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1 Proofs of theorems and additional theoretical results

In this section we give the proofs for the theorems in the main text and an additional theoretical result
regarding the minimality of the set C.

1.1 Proof of Theorem 3.1

Proof. Consider a generic Xs ∈ P(X). vI
s and vN

s denote the values for the sets IIs and INs
respectively. c = (cIs ∪ cNs ) represents the values for the set CN , cNs is the value of CN

s and cIs
gives the value for CI

s . Notice that we can write the intervention on Xs, that is do (Xs = x), as
do
(
IIs = vI

s

)
∪ do

(
Xs\IIs = x\vI

s

)
. Any function ts(x) ∈ T can be written as:

ts(x) = E[Y |do (Xs = x)]

=

∫
· · ·
∫

E
[
Y |do

(
IIs = vI

s

)
, do

(
Xs\IIs = x\vI

s

)
, INs = vN

s ,C
N
s = cNs

]
×

p(vN
s , c

N
s |do (Xs = x))dvN

s dcNs

=

∫
· · ·
∫

E
[
Y |do

(
IIs = vI

s

)
, do

(
Xs\IIs = x\vI

s

)
, do

(
INs = vN

s

)
,CN

s = cNs
]
×

p(vN
s , c

N
s |do (Xs = x))dvN

s dcNs by Y |= INs |Xs,C
N
s in GXsINs

(1)

=

∫
· · ·
∫

E
[
Y |do

(
IIs = vI

s

)
, do

(
INs = vN

s

)
,CN = cNs

]
×

p(vN
s , c

N
s |do (Xs = x))dvN

s dcNs by Y |= (Xs\IIs)|I,CN
s in G

I(Xs\IIs)(CN
s )

(2)
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=

∫
· · ·
∫

E
[
Y |do (I = v) ,CN

s = cNs
]
p(vN

s , c
N
s |do (Xs = x))dvN

s dcNs

=

∫
· · ·
∫

E
[
Y |do (I = v) ,CN

s = cNs ,C
I
s = cIs

]
×

p(cIs|do (I = v) ,CN
s = cNs )p(vN

s , c
N
s |do (Xs = x))dvN

s dcNs dcIs

=

∫
· · ·
∫

E
[
Y |do (I = v) ,CN = c

]
p(cIs|CN

s = cNs )p(vN
s , c

N
s |do (Xs = x))dvN

s dcNs dcIs
(3)

by CI
s |= I|CN

s in GI

=

∫
· · ·
∫

E
[
Y |do (I = v) ,CN = c

]
p(cIs|cNs )p(vN

s , c
N
s |do (Xs = x))dvN

s dc

=

∫
· · ·
∫
f(v, c)p(cIs|cNs )p(vN

s , c
N
s |do (Xs = x))dvN

s dc (4)

where Eq. (1) follows from Rule 2 of do-calculus while Eq. (2) and Eq. (3) follow from Rule 3 of
do-calculus [3]. Eq. (4) gives the causal operator.

1.2 Proof of Corollary 3.1

Proof. Suppose there exists another set A, different from Pa(Y ) and defined as A = Pa(Y )\Pa(Y )i,
where Pa(Y )i represents a single variable in Pa(Y ), such that Eq. (2) holds for every set Xs. This
means that A blocks the front-door paths from all Xs ∈ P(X) to Y . That is, A also blocks the
directed path from Pa(Y ) ∈ P(X) to Y thus including descendants of Pa(Y ) which are ancestors of
Y . This contradicts the definition of a parent as a variable connected to Y through a direct arrow.
The same reasoning hold for every set non containing all parents of Y thus Pa(Y ) is the smallest set
such that Eq. (2) holds.

1.3 Proof of Theorem 3.2

Proof. Suppose that C includes a node, say Ci, that has both an incoming and an outcoming
unconfounded edge. The unconfounded incoming edge implies the existence of a set Xs for which
Ci is a collider on the confounded path from Xs to Y . At the same time, the unconfounded
outcoming edge implies the existence of a set Xs′ such that Ci is an ancestor that we need to
condition on in order to clock the back-door paths from Xs′ to Y . Consequently, the conditions
Y |= INs |Xs,C

N
s in GXsINs

and Y |= (Xs\IIs)|I,CN
s in G

I(Xs\IIs)(CN
s )

in Theorem 3.1 cannot
hold, at the same time, for both Xs and Xs′ . Indeed, these independence conditions would be verified
for Xs when excluding Ci from CN while they would be verified for Xs′ when Ci is included in CN .
The same reasoning hold for every node in C having both incoming and outcoming unconfounded
edges. Therefore, if G has one of such node, it is not possible to find a set C such that Eq. (2) holds
from all Xs ∈ P(X).

1.4 Additional corollary

Corollary 1.1. The set C represents the smallest set for which Eq. (2) holds.

Proof. Suppose there exists another set A, different from C and defined as A = C\Ci where
Ci ∈ P(X) denotes a single variable in C that is not a collider. The set A need to be such
that Y |= (Xs\IIs)|I,AN

s in G
I(Xs\IIs)(AN

s )
∀Xs in P(X). Consider Xs = Ci and notice

that the back door path from Ci to Y is not blocked by conditioning on I or AN
s . Therefore

Y 6⊥⊥ (Xs\IIs)|I,AN
s in G

I(Xs\IIs)(AN
s )

and A is not a valid set. The same reasoning holds for
every set not containing all confounders of Y thus C is the minimal set for C.
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2 Partial transfer

The conditions in Theorem 3.1 allow for full transfer across all intervention functions in T. As
shown (see Theorem 3.2), this might not be possible when a subset C′ ⊂ C includes nodes directly
confounded with Y and with both unconfounded incoming and outcoming edges. However, we
might still be interested in transferring information across a subset T′ ⊂ T which includes functions
defined on P(X)′ ⊂ P(X). P(X)′ is defined by excluding from P(X) those intervention sets
including variables that have outcoming edges pointing into C′ making the conditions in Theorem
3.1 satisfied for all sets in P(X)′. For instance, consider Fig. 1 (b) with the red edge where A
is a confounded node that has both unconfounded incoming and outcoming edges. To block the
path E ← A L9999K Y we need to condition on A. However, conditioning on A opens the path
F → A L9999K Y making it impossible to define a base function. We can thus focus on a subset T′

in which all functions including C′ = {A} as an intervention variable have been excluded. This is
equivalent to doing full transfer in Fig. 1 (b) with no incoming red edge in A.

3 Advantages of using the Causal operator

The causal operator allows us to write any ts(x) as an integral transformation of f . The integrating
measure, which differ across Xs, captures the dependency structure between the base set and the
intervention set and can be reduced to do-free operations via do-calculus. Notice how, given our
identifiability assumptions, all functions in T can also be computed by simply applying the rules of
do-calculus when observational data are available. However, writing the functions via Ls(f)(x) has
several advantages:

• it allows to identify the correlation structure across functions and thus to specify a multi-task
probabilistic model and share experimental information;

• it allows to learn those intervention functions for which we cannot run experiments via transfer;
• it allows to efficiently learn the set T when P(X) is large.

This is crucial when have limited observational data or we cannot run experiments on some in-
tervention sets or the cardinality of P(X) is large. In the last case, specifying a model for each
individual intervention function would not only be computationally expensive but might also lead to
inconsistent prior specification across functions. Through the causal operator we can model a system
by only making one single assumption on f which is then propagated in the causal graph. When an
intervention is performed, the information is propagated in the graph through the base function which
links the different interventional functions. Using f we avoid the specification of the correlation
structure across every pair of intervention functions which would result in a combinatorial problem.

4 Single-task models for intervention functions

With single-task model we refer to the idea of placing an individual probabilistic model on the
intervention function corresponding to each set in P(X). For each Xs ∈ P(X) we have:

ts(x) ∼ GP(m(x),K(x,x′))

Depending on the availability of DO, one can decide to set the prior parameters to standard value,
e.g. m(x) = 0 and K(x,x′) = KRBF(x,x

′) or adopt the causal prior construction introduced by [1].
In both cases, the experimental information is not shared across functions and learning T requires
intervening on all sets in P(X).

5 Active learning algorithm

Denote by D a set of inputs for the functions in T, that is D =
⋃

sDs with Ds ⊂ D(Xs) and
consider a subset A ⊂ D of size k. We would like to select A, that is select the both the functions
to be observed and the locations, such that we maximize the reduction of entropy in the remaining
unobserved locations:

A? = argmax
A:|A|=k

H(T(D\A))−H(T(D\A)|T(A)).
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Figure 1: Snapshot of the AL algorithm for tZ(z) of the DAG in Fig. 1 (a) when N I = 8 and
N = 100. DAG-GP+ is our algorithm with the causal GP prior. GP+ is a single-task model with
the same prior (see Fig. 3 for details on the compared models). Coloured crosses denote collected
interventions while the red dot gives the common initial design.

where T(D\A) denotes the set of functions T evaluated in D\A, T(D\A)|T(A) gives the distri-
bution for T at (D\A) given that we have observed T(A) while H(·) represents the entropy. This
problem is NP-complete, Krause et al. [2] proposed an efficient greedy algorithm providing an approx-
imation for A. This algorithm starts with an empty set A = ∅ and solves the problem sequentially
by selecting, at every step j, a point xsj = argmaxxsj∈D\AH(ts(x)|A)−H(ts(x)|D\(A ∪ xsj)).
Both H(ts(x)|A) = 1

2 log(2πσ
2
xsj |A) and H(ts(x)|D\(A ∪ xsj) = 1

2 log(2πσ
2
xsj |D\(A∪xsj)

) do
not depend on the observed T values thus the set A can be selected before any function evaluation is
collected.

In order to select the next intervention level and intervention set, while property accounting for
uncertainty reduction, one can use the DAG-GP+ model for T. In this case, for every Xs, both σ2

xsj |A
and σ2

xsj |D\(A∪xsj)
, which correspond to the variance terms of the kernel on T, are determined by

both the observational and the interventional data across all experiments. Fig. 1 shows a snapshot
of the state of the AL algorithm for the toy example of Fig. 4 (a) when 8 interventional data points
have been collected for tZ(z) and DAG-GP+ is used. Both GP+ and DAG-GP+ avoid collecting
data points in areas where the causal GP prior is already providing information thus making the
model posterior mean equal to the true function (see region between [0, 5]). GP+ is spreading the
function evaluations on the remaining part of the input space collecting data points in the region
[5, 14]. On the contrary, DAG-GP+ drives the data points to be collected where neither observational
nor interventional information can be transferred for the remaining tasks thus focusing on the border
of the input space (see region [14, 20]). Combining an AL framework with DAG-GP+ is thus crucial
when designing optimal experiments as it allows to account for the uncertainty reduction obtained by
transferring interventional data.

6 Bayesian Optimization

The goal of BO is to optimize a function which is costly to evaluate and for which an explicit functional
form is not available by making a series of function evaluations. In a recent work, [1] introduce the
CBO algorithm which solves the problem of finding an optimal intervention in a DAG. CBO optimizes
a target node by accounting for the causal relationship between the inputs and placing a single-task
GP model on the intervention functions. By modelling these functions independently, CBO does not
account for their correlation when exploring the intervention space. For each Xs ∈ P(X) we have:

ts(x) = E[Y |do (Xs = x)] (5)

ts(x) ∼ GP(m+(x),K+(x,x′)) (6)

where m+(x) and K+
( x,x′) are the casual prior parameters. It is possible to improve CBO by

considering DAG-GP+ as surrogate model. For each Xs ∈ P(X), instead of considering a single-task
GP model as in Eq. 6, one can use ts(x) ∼ GP(ms(x),Ks(x,x

′)) with ms(x) and Ks(x,x
′) being

the parameters computed as in Eqs. (4)-(5) in the main paper. This allows CBO to correctly place the
next function evaluations thus significantly speeding up the convergence to the global optimum both
with and without the causal prior.

4



7 Experiments

Implementation details: For all experiments, we assume Gaussian distributions for both the
integrating measures and the conditional distributions in the DAGs. We optimise the parameters via
maximum likelihood. We generate the observational data by sampling from the SCMs given below.
In order to generate interventional data, we sample from a modified version of the SCM where the
functional relationship corresponding to the intervened variable is substituted with a constant value.
This is equivalent to sampling from the mutilated graph. We compute the integrals in Eqs. (4)–(5)
via Monte-Carlo integration with 1000 samples. Finally, we fix the variance in the likelihood of Eq.
(3) and fix the kernel hyper-parameters for both the RBF and causal kernel to standard values (l = 1,
σ2
f = 1). More works need to be done to optimise these settings potentially leading to improved

performances.

7.1 DAG1

Do-calculus derivations For DAG1 (Fig. 1 (a)) we have I = {Z} and C = ∅. The base function
is thus given by f = E[Y |do (Z = z)]. In this section we give the expressions for the functions in T
and show each of them can be written as a transformation of f with the corresponding integrating
measure. Notice that in this case f ∈ T.

E[Y |do (X = x)] =

∫
E[Y |do (X = x) , z]p(z|do (X = x))dz

=

∫
E[Y |do (X = x) , do (Z = z)]p(z|do (X = x))dz by Y |= Z|X in GBXZ

=

∫
E[Y |do (Z = z)]p(z|do (X = x))dz by Y |= X|Z in GXZ

=

∫
f(z)p(z|do (X = x))dz

with p(z|do (X = x)) = p(z|X = x).

E[Y |do (Z = z)] = f(z).

E[Y |do (X = x) , do (Z = z)] = E[Y |do (Z = z)] = f(z)

by Y |= X|Z in GXZ

SCM:
X = εX
Z = exp(−X) + εZ
Y = cos(Z)− exp(−Z/20) + εY

with εX ∼ N (0, 1), εZ ∼ N (0, 1) and εY ∼ N (0, 1). We consider the following interventional
domains:

• D(X) = [−5, 5]
• D(Z) = [−5, 20]

7.2 DAG2

Do-calculus derivations For DAG2 (Fig. 1 (b)) we consider {A,C} to be non-manipulative.
We have I = {D,E} and C = {A,B}. The base function is thus given by f =
E[Y |do (D = d) , do (E = e) , a, b]. In this section we give the expressions for all the functions
in T and show each of them can be written as a transformation of f with the corresponding integrat-
ing measure.
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Intervention sets of size 1

E[Y |do (B = b)] =

∫
E[Y |do (B = b) , d, e, a]p(d, e, a|do (B = b))dddeda

=

∫
E[Y |do (B = b) , do (D = d) , do (E = e) , a]p(d, e, a|do (B = b))dddeda

by Y |= D,E|B,A in GBDE

=

∫
E[Y |do (D = d) , do (E = e) , a]p(d, e, a|do (B = b))dddeda by Y |= B|D,E,A in GBDE

=

∫
E[Y |do (D = d) , do (E = e) , a, b′]p(b′)p(d, e, a|do (B = b))dddedadb′

=

∫
f(d, e, a, b′)p(b′)p(d, e, a|do (B = b))dddedadb′

with p(b′)p(d, e, a|do (B = b)) = p(b′)p(a)p(d|e, a,B = b)p(e|a,B = b).

E[Y |do (D = d)] =

∫
E[Y |do (D = d) , e, a, b]p(a, b, e|do (D = d))dadbde

=

∫
E[Y |do (D = d) , do (E = e) , a, b]p(a, b, e|do (D = d))dadbde by Y |= E|D,A,B in GDE

=

∫
f(d, e, a, b)p(a, b, e|do (D = d))dadbde

with p(a, b, e|do (D = d)) = p(a)p(b)p(e|a, b).

E[Y |do (E = e)] =

∫
E[Y |do (E = e) , d, a, b]p(d, a, b|do (E = e))dadbds

=

∫
E[Y |do (E = e) , do (D = d) , a, b]p(d, a, b|do (E = e))dadbdd by Y |= D|E,A,B in GED

=

∫
f(d, e, a, b)p(d, a, b|do (E = e))dadbdd

with p(d, a, b|do (E = e)) = p(a)p(b)p(d|b).

Intervention sets of size 2

E[Y |do (B = b) , do (D = d)] =

∫
E[Y |do (B = b) , do (D = d) , a, e]p(a, e|do (B = b) , do (D = d))dade

=

∫
E[Y |do (B = b) , do (D = d) , a, do (E = e)]p(a, e|do (B = b) , do (D = d))dade

by Y |= E|A,B,D in GBDE

=

∫
E[Y |do (D = d) , do (E = e) , a]p(a, e|do (B = b) , do (D = d))dade

by Y |= B|A,D,E in GBDE

=

∫
E[Y |do (D = d) , do (E = e) , a, b′]p(b′)p(a, e|do (B = b) , do (D = d))dadb′de

with p(b′)p(a, e|do (B = b) , do (D = d)) = p(b′)p(a)p(e|a,B = b).

6



E[Y |do (B = b) , do (E = e)] =

∫
E[Y |do (B = b) , do (E = e) , a, d]p(a, d|do (B = b) , do (E = e))dadd

=

∫
E[Y |do (B = b) , do (E = e) , a, do (D = d)]p(a, d|do (B = b) , do (E = e))dadd

by Y |= D|A,B,E in GBED

=

∫
E[Y |do (D = d) , do (E = e) , a]p(a, d|do (B = b) , do (E = e))dadd

by Y |= B|A,D,E in GBDE

=

∫
E[Y |do (D = d) , do (E = e) , a, b′]p(b′)p(a, d|do (B = b) , do (E = e))dadb′dd

=

∫
f(d, e, a, b′)p(b′)p(a, d|do (B = b) , do (E = e))dadb′dd

with p(b′)p(a, d|do (B = b) , do (E = e)) = p(b′)p(a)p(d|B = b).

E[Y |do (D = d) , do (E = e)] =

∫
E[Y |a, b, do (D = d) , do (E = e)]p(a, b|do (D = d) , do (E = e))dadb

=

∫
f(d, e, a, b)p(a, b|do (D = d) , do (E = e))dadb

with p(a, b|do (D = d) , do (E = e)) = p(a)p(b).

Intervention sets of size 3

E[Y |do (B = b) , do (D = d) , do (E = e)] = E[Y |do (D = d) , do (E = e)]

by (Y |= B|D,E in GDEB)

SCM:

U1 = εY A

U2 = εY B

A = U1 + εA
B = U2 + εB
C = exp(−B) + εC
D = exp(−C)/10.+ εD
E = cos(A) + C/10 + εE
Y = cos(D) + sin(E) + U1 + U2 + εy

with εi ∼ N (0, 1), ∀i ∈ {Y A, Y B,A,B,C,D,E, y}. We consider the following interventional
domains:

• D(B) = [−3, 4]
• D(D) = [−3, 3]
• D(E) = [−3, 3]

7.3 DAG3

Do-calculus derivations For DAG3 (Fig. 1 (c)) we consider {age, BMI, cancer} to be non-
manipulative. We have I = {aspirin, statin, age, BMI, cancer} and C = ∅. In this section we give
the expressions for all the functions in T and show each of them can be written as a transformation
of f with the corresponding integrating measure.
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E[Y |do (aspirin = x)] =

∫
· · ·
∫
f(aspirin, statin, age, BMI, cancer)

p(statin, age, BMI, cancer|do (aspirin = x))dstatindagedBMIdcancer

with p(statin, age, BMI, cancer|do (aspirin = x)) = p(cancer|age, BMI, aspirin, aspirin)p(statin|age, BMI)p(BMI|age)p(age).

E[Y |do (statin = x)] =

∫
· · ·
∫
f(aspirin, statin, age, BMI, cancer)

p(aspirin, age, BMI, cancer|do (statin = x))daspirindagedBMIdcancer

with p(aspirin, age, BMI, cancer|do (statin = x)) = p(cancer|age, BMI, aspirin, aspirin)p(aspirin|age, BMI)p(BMI|age)p(age).

E[Y |do (aspirin = x) , do (statin = z)] = =

∫
· · ·
∫
f(aspirin, statin, age, BMI, cancer)

p(age, BMI, cancer|do (aspirin = x) , do (statin = z))dagedBMIdcancer

with p(age, BMI, cancer|do (aspirin = x) , do (statin = z)) = p(cancer|age, BMI, aspirin, aspirin)p(BMI|age)p(age).

SCM:

age = U(55, 75)
bmi = N (27.0− 0.01× age, 0.7)

aspirin = σ(−8.0 + 0.10× age + 0.03× bmi)
statin = σ(−13.0 + 0.10× age + 0.20× bmi)

cancer = σ(2.2− 0.05× age + 0.01× bmi− 0.04× statin + 0.02× aspirin)
Y = N (6.8 + 0.04× age− 0.15× bmi− 0.60× statin + 0.55× aspirin + 1.00× cancer, 0.4)

We consider the following interventional domains:

• D(aspirin) = [0, 1]

• D(statin) = [0, 1]

7.4 Extended version of Fig. 2

Fig. 2 shows how DAG-GP captures the behaviour of both intervention functions in areas where DI

is not available (see area around x = −2) while reducing the uncertainty via transfer. As the two
interventional ranges differ, the interventional points for both X and Z are in different parts of the
input space. Specifically, DI

Z contains points that are outside of D(X). However, the non linear
mapping between the two functions allows to transfer information in this scenario. Notice that, due
to the non linear mapping, an observation for Z, say at z = 10, will not correspond to an improved
posterior estimation for X at x = 10 as z = 10 will be mapped to another part of D(X). At the
same time, the function tX(x) will not pass through the points in DI

Z as it is the case in standard GP
regression. Finally, notice how the orange lines in the left panels give the do-calculus results (labelled
as “do”) which are used to construct the causal prior for the DAG-GP+ in the right panels.

7.5 Additional experimental results

Here we give additional experimental results for both the synthetic examples and the health-care
application. Tab. 1 gives the fitting performances, across intervention functions and replicates, when
N = 500.
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Figure 2: Posterior mean and variance for tX(x) and tZ(z) in the DAG of Fig. 4 (a) (without the red
edge). For both plots mi(·) and Ki(·, ·) give the posterior mean and standard deviation respectively.

Table 1: RMSE with N = 500

DAG-GP+ DAG-GP GP+ GP do-calculus

DAG1
0.48 0.57 0.60 0.77 0.55

(0.07) (0.08) (0.15) (0.27) -

DAG3
0.50 0.42 0.58 1.26 2.87

(0.11) (0.13) (0.10) (0.11) -

DAG4
0.09 0.44 0.54 0.89 0.22

(0.05) (0.12) (0.08) (0.23) -
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