ \tilde{\boldsymbol{H}}_{JK} & [\tilde{\boldsymbol{H}}_{JJ}]_{+} \end{bmatrix} \boldsymbol{P}^{T}$$

where $\mathbf{X} = \mathbf{P} \operatorname{diag}(\lambda_1, \dots, \lambda_n) \mathbf{P}^T \in \mathbb{S}^n$ with \mathbf{P} satisfying $\mathbf{P}^T \mathbf{P} = \mathbf{P} \mathbf{P}^T = \mathbf{I}$, $K = \{i \in \{1, \dots, n\} : \lambda_i \neq 0\}$, $J = \{i \in \{1, \dots, n\} : \lambda_i = 0\}$, and $\tilde{\mathbf{H}} = \mathbf{P}^T \mathbf{H} \mathbf{P}$. Furthermore, ϕ^{\Box} is differentiable at \mathbf{X} if and only if \mathbf{X} is nonsingular, i.e., $J = \emptyset$.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Now we can prove the lemma:

Proof of Lemma A.1. Suppose f is differentiable at μ . Then if $C(\mu)$ is nonsingular, $\mathcal{N}(C(\mu)) = \{\mathbf{0}\}$ and $e \in \mathcal{N}(C(\mu))^{\perp}$. If $C(\mu)$ is singular, then the two one-sided limits

$$\lim_{t\downarrow 0} \frac{f(\mu+t) - f(\mu)}{t} \quad \text{and} \quad \lim_{t\downarrow 0} \frac{f(\mu-t) - f(\mu)}{-t}$$

must coincide. The first limit is equal to

$$-e^{T}\left(\lim_{t\downarrow 0}\frac{\phi^{\Box}(\boldsymbol{C}(\mu+t))-\phi^{\Box}(\boldsymbol{C}(\mu))}{t}\right)e = -e^{T}\left(\lim_{t\downarrow 0}\frac{\phi^{\Box}(\boldsymbol{C}(\mu)-t\boldsymbol{e}\boldsymbol{e}^{T})-\phi^{\Box}(\boldsymbol{C}(\mu))}{t}\right)e$$
$$= -e^{T}(\phi^{\Box})'(\boldsymbol{C}(\mu);-\boldsymbol{e}\boldsymbol{e}^{T})e$$
$$= e^{T}\boldsymbol{P}\begin{bmatrix}\phi^{[1]}_{KK}(\boldsymbol{\lambda})\circ(\boldsymbol{P}^{T}\boldsymbol{e}\boldsymbol{e}^{T}\boldsymbol{P})_{KK} & \phi^{[1]}_{KJ}(\boldsymbol{\lambda})\circ(\boldsymbol{P}^{T}\boldsymbol{e}\boldsymbol{e}^{T}\boldsymbol{P})_{KJ}\\\phi^{[1]}_{JK}(\boldsymbol{\lambda})\circ(\boldsymbol{P}^{T}\boldsymbol{e}\boldsymbol{e}^{T}\boldsymbol{P})_{JK} & -[(\boldsymbol{P}^{T}\boldsymbol{e}\boldsymbol{e}^{T}\boldsymbol{P})_{JJ}]_{+}\end{bmatrix}\boldsymbol{P}^{T}\boldsymbol{e}$$

by Lemma A.2, for a spectral decomposition of $C(\mu) = P \operatorname{diag}(\lambda_1, \dots, \lambda_n) P^T$ satisfying the conditions of the lemma. Likewise, the second limit equals

$$\boldsymbol{e}^{T}(\boldsymbol{\phi}^{\Box})'(\boldsymbol{C}(\boldsymbol{\mu});\boldsymbol{e}\boldsymbol{e}^{T})\boldsymbol{e} = \boldsymbol{e}^{T}\boldsymbol{P}\begin{bmatrix} \phi_{KK}^{[1]}(\boldsymbol{\lambda}) \circ (\boldsymbol{P}^{T}\boldsymbol{e}\boldsymbol{e}^{T}\boldsymbol{P})_{KK} & \phi_{KJ}^{[1]}(\boldsymbol{\lambda}) \circ (\boldsymbol{P}^{T}\boldsymbol{e}\boldsymbol{e}^{T}\boldsymbol{P})_{KJ} \\ \phi_{JK}^{[1]}(\boldsymbol{\lambda}) \circ (\boldsymbol{P}^{T}\boldsymbol{e}\boldsymbol{e}^{T}\boldsymbol{P})_{JK} & [(\boldsymbol{P}^{T}\boldsymbol{e}\boldsymbol{e}^{T}\boldsymbol{P})_{JJ}]_{+} \end{bmatrix} \boldsymbol{P}^{T}\boldsymbol{e}.$$

Let $\mathbf{P}^T \mathbf{e} = [\mathbf{q}_K, \mathbf{q}_J]^T = \mathbf{q}$ where $\mathbf{q}_K \in \mathbb{R}^{|K|}$ and $\mathbf{q}_J \in \mathbb{R}^{|J|}$. Note $J \neq \emptyset$ since $\mathbf{C}(\mu)$ is singular. Then the two limits are equal if and only if $\mathbf{q}_J^T[(\mathbf{q}\mathbf{q}^T)_{JJ}]_+\mathbf{q}_J = 0$. It is immediate to see that $(\mathbf{q}\mathbf{q}^T)_{JJ} = \mathbf{q}_J\mathbf{q}_J^T \succeq \mathbf{0}$, hence $\mathbf{q}_J^T[(\mathbf{q}\mathbf{q}^T)_{JJ}]_+\mathbf{q}_J = \|\mathbf{q}_J\|^4$. This implies $\mathbf{q}_J = \mathbf{0}$. Finally, observe that $\mathbf{q}_J = \mathbf{P}_J^T \mathbf{e}$ where the columns of \mathbf{P}_J span $\mathcal{N}(\mathbf{C}(\mu))$. Thus the condition $\mathbf{q}_J = \mathbf{P}_J^T \mathbf{e} = \mathbf{0}$ is equivalent to $\mathbf{e} \in \mathcal{N}(\mathbf{C}(\mu))^{\perp}$.

Now suppose $e \in \mathcal{N}(C(\mu))^{\perp}$. If $C(\mu)$ is nonsingular, then Lemma A.2 implies that f is differentiable at μ . If $C(\mu)$ is singular, then $P_J^T e = 0$ and the two one-sided limits in the above paragraph coincide, i.e., f is differentiable at μ .

Equation (A.1) is a consequence of the coincidence of the one-sided limits, that the common limit does not depend on the order of $\lambda_1, \ldots, \lambda_n$, and the definition of $\phi^{[1]}$ in equation (18).

A.2 Proof of Theorem 2

For a solution μ^* to the equation $f(\mu) = 0$, define a collection of matrices related to the eigenvalues $\lambda^* = (\lambda_1^*, \dots, \lambda_n^*)^T$ of $C(\mu^*)$:

$$\mathcal{M} = \{ \boldsymbol{M} = (m_{ij}) \in \mathbb{S}^n : m_{ij} = \phi^{[1]}(\boldsymbol{\lambda}^*) \text{ if } \lambda_i^* \neq 0 \text{ or } \lambda_j^* \neq 0; \ m_{ij} \in [0,1] \text{ if } \lambda_i^* = 0 = \lambda_j^* \}.$$

Also define the set (Bouligand subdifferential)

$$\partial_B f(\mu^*) = \{\lim_{k \to \infty} f'(\mu_k) : \mu_k \to \mu^*, \ \mu_k \in D_f\}$$

where D_f denotes the set of points in which f is differentiable, so that $\partial f(\mu^*) = \operatorname{conv} \partial_B f(\mu^*)$. The following lemma shows a representation of an element of this set in terms of \mathcal{M} :

Lemma A.3. Suppose a spectral decomposition of $C(\mu^*)$ is $P^* \operatorname{diag}(\lambda_1^*, \ldots, \lambda_n^*) P^{*T}$ with $P^{*T}P^* = P^*P^{*T} = I$. Then, for any $v \in \partial_B f(\mu^*)$, there exists $M \in \mathcal{M}$ such that

$$v = e^T P^{\star} (M \circ (P^{\star T} e e^T P^{\star})) P^{\star T} e$$

Proof. By the definition of $\partial_B f(\mu^*)$, there exists a sequence $\{\mu_k\}$ such that f is differentiable at each μ_k , $\mu_k \to \mu^*$, and $f'(\mu_k) \to v$ as $k \to \infty$. Obviously $\mu_k \neq \mu$ for all k. Thus $C(\mu_k) = \overline{X} - \mu_k e e^T = C(\mu) - (\mu_k - \mu) e e^T$ is a symmetric rank-1 perturbation of $C(\mu)$. Then, by Chen et al. [2003, Lemma 3.3], Rellich and Berkowitz [1969, Thm. 1], $C(\mu_k)$ has a spectral decomposition $P_k \operatorname{diag}(\lambda_{k,1}, \ldots, \lambda_{k,n}) P_k^T$ such that $P_k \to P^*$ as $k \to \infty$, by passing to a subsequence of

 $\{\mu_k\}$ if necessary. Since $\lambda_{k,i} = (\boldsymbol{P}_k^T \boldsymbol{C}(\mu_k) \boldsymbol{P}_k)_{ii}$ and $\boldsymbol{C}(\mu)$ is continuous in μ , it follows that $\lim_{k\to\infty} \lambda_{k,i} = \lambda_i$ as well, for $i = 1, \ldots, n$.

By Lemma A.1,

$$f'(\mu_k) = \boldsymbol{e}^T \boldsymbol{P}_k(\phi^{[1]}(\boldsymbol{\lambda}_k) \circ (\boldsymbol{P}_k^T \boldsymbol{e} \boldsymbol{e}^T \boldsymbol{P}_k)) \boldsymbol{P}_k^T \boldsymbol{e}.$$

Let

$$K = \{i \in \{1, \dots, n\} : \lambda_i^* \neq 0\}, \quad J = \{i \in \{1, \dots, n\} : \lambda_i^* = 0\}$$

and $\delta = \frac{1}{2} \min_{i \in K} |\lambda_i^*| > 0$. Then for all sufficiently large k, we have $\max_{i=1,...,n} |\lambda_{k,i} - \lambda_i^*| \le \delta$. If $i \in K$ or $j \in K$, then $\lambda_{k,i} \neq 0$ or $\lambda_{k,j} \neq 0$, and

$$\phi_{ij}^{[1]}(\boldsymbol{\lambda}_k) = \frac{(\lambda_{k,i})_+ + (\lambda_{k,j})_+}{|\lambda_{k,i}| + |\lambda_{k,j}|} \to \frac{(\lambda_i^{\star})_+ + (\lambda_j^{\star})_+}{|\lambda_i^{\star}| + |\lambda_j^{\star}|} = \phi_{ij}^{[1]}(\boldsymbol{\lambda}^{\star}).$$

If $i, j \in J$, then both $\lambda_{k,i}$ and $\lambda_{k,j}$ converge to 0. Since $\phi_{i,j}(\lambda_k) \in [0,1]$ in this case, passing to a subsequence of $\{\mu_k\}$ if necessary, $\phi_{i,j}(\lambda_k)$ converges to a point $m_{ij} \in [0,1]$. This shows that $\phi^{[1]}(\lambda_k) \to \mathbf{M} \in \mathcal{M}$.

Finally, by the continuity of matrix multiplications, we have

$$v = \lim_{k \to \infty} f'(\mu_k) = e^T P^*(M \circ (P^{*T} e e^T P^*)) P^{*T} e.$$

The next lemma provides a technical result useful for proving Theorem 2.

Lemma A.4. For $P^* = (p_{ij})$ and $\lambda_1^*, \ldots, \lambda_n^*$ in the statement of Lemma A.3, let $K_+ = \{i \in \{1, \ldots, n\} : \lambda_i^* > 0\}$. Then $K_+ \neq \emptyset$ and

$$\sum_{i\in K_+}p_{ni}^2>0.$$

Proof. Denote the *i*th column of \boldsymbol{P} by $\boldsymbol{p}_i = (p_{1i}, \ldots, p_{ni})^T$. Then $\phi^{\Box}(\boldsymbol{C}(\mu^*)) = [\boldsymbol{C}(\mu^*)]_+ = \sum_{i \in K_+} \lambda_i^* \boldsymbol{p}_i \boldsymbol{p}_i^T$. From the optimality condition

$$1 = \boldsymbol{e}^T \phi^{\Box}(\boldsymbol{C}(\mu^*)) \boldsymbol{e} = \sum_{i \in K_+} \lambda_i^* p_{ni}^2.$$

If $K_+ = \emptyset$ then the rightmost hand side is zero, a contradiction. That $K_+ \neq \emptyset$ and $\lambda_i^* > 0$ for all $i \in K_+$ succumbs to the fact $\sum_{i \in K_+} p_{ni}^2 > 0$.

Now we are ready to prove the theorem.

Proof of Theorem 2. Let $v \in \partial f_B(\mu^*)$. Also let J, K, and K_+ be as defined in the proof of Lemma A.3 and the statement of Lemma A.4. Define $K_- = K \setminus K_+$. Then by Lemma A.3 there exists $M = (m_{ij}) \in \mathbb{S}^n$ such that

$$m_{ij} = \begin{cases} 1, & \text{if } i \in K_+, \ j \in K_+ \cup J, \ \text{or } i \in J, \ j \in K_+, \\ 0, & \text{if } i \in J, \ j \in K_-, \ \text{or } i \in K_-, \ j \in J \cup K_-, \\ \tau_{ij} = \frac{\lambda_i^*}{\lambda_i^* - \lambda_j^*} \in (0, 1), & \text{if } i \in K_+, \ j \in K_-, \ \text{or } i \in K_-, \ j \in K_+, \\ \in [0, 1], & \text{if } i, j \in J. \end{cases}$$

and

$$v = e^T P^{\star} [M \circ (P^{\star T} e e^T P^{\star})] P^{\star T} e$$

Then,

$$v = \operatorname{Tr}(\boldsymbol{e}^{T}\boldsymbol{P}^{\star}[\boldsymbol{M} \circ (\boldsymbol{P}^{\star T}\boldsymbol{e}\boldsymbol{e}^{T}\boldsymbol{P}^{\star})]\boldsymbol{P}^{\star T}\boldsymbol{e})$$

$$= \operatorname{Tr}(\boldsymbol{P}^{\star T}\boldsymbol{e}\boldsymbol{e}^{T}\boldsymbol{P}[\boldsymbol{M} \circ (\boldsymbol{P}^{\star T}\boldsymbol{e}\boldsymbol{e}^{T}\boldsymbol{P}^{\star})])$$

$$= \operatorname{Tr}(\boldsymbol{Q}[\boldsymbol{M} \circ \boldsymbol{Q}]), \quad \text{where } \boldsymbol{Q} = \boldsymbol{P}^{\star T}\boldsymbol{e}\boldsymbol{e}^{T}\boldsymbol{P}^{\star} = (q_{ij})$$

$$\geq \sum_{i \in K_{+}} \left(\sum_{j \in K_{+} \cup J} q_{ij}^{2} + \sum_{j \in K_{-}} \tau_{ij}q_{ij}^{2}\right) \quad (\text{since } m_{ij} \geq 0)$$

$$\geq \left(\min_{i \in K_{+}, j \in K_{-}} \tau_{ij}\right) \sum_{i \in K_{+}} \sum_{j=1}^{n} q_{ij}^{2}.$$

Since $P^{\star T} e = (p_{n1}, \dots, p_{nn})^T$ is the last row of P^{\star} , we have $q_{ij} = p_{ni}p_{nj}$ and

$$\sum_{i \in K_+} \sum_{j=1}^n q_{ij}^2 = \sum_{i \in K_+} \sum_{j=1}^n p_{ni}^2 p_{nj}^2 = \left(\sum_{i \in K_+} p_{ni}^2\right) \left(\sum_{j=1}^n p_{nj}^2\right) > 0.$$

The quantity is the first pair of parentheses is positive due to Lemma A.4. The second quantity equals to $e^T P^* P^{*T} e = e^T e = 1$. From this and $\tau_{ij} > 0$ for all $i \in K_+$ and $j \in K_-$, it follows that v > 0.

Since $\partial_B f(\mu^*)$ is compact and all the elements of this set is positive, and convex combination of its elements is also positive. It follows that every element of $\partial f(\mu^*) = \operatorname{conv} \partial_B f(\mu^*)$ is positive.

The uniqueness of solution then follows from Clarke's inverse function theorem [Clarke, 1990, Thm. 7.1.1]; existence of solution is shown in Section 2 of the main text. \Box

A.3 Proof of Theorem 4

The proof of Theorem 4 also requires Lemma A.1.

Proof of Theorem 4. If f is differentiable at μ , then $\partial f(\mu) = \{f'(\mu)\}$ and the result holds by Lemma A.1. Otherwise, consider a sequence $\{\mu_k\}$ such that $\mu_k \downarrow \mu$ and f is differentiable at each μ_k . Such a sequence exists since f is Lipschitz hence almost everywhere differentiable [Rockafellar and Wets, 2009, sec. 9J]. Obviously $\mu_k > \mu$ for all k. Thus $C(\mu_k) = \bar{X} - \mu_k e e^T = C(\mu) - (\mu_k - \mu) e e^T$ is a symmetric rank-1 perturbation of $C(\mu)$. Then, by Chen et al. [2003, Lemma 3.3], Rellich and Berkowitz [1969, Thm. 1], $C(\mu_k)$ has a spectral decomposition $P_k \operatorname{diag}(\lambda_{k,1}, \ldots, \lambda_{k,n}) P_k^T$ such that $P_k \to P$ as $k \to \infty$, by passing to a subsequence if necessary. Since $\lambda_{k,i} = (P_k^T C(\mu_k) P_k)_{ii}$ and $C(\mu)$ is continuous in μ , it follows that $\lim_{k\to\infty} \lambda_{k,i} = \lambda_i$ as well, for $i = 1, \ldots, n$. Moreover, $\lambda_{k,i} \leq \lambda_i$ for all *i* [Bunch et al., 1978]. Thus if $\lambda_i = 0 = \lambda_j$, then $\lambda_{k,i}, \lambda_{k,j} \uparrow 0$, which implies that $\lim_{k\to\infty} \phi^{[1]}(\lambda_k) = \phi^{[1]}(\lambda)$. Now since from Lemma A.1,

$$f'(\mu_k) = \boldsymbol{e}^T \boldsymbol{P}_k(\phi^{[1]}(\boldsymbol{\lambda}_k) \circ (\boldsymbol{P}_k^T \boldsymbol{e} \boldsymbol{e}^T \boldsymbol{P}_k)) \boldsymbol{P}_k^T \boldsymbol{e}, \quad \boldsymbol{\lambda}_k = (\lambda_{k,1}, \dots, \lambda_{k,n})^T,$$

it follows that $\lim_{k\to\infty} f'(\mu_k) = v$. From Definition 1, we see $v \in \partial f(\mu)$.

B Applications to proximal algorithms

B.1 Heteroskedastic scaled lasso

In the heteroskedastic scaled lasso we want to minimize

$$\ell(\boldsymbol{\Omega},\boldsymbol{\beta}) = \phi(\boldsymbol{\Omega},\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}) + \frac{1}{2\sqrt{N}} \|\boldsymbol{\Omega}\|_F + \lambda \|\boldsymbol{\beta}\|_1.$$
(B.1)

If we define the affine map $\mathcal{K} : (\Omega, \beta) \mapsto (\Omega, X\beta - y)$, then problem (B.1) has the form (5), where $f(\Omega, \beta) \equiv 0, g(\Omega, \beta) = \frac{1}{2\sqrt{N}} \|\Omega\|_F + \lambda \|\beta\|_1$, and $h = \phi$. The adjoint \mathcal{K}^T of the linear part of \mathcal{K}

maps $(\Theta, \zeta) \in \mathbb{S}^p \times \mathbb{R}^p$ to $(\Theta, X^T \zeta)$. Thus the resulting PDHG iteration is

$$\begin{split} \boldsymbol{\Omega}^{k+1} &= \left(1 - \frac{\tau/(2\sqrt{N})}{\max[\|\boldsymbol{Y}\|_F, \tau/(2\sqrt{N})]}\right) \boldsymbol{Y}, \quad \boldsymbol{Y} = \boldsymbol{\Omega}^k - \tau \boldsymbol{\Theta}^k, \\ \boldsymbol{\beta}^{k+1} &= S_{\tau\lambda} \left(\boldsymbol{\beta}^k - \tau \boldsymbol{X}^T \boldsymbol{\zeta}^k\right), \\ \boldsymbol{\tilde{\Omega}}^{k+1} &= 2\boldsymbol{\Omega}^{k+1} - \boldsymbol{\Omega}^k, \\ \boldsymbol{\tilde{\beta}}^{k+1} &= 2\boldsymbol{\beta}^{k+1} - \boldsymbol{\beta}^k, \\ (\boldsymbol{\Theta}^{k+1}, \boldsymbol{\zeta}^{k+1}) &= \mathbf{prox}_{\sigma\phi^*} \left(\boldsymbol{\Theta}^k + \sigma \boldsymbol{\tilde{\Omega}}^{k+1}, \, \boldsymbol{\zeta}^k + \sigma (\boldsymbol{X} \boldsymbol{\tilde{\beta}}^{k+1} - \boldsymbol{y})\right). \end{split}$$

where $S_{\tau\lambda}$ is the usual soft-thresholding operator: $[S_{\tau\lambda}(\boldsymbol{x})]_i = \min(\max(x_i - \tau\lambda, 0), x_i + \tau\lambda).$

In order to determine the step sizes, note $\mathcal{K}^T \mathcal{K} : (\Omega, \beta) \mapsto (\Omega, \mathbf{X}^T \mathbf{X} \boldsymbol{\beta} - \mathbf{X}^T \boldsymbol{y})$. The norm of the linear part of this affine operator equals $\max(\|\mathbf{X}^T \mathbf{X}\|_2, 1) = \max(\|\mathbf{X}\|_2^2, 1) \leq \max(\|\mathbf{X}\|_F^2, 1)$.

Setup for experiments For all combinations of (N, p) in Table 2, data matrix $X \in \mathbb{R}^{N \times p}$ were generated from zero-mean independent Gaussian. Each x_i was then scaled to have norm $1/\sqrt{p}$, so that $||X||_F = 1$. Response vector y was generated by setting $y = X\beta + \epsilon$, where the first five components of β were independently generated from $\mathcal{N}(0, 10^2)$ and the rest set to zero; noise vector ϵ was generated from zero-mean n-variate Gaussian with covariance matrix of compound symmetry

$$\boldsymbol{\Sigma} = \begin{bmatrix} 1 & \rho & \rho & \dots & \rho \\ \rho & 1 & \rho & \dots & \rho \\ \vdots & \ddots & & \vdots \\ \rho & \rho & \rho & \dots & 1 \end{bmatrix}$$

with $\rho = 0.5$. The regularization parameter $\lambda = 0.005$. The PDHG iteration was initialized by $\Omega^0 = I_N$, $\beta^0 = 0$, $\Theta^0 = 0$, and $\zeta^0 = 0$. The step size parameters are $\tau = 0.99$ and $\sigma = 0.99$. Convergence was declared when the relative change of the primal variables (Ω^k, β^k) was less than 10^{-6} for p < 300 and 10^{-5} for $p \ge 300$. The maximum number of iterations was set to 50000.

B.2 Gaussian joint likelihood estimation

Joint maximum likelihood estimation (MLE) of Gaussian natural parameters (Ω, η) under the variance constraints

minimize
$$\ell(\Omega, \eta) = -\log \det \Omega + \operatorname{Tr}(\Omega S) - 2\bar{\mu}^T \eta + \phi(\Omega, \eta) + \frac{\epsilon}{2} \|\Omega\|_F^2$$

subject to $c_i^T \Omega^{-1} c_i \leq 1, \quad i = 1, \dots, m$ (B.2)

(the ridge penalty $\frac{\epsilon}{2} \| \mathbf{\Omega} \|_F^2$ is added to ensure existence of the solution) has the form (5) if we define

$$f(\boldsymbol{\Omega}, \boldsymbol{\eta}) = 0$$

$$g(\boldsymbol{\Omega}, \boldsymbol{\eta}) = -\log \det \boldsymbol{\Omega} + \operatorname{Tr}(\boldsymbol{\Omega} \boldsymbol{S}) - 2\bar{\boldsymbol{\mu}}^T \boldsymbol{\eta} + \frac{\epsilon}{2} \|\boldsymbol{\Omega}\|_F^2$$

$$h(\boldsymbol{Z}_0, \boldsymbol{Z}_1, \cdots, \boldsymbol{Z}_m, \boldsymbol{\eta}) = \phi(\boldsymbol{Z}_0, \boldsymbol{\eta}) + \sum_{i=1}^m \iota_{C_i}(\boldsymbol{Z}_i), \quad C_i = \{\boldsymbol{\Omega} \in \mathbb{S}^p : \boldsymbol{c}_i^T \boldsymbol{\Omega}^{-1} \boldsymbol{c}_i \leq 1\}$$

and the linear map $\mathcal{K} : (\mathbf{\Omega}, \boldsymbol{\eta}) \mapsto (\mathbf{\Omega}, \mathbf{\Omega}, \dots, \mathbf{\Omega}, \boldsymbol{\eta}) \in \prod_{i=0}^{m} \mathbb{S}^p \times \mathbb{R}^p$.

Since the adjoint \mathcal{K}^T of \mathcal{K} maps $(\Theta_0, \Theta_1, \dots, \Theta_m, \zeta) \in \prod_{i=0}^m \mathbb{S}^p \times \mathbb{R}^p$ to $(\sum_{i=0}^m \Theta_i, \zeta)$, the PDHG iteration for problem (B.2) entails

$$\begin{split} \boldsymbol{\Omega}^{k+1} &= \mathbf{prox}_{-\frac{\tau}{1+\epsilon\tau}\log\det(\cdot)} \left(\frac{1}{1+\epsilon\tau} (\boldsymbol{\Omega}^k - \tau \sum_{i=0}^m \boldsymbol{\Theta}_i^k - \tau \boldsymbol{S}) \right), \\ \boldsymbol{\eta}^{k+1} &= \boldsymbol{\eta}^k - \tau \boldsymbol{\zeta}^k + 2\tau \bar{\boldsymbol{\mu}}, \\ \tilde{\boldsymbol{\Omega}}^{k+1} &= 2\boldsymbol{\Omega}^{k+1} - \boldsymbol{\Omega}^k, \\ \tilde{\boldsymbol{\eta}}^{k+1} &= 2\boldsymbol{\eta}^{k+1} - \boldsymbol{\eta}^k, \\ (\boldsymbol{\Theta}_0^{k+1}, \boldsymbol{\zeta}^{k+1}) &= \mathbf{prox}_{\sigma\phi^*} \left(\boldsymbol{\Theta}_0^k + \sigma \tilde{\boldsymbol{\Omega}}^{k+1}, \boldsymbol{\zeta}^k + \sigma \tilde{\boldsymbol{\eta}}^{k+1} \right), \\ \boldsymbol{\Theta}_i^{k+1} &= \mathbf{prox}_{\sigma\iota_{C_i}^*} \left(\boldsymbol{\Theta}_i^k + \sigma \tilde{\boldsymbol{\Omega}}^{k+1} \right), \quad i = 1, \dots, m. \end{split}$$

It is well-known that

$$\mathbf{prox}_{-\tau \log \det(\cdot)}(\mathbf{M}) = \mathbf{Q} \operatorname{diag} \left(\frac{\mu_1 + \sqrt{\mu_1^2 + 4\tau}}{2}, \dots, \frac{\mu_p + \sqrt{\mu_p^2 + 4\tau}}{2}
ight) \mathbf{Q}^T$$

if the eigenvalue decomposition of $M \in \mathbb{S}^p$ is $Q \operatorname{diag}(\mu_1, \ldots, \mu_p) Q^T$.

It remains to compute $\mathbf{prox}_{\sigma\iota_{C}^{*}}$. The following result shows it has a closed-form expression.

Proposition B.1. Let $S_{c,\alpha} = \{ \Omega \in \mathbb{S}^p : \phi(\Omega, c) \leq \alpha \}$ where $\alpha > 0$. Then $S_{c,\alpha}$ is closed and convex. Furthermore, the projection of $Z \in \mathbb{S}^p$ onto $S_{c,\alpha}$ is

$$P_{S_{\boldsymbol{c},\alpha}}(\boldsymbol{Z}) = \left(\boldsymbol{Z} - \frac{1}{2\alpha}\boldsymbol{c}\boldsymbol{c}^{T}\right)_{+} + \frac{1}{2\alpha}\boldsymbol{c}\boldsymbol{c}^{T}.$$

Therefore, from the Moreau decomposition (7), for i = 1, ..., m,

$$\mathbf{prox}_{\sigma\iota_{C_i}^*}(\mathbf{Y}) = \mathbf{Y} - \sigma P_{S_{c_i,1/2}}(\sigma^{-1}\mathbf{Y}) = \sigma \left(\frac{1}{\sigma}\mathbf{Y} - \mathbf{c}_i\mathbf{c}_i^T\right) - \sigma \left(\frac{1}{\sigma}\mathbf{Y} - \mathbf{c}_i\mathbf{c}_i^T\right)_+ = -\sigma \left(\mathbf{c}_i\mathbf{c}_i^T - \frac{1}{\sigma}\mathbf{Y}\right)_+.$$

Finally, to determine the step sizes, note $\mathcal{K}^T \mathcal{K} : (\mathbf{\Omega}, \boldsymbol{\eta}) \mapsto ((m+1)\mathbf{\Omega}, \boldsymbol{\eta})$. Hence $\|\mathcal{K}^T \mathcal{K}\|_2 = m+1$.

Proof of Proposition B.1. Convexity and closedness of $S_{c,\alpha}$ follows from those of ϕ . The projection operator is

$$\begin{split} P_{S_{\boldsymbol{c},\alpha}}(\boldsymbol{Z}) &= \mathop{\mathrm{arg\,min}}_{\boldsymbol{\Omega}\in\mathbb{S}^p} \frac{1}{2} \|\boldsymbol{Z} - \boldsymbol{\Omega}\|_F^2 \text{ subject to } \phi(\boldsymbol{\Omega}, \boldsymbol{c}) \leq \alpha \\ &= \mathop{\mathrm{arg\,min}}_{\boldsymbol{\Omega}\in\mathbb{S}^p} \frac{1}{2} \|\boldsymbol{Z} - \boldsymbol{\Omega}\|_F^2 \text{ subject to } \frac{1}{2} \boldsymbol{c}^T \boldsymbol{\Omega}^{\dagger} \boldsymbol{c} \leq \alpha, \ \boldsymbol{c} \in \mathcal{R}(\boldsymbol{\Omega}) \\ &= \mathop{\mathrm{arg\,min}}_{\boldsymbol{\Omega}\in\mathbb{S}^p} \frac{1}{2} \|\boldsymbol{Z} - \boldsymbol{\Omega}\|_F^2 \text{ subject to } \alpha - \frac{1}{2} \boldsymbol{c}^T \boldsymbol{\Omega}^{\dagger} \boldsymbol{c} \geq 0, \ \boldsymbol{c} \in \mathcal{R}(\boldsymbol{\Omega}) \\ &= \mathop{\mathrm{arg\,min}}_{\boldsymbol{\Omega}\in\mathbb{S}^p} \frac{1}{2} \|\boldsymbol{Z} - \boldsymbol{\Omega}\|_F^2 \text{ subject to } \boldsymbol{\Omega} - \frac{1}{2\alpha} \boldsymbol{c} \boldsymbol{c}^T \succeq \boldsymbol{0} \\ &= \mathop{\mathrm{arg\,min}}_{\boldsymbol{\Omega}\in\mathbb{S}^p} \frac{1}{2} \|\boldsymbol{Z} - \frac{1}{2\alpha} \boldsymbol{c} \boldsymbol{c}^T - \left(\boldsymbol{\Omega} - \frac{1}{2\alpha} \boldsymbol{c} \boldsymbol{c}^T\right) \Big\|_F^2 \text{ subject to } \boldsymbol{\Omega} - \frac{1}{2\alpha} \boldsymbol{c} \boldsymbol{c}^T \succeq \boldsymbol{0} \\ &= \mathop{\mathrm{arg\,min}}_{\boldsymbol{\Omega}\in\mathbb{S}^p} \frac{1}{2} \|\boldsymbol{Z} - \frac{1}{2\alpha} \boldsymbol{c} \boldsymbol{c}^T - \left(\boldsymbol{\Omega} - \frac{1}{2\alpha} \boldsymbol{c} \boldsymbol{c}^T\right) \Big\|_F^2 \text{ subject to } \boldsymbol{\Omega} - \frac{1}{2\alpha} \boldsymbol{c} \boldsymbol{c}^T \succeq \boldsymbol{0} \\ &= \left(\boldsymbol{Z} - \frac{1}{2\alpha} \boldsymbol{c} \boldsymbol{c}^T\right)_+ + \frac{1}{2\alpha} \boldsymbol{c} \boldsymbol{c}^T. \end{split}$$

The fourth equality is due to the Schur complements of

$$egin{bmatrix} \mathbf{\Omega} & -rac{1}{\sqrt{2}}oldsymbol{c}\ -rac{1}{\sqrt{2}}oldsymbol{c}^T & lpha \end{bmatrix} \succeq oldsymbol{0}.$$

The last equality is from the fact $\arg \min_{X \succeq 0} \frac{1}{2} \|Z - X\|_F^2 = Z_+$.

Setup for experiments For all combinations of (N, p) in Table 2, data $x_1, \ldots, x_N \in \mathbb{R}^p$ were generated from zero-mean multivariate Gaussian with covariance matrix of compound symmetry

$$\boldsymbol{\Sigma} = \begin{bmatrix} 1 & \rho & \rho & \dots & \rho \\ \rho & 1 & \rho & \dots & \rho \\ \vdots & \ddots & & \vdots \\ \rho & \rho & \rho & \dots & 1 \end{bmatrix}$$

with $\rho = 0.3$. The PDHG iteration used $\epsilon = 10/p^2$ and was initialized by

$$\boldsymbol{\Omega}^{0} = (\boldsymbol{S} - \boldsymbol{\mu}\boldsymbol{\mu}^{T} + 10^{-2}\boldsymbol{I}_{p})^{-1}$$
$$\boldsymbol{\eta}^{0} = \boldsymbol{\Omega}^{0}\boldsymbol{\bar{\mu}}$$
$$\boldsymbol{\Theta}_{i}^{0} = \boldsymbol{\Omega}^{0}, \quad i = 0, 1, \dots, m$$
$$\boldsymbol{\zeta}^{0} = \boldsymbol{\eta}^{0}.$$

The step size parameters are $\tau = 1$ and $\sigma = 1/(m+1)$. Convergence was declared when the relative change of the primal variables $(\mathbf{\Omega}^k, \boldsymbol{\eta}^k)$ was less than 10^{-5} . The maximum number of iterations was set to 50000.

B.3 Graphical model selection

Recall from equation (3) we want to minimize

$$-\frac{1}{N}PL(\mathbf{\Omega}) + \lambda |\mathbf{\Omega}|_1 = -\frac{1}{2}\sum_{i=1}^p \log \omega_{ii} + \phi(\mathcal{K}\mathbf{\Omega}) + \lambda \sum_{i< j} |\omega_{ij}|.$$
(B.3)

This has the form (5) if we define $f(\Omega) \equiv 0$, $g(\Omega) = -\frac{1}{2} \sum_{i=1}^{p} \log \omega_{ii} + \lambda \sum_{i < j} |\omega_{ij}|$, $h = \phi$, and the linear map $\mathcal{K} : \Omega \mapsto \frac{1}{N} (\boldsymbol{I}_N \otimes \Omega_D, \operatorname{vec}(\Omega \boldsymbol{Y}^T))$. The adjoint of \mathcal{K} is

$$\mathcal{K}^T : (\boldsymbol{M}, \mathbf{vec}(\boldsymbol{Z})) \mapsto \frac{1}{N} \sum_{i=1}^N \boldsymbol{M}_{ii,D} + \frac{1}{2N} (\boldsymbol{Z} \boldsymbol{Y} + \boldsymbol{Y}^T \boldsymbol{Z}^T),$$

for symmetric block matrix $M = (M_{ij}) \in \mathbb{S}^{Np}$ with $M_{ij} = M_{ji}^T \in \mathbb{R}^{p \times p}$, and $Z \in \mathbb{R}^{p \times N}$. Then the PDHG iteration for problem (B.3) is

$$\begin{split} \boldsymbol{\Omega}^{k+1} &= \mathbf{prox}_{\tau g} \left(\boldsymbol{\Omega}^{k} - \frac{\tau}{N} \left(\sum_{i=1}^{N} \boldsymbol{\Theta}_{ii,D}^{k} + \frac{1}{2} \boldsymbol{Z}^{k} \boldsymbol{Y} + \frac{1}{2} \boldsymbol{Y}^{T} [\boldsymbol{Z}^{k}]^{T} \right) \right) \\ \tilde{\boldsymbol{\Omega}}^{k+1} &= 2 \boldsymbol{\Omega}^{k+1} - \boldsymbol{\Omega}^{k} \\ (\boldsymbol{\Theta}^{k+1}, \mathbf{vec}(\boldsymbol{Z}^{k+1})) &= \mathbf{prox}_{\sigma \phi^{*}} \left(\boldsymbol{\Theta}^{k} + \frac{\sigma}{N} (\boldsymbol{I}_{N} \otimes \tilde{\boldsymbol{\Omega}}_{D}^{k+1}), \mathbf{vec}(\boldsymbol{Z}^{k} + \frac{\sigma}{N} \tilde{\boldsymbol{\Omega}}^{k+1} \boldsymbol{Y}^{T}) \right) \end{split}$$

where $\mathbf{\Omega}^k, \tilde{\mathbf{\Omega}}^k \in \mathbb{S}^p, \mathbf{Z}^k \in \mathbb{R}^{p \times N}$, and $\mathbf{\Theta}^k = (\mathbf{\Theta}_{ij}^k) \in \mathbb{S}^{Np}$, with $\mathbf{\Theta}_{ij} = \mathbf{\Theta}_{ji}^T \in \mathbb{R}^{p \times p}$. Operator $\mathbf{prox}_{\tau g}$ has a closed form expression. For $\mathbf{W} = (w_{ij})$,

$$[\mathbf{prox}_{\tau g}(\boldsymbol{W})]_{ij} = \begin{cases} \frac{1}{2}(w_{ii} + \sqrt{w_{ii}^2 + 2\tau}), & i = j, \\ S_{\tau\lambda/2}(w_{ij}), & i \neq j. \end{cases}$$

It is easy to see that $\mathcal{K}^T \mathcal{K}$: $\Omega \mapsto \frac{1}{N} \Omega_D + \frac{1}{2N^2} (\Omega \boldsymbol{Y}^T \boldsymbol{Y} + \boldsymbol{Y}^T \boldsymbol{Y} \Omega)$. Then $\operatorname{vec}(\frac{1}{N} \Omega_D + \frac{1}{2N^2} [\Omega \boldsymbol{Y}^T \boldsymbol{Y} + \Omega \boldsymbol{Y}^T \boldsymbol{Y}]) = \left(\frac{1}{N} \boldsymbol{A} + \frac{1}{2N^2} (\boldsymbol{Y}^T \boldsymbol{Y} \otimes \boldsymbol{I}_p + \boldsymbol{I}_p \otimes \boldsymbol{Y}^T \boldsymbol{Y})\right) \operatorname{vec}(\Omega)$ where \boldsymbol{A} satis-

fies $\mathbf{vec}(\mathbf{\Omega}_D) = \mathbf{A} \mathbf{vec}(\mathbf{\Omega})$. It follows that $\mathbf{A}^T \mathbf{A} = \mathbf{I}_{p^2}$ and $\|\mathbf{A}\|_2 = 1$. Therefore,

$$\begin{split} \|\mathcal{K}^{T}\mathcal{K}\|_{2} &= \left\|\frac{1}{N}\boldsymbol{A} + \frac{1}{2N^{2}}(\boldsymbol{Y}^{T}\boldsymbol{Y}\otimes\boldsymbol{I}_{p} + \boldsymbol{I}_{p}\otimes\boldsymbol{Y}\boldsymbol{Y}^{T})\right\|_{2} \\ &\leq \frac{1}{N}\|\boldsymbol{A}\|_{2} + \frac{1}{2N^{2}}\|\boldsymbol{Y}^{T}\boldsymbol{Y}\otimes\boldsymbol{I}_{p}\|_{2} + \frac{1}{2N^{2}}\|\boldsymbol{I}_{p}\otimes\boldsymbol{Y}^{T}\boldsymbol{Y}\|_{2} \\ &= \frac{1}{N}(1) + \frac{1}{2N^{2}}\lambda_{\max}(\boldsymbol{Y}^{T}\boldsymbol{Y}) + \frac{1}{2n^{2}}\lambda_{\max}(\boldsymbol{Y}^{T}\boldsymbol{Y}) \\ &= \frac{1}{N} + \frac{1}{N^{2}}\|\boldsymbol{Y}\|_{2}^{2} \\ &\leq \frac{1}{N} + \frac{1}{N^{2}}\|\boldsymbol{Y}\|_{F}^{2}, \end{split}$$

which determines the step size.

Setup for experiments For all combinations of (N, p) in Table 2, data $y_1, \ldots, y_N \in \mathbb{R}^p$ were generated from zero-mean multivariate Gaussian with precision matrix

$$\boldsymbol{\Omega} = 10\boldsymbol{I}_p + \boldsymbol{\Xi} + \boldsymbol{\Xi}^T,$$

where Ξ is a $p \times p$ sparse random Gaussian matrix with 1 percent sparsity level. The regularization parameter $\lambda = 0.1$. The PDHG iteration was initialized by

$$\begin{split} \boldsymbol{\Omega}^0 &= (\boldsymbol{S} + 10^{-2} \boldsymbol{I}_p)^{-1} \\ \boldsymbol{\Theta}_i^0 &= \boldsymbol{I}_N \otimes \boldsymbol{\Omega}_D^0 \\ \boldsymbol{Z}^0 &= \boldsymbol{\Omega}^0 \boldsymbol{Y}^T. \end{split}$$

The step size parameters are $\tau = 2$ and $\sigma = 1/(2L_K)$ where $L_K = 1/N + \|\mathbf{Y}\|_F^2/N^2$. Convergence was declared when the relative change of the primal variable $\mathbf{\Omega}^k$ was less than 10^{-5} . The maximum number of iterations was set to 50000. For the symmetric lasso used for comparison the implementation in the gconcord R package (https://cran.r-project.org/web/packages/gconcord/index.html) was used with the same input.

References

- James R Bunch, Christopher P Nielsen, and Danny C Sorensen. Rank-one modification of the symmetric eigenproblem. *Numer. Math.*, 31(1):31–48, 1978.
- Xin Chen, Houduo Qi, and Paul Tseng. Analysis of nonsmooth symmetric-matrix-valued functions with applications to semidefinite complementarity problems. *SIAM J. Optim.*, 13(4):960–985, 2003.
- Frank H Clarke. *Optimization and Nonsmooth Analysis*. Society for Industrial and Applied Mathematics, Philadelphia, USA, 1990.
- Franz Rellich and Jerome Berkowitz. *Perturbation Theory of Eigenvalue Problems*. Gordon and Breach, New York, 1969.
- R Tyrrell Rockafellar and Roger J-B Wets. Variational Analysis, volume 317 of Grundlehren der mathematischen Wissenschaften. Springer Science & Business Media, New York, 2009.

Defeng Sun and Jie Sun. Semismooth matrix-valued functions. Math. Oper. Res., 27(1):150-169, 2002.