
Method/Analysis Worst-Case Error (i.e. EF (x̂)− F ∗ .)

Minibatch SGD
Theorem 1

H∆
λ exp

(−λR
H

)
+

σ2
∗

λMKR

Accelerated Minibatch SGD
Theorem 1

∆ exp
(
−
√
λR√
H

)
+ σ2

λMKR

Local SGD
Koloskova et al. [12]

σ2
∗

λMKR +
Hζ2∗
λ2R2 +

Hσ2
∗

λ2KR2 for R ≥ Ω̃
(
H
λ log ∆

)
SCAFFOLD
Karimireddy et al. [11]

(
H∆ +

λζ2∗
H2

)
exp
(−λR

H

)
+ σ2

λMKR

Local SGD
Theorem 3

HB2

HKR+λK2R2 + σ∗B√
MKR

+ Hζ̄2

λ2R2 + Hσ2

λ2KR2

Local SGD Lower Bound
Theorem 2

min
{

∆ exp
(−λR

H

)
,
Hζ2∗
λ2R2

}
+ σ2

λMKR + min
{

∆, Hσ2

λ2K2R2

}
Algorithm-Independent
Lower Bound Theorem 2

min
{

∆
√
λ√
H
,
λζ2∗
H2

}
exp
(
−
√
λR√
H

)
+ σ2

λMKR

Table 2: Guarantees under the strongly convex assumptions, with log factors omitted. See (12) for a
definition and discussion of ζ̄.

A Discussion of Local SGD lower bound in strongly convex setting

In the strongly convex case, the lower bound from Theorem 2 nearly matches the upper bound of
Koloskova et al.. Focusing on the case H = B = σ = 1 in order to emphasize the role of ζ∗, the
only differences are between a term 1/(KR2) versus 1/(K2R2)—a gap which also exists in the
homogeneous case [23]—and between exp(−λR) + ζ2

∗/(λ
2R2) and min

{
exp(−λR), ζ2

∗/(λ
2R2)

}
.

The latter gap is somewhat more substantial than the convex case, but nevertheless indicates that
the ζ2

∗/(λ
2R2) rate cannot be improved until the number of rounds of communication is at least the

condition number (or ζ2
∗ is very large).

B Discussion of Karimireddy et al. [11]

We compare our results to Karimireddy et al. [11], who presented an analysis of the inner/outer
stepsize variant of Section 6 (as FEDAVG, with a different stepsize parametrization—see below) as
well as the novel method SCAFFOLD which incorporates variance reduction.

Karimireddy et al. [11, Theorem V] show that for the inner/outer stepsize updates (13), with optimal
choice of stepsizes, in the weakly convex case

EF (x̂)− F ∗ ≤ O

(
HB2

R
+

σB√
SKR

+

(
Hζ2
∗B

4
)1/3

R2/3
+

√
1− S

M
· ζ∗B√

SR

)
(16)

and in the strongly convex case (for R ≥ Ω
(
H
λ

)
)

EF (x̂)− F ∗ ≤ O
(
λB2 exp

(
−λR
H

)
+

σ2

λSKR
+

Hζ2
∗

λ2R2
+ (1− S

M
) · ζ2

∗
λSR

)
. (17)

But these are loose upper bounds: as discussed in Section 6, the Minibatch SGD guarantees also
apply to the inner/outer variant (by using ηinner = 0). The Minibatch SGD guarantees (14) and
(15) can therefor be viewed also as guarantees on the inner/outer variant (i.e. Karimireddy et al.’s
FEDAVG) that improve over (16) and (17) in several ways: (a) they avoid the the third terms in (16)
and (17); (b) they improve the fourth terms by a factor of

√
S and S respectively; and (c) they avoid

the requirement R > H/λ.

Karimireddy et al.’s presentation actually uses a different step-size parametrization that does not
allow for ηinner = 0: they use ηl = ηinner and ηg = ηouter/ηinner. We prefer the presentation using
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ηinner and ηouter in order to emphasize the relationship with Minibatch SGD and in order to explicitly
allow ηinner = 0. But in any case, even using their parametrization, ηl = ηinner could be taken
arbitrarily close to zero making the deviation from Minibatch SGD arbitrarily small. Indeed, the
Karimireddy et al.’s bounds (16) and (17) are obtained when ηinner is already so small that the
algorithm is essentially equivalent to Minibatch SGD.

But Karimireddy et al.’s main contribution was the presentation of SCAFFOLD, which incorporates
machine-specific control iterates that reduce the inter-machine variances. For SCAFFOLD, [11,
Theorem VII] show that in the weakly convex case7:

EF (x̂)− F ∗ ≤ O

(
HB2

R
+

σB√
SKR

+
Mζ2
∗

HSR
+

σζ∗
√
M

HS
√
KR

)
, (18)

and in the strongly convex case (for R ≥ max
{
H
λ ,

M
S

}
)

EF (x̂)− F ∗ ≤ O
(
λ

(
B2 +

Mζ2
∗

SH2

)
exp

(
−min

{
λ

H
,
S

M

}
R

)
+

σ2

λSKR

)
. (19)

These guarantees are also obtained when ηinner is so close to zero that this is essentially a minibatch
method, in this case “Minibatch SAGA” [cf. 7].

Although SCAFFOLD is aimed specifically at the setting where a subset of machines are used in
each round (i.e. S < M ), let us first check whether it provides benefits in our “standard” setting
(introduced in Sections 2), where all machines are used each round (i.e. S = M ). In this case, the
SCAFFOLD bounds (18) and (19) may improve over the loose upper bounds (16) and (17), but this
is only due to the looseness in these upper bounds. The SCAFFOLD upper bounds (for S = M ) do
not actually improve over the Minibatch SGD guarantees of Theorem 1, and only include additional
terms (see Tables 1 and 2). That is, the SCAFFOLD upper bounds, when S = M , are valid also
for FEDAVG (since as discussed above, Minibatch SGD gurantees are valid also for FEDAVG) and
so do not show a benefit in the setting where all machines are used each round. This is perhaps not
surprising, since in this setting there is no need to reduce inter-machine variance, and so no benefit
from variance reduction.

Let us turn then to the setting of Section 7, where only a random subset of S < M machines are
used in each iteration, and for which SCAFFOLD was developed. In this setting, SCAFFOLD
does show a benefit in some regimes. Let us focus on the weakly convex case and compare the
SCAFFOLD guarantee (18) with the Minibatch SGD guarantee (14). We can verify that, e.g. when
σ = 0 and ζ∗ = HB, SCAFFOLD improves over Minibatch SGD if MR �

S
M �

R
M , and S < M ,

but the SCAFFOLD guarantee (18) is worse then Minibatch SGD if S
M �

M
R . More generally, the

SCAFFOLD guarantee is worse than Minibatch SGD if σ = 0 and S
M �

ζ2∗
H2B2 min(1, MR ). Also

for strongly convex objectives, SCAFFOLD improves over Minibatch SGD in some regimes but
the guarantee (19) is worse than Minibatch SGD in other regimes. Care is required to map out the
precise regimes and how they depend on the various problem parameters.

C Proof of Theorem 1

In this Appendix, we prove Theorem 1, starting with an analysis of Minibatch SGD, and proceeding
to analyze Accelerated Minibatch SGD.

C.1 Minibatch SGD for heterogeneous objectives

For the proof, we will use the following standard property of convex functions:
Lemma 1 (Co-Coercivity of the Gradient). For any H-smooth and convex F , and any x, and y,

‖∇F (x)−∇F (y)‖2 ≤ H 〈∇F (x)−∇F (y), x− y〉 ,

and
‖∇F (x)−∇F (y)‖2 ≤ 2H(F (x)− F (y)− 〈∇F (y), x− y〉).

7This is different than the bound stated as [11, Theorem III], but is what was proven [11, Theorem VII,
Appendix E].
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Also note the following result from Stich [21], which is useful for optimizing the step-sizes.

Lemma 2 (Stich [21], Lemma 3). Consider non-negative sequences{rt}t≥0 and {st}t≥0, which
satisfy:

rt+1 ≤ (1− aηt)rt − bηtst + cη2
t , (20)

for non-negative step-sizes ηt ≤ 1
d ,∀t, for a parameter d ≥ a, d > 0. Then there exist a choice of

step-sizes ηt and averaging weights wt, such that:

b

WT

T∑
t=0

swt + arT+1 ≤ 32dr0 exp

[
−aT

2d

]
+

36c

aT
, (21)

for WT :=
∑T
t=0 wt.

Finally we can prove the following result for Minibatch SGD in this setting.

Theorem 5. Under the convex assumptions, the average of the iterates of Minibatch SGD guarantees
for a universal constant c,

EF (x̂)− F ∗ ≤ c · HB
2

R
+ c · σ∗B√

MKR
.

Under the strongly convex assumptions, a weighted average of its iterates guarantees

EF (x̂)− F ∗ ≤ c · H∆

λ
exp

[
−λR

8H

]
+ c · σ2

∗
λMKR

.

Proof. By the λ-strong convexity of F , where λ might be equal to zero:

E‖xt+1 − x∗‖2 = E

∥∥∥∥∥xt − ηt 1

KM

M∑
m=1

K∑
k=1

∇f(xt; z
m,k
t )− x∗

∥∥∥∥∥
2

, (22)

= E‖xt − x∗‖2 − 2ηtE 〈∇F (xt), xt − x∗〉

+ η2
tE

∥∥∥∥∥ 1

KM

M∑
m=1

K∑
k=1

∇f(xt; z
m,k
t )

∥∥∥∥∥
2

, (23)

≤ (1− ληt)E‖xt − x∗‖2 − 2ηtE[F (xt)− F ∗]

+ η2
tE

∥∥∥∥∥ 1

KM

M∑
m=1

K∑
k=1

∇f(xt; z
m,k
t )

∥∥∥∥∥
2

. (24)
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By the H-smoothness of f(· ; z), we can bound the final term with

E

∥∥∥∥∥ 1

KM

M∑
m=1

K∑
k=1

∇f(xt; z
m,k
t )

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1

KM

M∑
m=1

K∑
k=1

[
∇f(xt; z

m,k
t )−∇f(x∗; zm,kt ) +∇f(x∗; zm,kt )

]∥∥∥∥∥
2

, (25)

≤ 2E

∥∥∥∥∥ 1

KM

M∑
m=1

K∑
k=1

[
∇f(xt; z

m,k
t )−∇f(x∗; zm,kt )

]∥∥∥∥∥
2

+ 2E

∥∥∥∥∥ 1

KM

M∑
m=1

K∑
k=1

∇f(x∗; zm,kt )

∥∥∥∥∥
2

, (26)

≤ 2

KM

M∑
m=1

K∑
k=1

E
∥∥∥∇f(xt; z

m,k
t )−∇f(x∗; zm,kt )

∥∥∥2

+ 2E

∥∥∥∥∥ 1

KM

M∑
m=1

K∑
k=1

∇f(x∗; zm,kt )−∇Fm(x∗)

∥∥∥∥∥
2

, (27)

≤ 4H

KM

M∑
m=1

K∑
k=1

E
[
f(xt; z

m,k
t )− f(x∗; zm,kt )−

〈
∇f(x∗; zm,kt ), xt − x∗

〉]
+

2σ2
∗

MK
, (28)

= 4HE[F (xt)− F ∗] +
2σ2
∗

MK
. (29)

Where, for the third inequality we used Lemma 1. Plugging this back into (24), then for ηt ≤ 1
4H ,

E‖xt+1 − x∗‖2 ≤ (1− ληt)E‖xt − x∗‖2 − 2ηt(1− 2Hηt)E[F (xt)− F ∗] +
2η2
t σ

2
∗

MK
, (30)

≤ (1− ληt)E‖xt − x∗‖2 − ηtE[F (xt)− F ∗] +
2η2
t σ

2
∗

MK
, (31)

E[F (xt)− F ∗] ≤
(

1

ηt
− λ
)
E‖xt − x∗‖2 −

1

ηt
E‖xt+1 − x∗‖2 +

2ηtσ
2
∗

MK
. (32)

Now we look at λ = 0 and λ > 0 separately.

Convex case (λ = 0): Choose a constant step-size,

ηt = η = min

{
1

4H
,
B
√
MK

σ∗
√
T

}
. (33)

Then the averaged iterate x̄R = 1
R

∑R
t=1 xt satisfies:

EF (x̄R)− F ∗ ≤ 1

R

R∑
t=1

EF (xt)− F ∗, (34)

≤ 1

R

R∑
t=1

1

η
E‖xt − x∗‖2 −

1

η
E‖xt+1 − x∗‖2 +

2ησ2
∗

MK
, (35)

≤ ‖x0 − x∗‖2

ηR
+

2ησ2
∗

MK
, (36)

≤ max

{
4HB2

R
,

σ∗B√
MKR

}
+

2σ∗B√
MKR

, (37)

≤ 4HB2

R
+

3σ∗B√
MKR

. (38)
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Strongly convex case (λ > 0): Rewriting (31),

E‖xt+1 − x∗‖2 ≤ (1− ληt)E‖xt − x∗‖2 − ηtE[F (xt)− F ∗] +
2η2
t σ

2
∗

MK
, (39)

we note that it satisfies the conditions for Lemma 2 for the specific assignment:

rt = E‖xt − x∗‖2, st = E[F (xt)− F ∗], (40)

a = λ, b = 1, c =
2σ2
∗

MK
, d = 4H, T = R. (41)

Thus using Lemma 2, and applying Jensen’s inequality we can guarantee the following convergence
rate for the averaged iterate x̂R = 1

WR

∑R
t=1 wtxt,

E[F (x̂R)− F ∗] ≤ 128H‖x0 − x∗‖2 exp

[
−λR

8H

]
+

72σ2
∗

λMKR
, (42)

using step-size ηt and wt given by,

if R ≤ 4H

λ
, ηt =

1

4H
, wt = (1− ληt)−(t+1),

if R >
4H

λ
and t < t0, ηt =

1

4H
, wt = 0,

if R >
4H

λ
and t ≥ t0, ηt =

2

λ(κ+ t− t0)
, wt = (κ+ t− t0)2,

where κ = 8H
λ and t0 = dR2 e. We conclude by observing that HB2 ≤ H∆

λ .

C.2 Accelerated Minibatch SGD for heterogeneous objectives

We first recall some classical results from Ghadimi and Lan [8, 9] for accelerated variants of
minibatch SGD. These results are for minimizing F (x) := Ez∼Df(x, z) where F is H-smooth and
λ(≥ 0)-strongly convex. The algorithms use unbiased stochastic gradients {gt}t∈[T ], i.e., for all t,
E [gt(x)] = ∇F (x) which have bounded variance for all x, i.e., E‖gt(x)−∇F (x)‖2 ≤ σ2.

First consider the AC-SA algorithm Ghadimi and Lan [c.f., Sec 3.1, 8]), with step-size parameters
{αt}t≥1 and {γt}t≥1 s.t. α1 = 1, αt ∈ (0, 1) for any t ≥ 2 and γt > 0 for any t ≥ 1. The algorithm
maintains three intertwined sequences {xt}, {xagt }, and {xmdt }, updated as follows:

1. Set the initial points xag0 = x0 ∈ X and t = 1;

2. Set xmdt = (1−αt)(λ+γt)
γt+(1−α2

t )λ
xagt−1 + αt[(1−αt)µ+γt]

γt+(1−α2
t )λ

xt−1;

3. Call the stochastic oracle to get the gradient gt at the point xmdt ;

4. Set xt = arg minx∈X
{
αt[〈gt, x〉+ λ

2

∥∥xmdt − x
∥∥2

] + [(1− αt)λ2 + γt
2 ]‖xt−1 − x‖2

}
;

5. Set xagt = αtxt + (1− αt)xagt−1;

6. Set t← t+ 1 and go to step 1.

We have the following (almost optimal) convergence rate for strongly convex functions using AC-SA
(see, Sec 3.1 in [8]).

Lemma 3. (Ghadimi and Lan [8], Proposition 9) Let x̂ag be computed by T steps of AC-SA using
stochastic gradients of variance σ2, then for a universal constant c,

E [F (xag)− F (x?)] ≤ c · H‖x0 − x?‖2

T 2
+ c · σ

2

λT
.
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It can be adapted to the weakly convex case by noting that, if F̃ (x) := F (x) + λ
2 ‖x0 − x‖2 for any

λ, x0, and x? = arg minF (x) then,

min
y

E
[
F̃ (y)

]
≤ E

[
F (x?) +

λ

2
‖x0 − x?‖2

]
,

⇒ −E [F (x?)] ≤ −E
[
min
y
F̃ (y)

]
+
λ

2
‖x0 − x?‖2,

⇒ E [F (x)− F (x?)] ≤ E
[
F̃ (x)−min

y
F̃ (y)

]
+
λ

2
‖x0 − x?‖2,∀x.

This also holds if we optimize the right hand side w.r.t. λ. In other words, a guarantee for the strongly
convex case, can be converted to the weakly convex case, by regularizing with λ

2 ‖x0 − x?‖2 with
optimal value of λ. This gives the following result,

Lemma 4. Let x̂ag be computed by T steps of AC-SA on the regularized objective F̃ (x) = F (x) +
σ

2‖x0−x∗‖
√
T
‖x− x0‖2, where the stochastic gradients have variance σ2, then for a constant c

E [F (x̂ag)− F (x?)] ≤ c · H‖x0 − x?‖2

T 2
+ c · σ‖x0 − x?‖√

T
.

This is minimax optimal for weakly convex functions. Next we consider the multi-stage accelerated
SGD algorithm Ghadimi and Lan [c.f., Sec 3, 9] which uses the above AC-SA algorithm. Let p0 ∈ X ,
have bounded sub-optimality F (p0)− F (x?) ≤ ∆, then for k = 1, 2, . . . ,

1. Run Nk iterations of the generic AC-SA by using x0 = pk−1, {αt}t≥1, and {γt}t≥1, with
relevant definitions as follows,

Nk = dmax

{
4

√
2H

λ
,

128σ2

3λ∆2−(k+1)

}
e,

αt =
2

t+ 1
, γt =

4φk
t(t+ 1)

,

φk = max

{
2H,

[
λσ2

3∆2−(k−1)Nk(Nk + 1)(Nk + 2)

]1/2
}

;

2. Set pk = xagNk where xagNk is the solution obtained in the previous step.

We have following optimal rate for strongly convex functions for this algorithm,
Lemma 5. (Ghadimi and Lan [9], Proposition 7) Let x̂ag be computed by T steps of multi-stage
AC-SA using stochastic gradients of variance σ2, then for a universal constant c,

E [F (x̂ag)− F (x?)] ≤ c ·∆ exp

[
−
√
λ

H
T

]
+ c · σ

2

λT
.

Theorem 6. Under the convex assumptions, performing AC-SA on the regularized objective F̃ (x) =
F (x) + σ

2B
√
MKR

‖x‖2 guarantees for a universal constant c

EF (x̂)− F ∗ ≤ c · HB
2

R2
+ c · σB√

MKR
.

Under the strongly convex assumptions, the multi-stage AC-SA algorithm guarantees

EF (x̂)− F ∗ ≤ c ·∆ exp

[
−
√
λ

H
R

]
+ c · σ2

λMKR
.

Proof. In order to use the previous lemmas, first note that the stochastic gradient at time t at point x
is given by 1

MK

∑M
m=1

∑K
k=1∇f(x; ztm,k), where ztm,k ∼i.i.d. Dm for all machines. Fortunately,
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its still an unbiased gradient estimate, i.e., E
[

1
MK

∑M
m=1

∑K
k=1∇f(x; ztm,k)

]
= ∇F (x) since the

iterates on each machine are sampled i.i.d. Its variance is given by,

E

∥∥∥∥∥ 1

MK

M∑
m=1

K∑
k=1

∇f(x; ztm,k)−∇F (x)

∥∥∥∥∥
2

(43)

=
1

M2K2

M∑
m=1

K∑
k=1

E
∥∥∇f(x; ztm,k)−∇Fm(x)

∥∥2
(44)

≤ 1

M2K2

M∑
m=1

K∑
k=1

σ2 (45)

=
σ2

MK
(46)

Plugging this into Lemmas 4 and 5 completes the proof.

D Proof of Theorem 2

Consider the following function F : R4 → R:

F (x) =
1

2
(F1(x) + F2(x)) =

1

2

(
Ez1∼D1f(x; z1) + Ez2∼D2f(x; z2)

)
(47)

The distribution z1 ∼ D1 is described by z1 = (1, z) for z ∼ N (0, σ2). Similarly, z2 ∼ D2 is
specified by z2 = (2, z) for z ∼ N (0, σ2). The lower bound construction will be based on just
two functions. For M > 2 machines, we simply assign the first bM/2c machines F1 and the next
bM/2c machines F2. This diminishes the lower bound by at most a (M − 1)/M factor. Therefore,
we continue with the case M = 2.

Following Woodworth et al. [23], we define the local functions F1 and F2 via the auxiliary function

g(x1, x2, x3, z) =
µ

2
(x1 − c)2

+
H

2

(
x2 −

√
µc
√
H

)2

+
H

8

(
x2

3 + [x3]
2
+

)
+ z>x3 (48)

G(x1, x2, x3) = Ezg(x1, x2, x3, z) (49)

where c > 0 and µ ∈
[
λ, H16

]
are parameters to be determined later, and where [x]+ := max{x, 0}.

Then, we define

f(x; (1, z)) = g(x1, x2, x3, z) +
Lx2

4

2
+ ζ∗x4 (50)

f(x; (2, z)) = g(x1, x2, x3, z) +
λx2

4

2
− ζ∗x4 (51)

for a parameter L ∈ [λ,H] to be determined later. Therefore,

F1(x) = Ez1∼D1f(x; z1) = G(x1, x2, x3) +
Lx2

4

2
+ ζ∗x4 (52)

F2(x) = Ez2∼D2f(x; z2) = G(x1, x2, x3) +
λx2

4

2
− ζ∗x4 (53)

It is clear from inspection that both F1 and F2, and consequently F , are H-smooth and λ-strongly
convex. Furthermore, the variance of the gradients is bounded by σ2 for both D1 and D2.

It is clear that G attains its minimum of zero at
[
c,
√
µc√
H
, 0
]

so ∇G
(
c,
√
µc√
H
, 0
)

= 0, and thus

∇F
(
c,

√
µc
√
H
, 0, 0

)
= ∇G

(
c,

√
µc
√
H
, 0

)
+

(
ζ∗
2
− ζ∗

2

)
e4 = 0 (54)

From now on, we use x∗ =
[
c,
√
µc√
H
, 0, 0

]
to denote the minimizer of F , which has norm

‖x∗‖2 =
(

1 +
µ

H

)
c2 ≤ 2c2 (55)
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We can therefore ensure ‖x∗‖2 ≤ B2 by choosing c2 ≤ B2

2 . Furthermore, the initial suboptimality

F (0, 0, 0, 0)− F ∗ = µc2 (56)

Therefore, we can ensure F (0, 0, 0, 0) − F ∗ ≤ ∆ by choosing c2 ≤ ∆
µ . We conclude by showing

that for this objective, ζ2
∗ bounded by

1

2

2∑
m=1

‖∇Fm(x∗)‖2 = ‖∇F2(x∗)‖2 = ‖∇F1(x∗)‖2 = ζ2
∗ (57)

Therefore, this objective has the desired level of heterogeneity.

Therefore, we have shown that the objective satisfies all of the necessary conditions for the lower
bound. All that remains is to lower bound the error of Local SGD with a constant stepsize η applied
to this function.
Lemma 6. For µ ≤ 2L, then Local SGD with any constant stepsize η ≤ 1

L applied to F1 and F2

after being initialized at zero results in x̂4 such that

(L+ µ)x̂2
4

4
≥ ζ2

∗(L+ µ)

16µ2

(
L− µ
L
− (1− µη)

K

)2

1{η≤ 1
L}1{(1−µη)K≤L−µL }

Proof. Since the coordinates of F1 and F2 are completely decoupled, the behavior of the fourth
coordinate of the iterates can be analyzed separately from the others.

Let x(1)
k,r denote the fourth coordinate of machine 1’s iterate at the kth iteration of round r, and

similarly for x(2)
k,r. The local SGD dynamics give

x
(1)
k+1,r = x

(1)
k,r − η

(
Lx

(1)
k,r + ζ∗

)
= −ζ∗

L
+ (1− Lη)

(
x

(1)
k,r +

ζ∗
L

)
(58)

x
(2)
k,r = x

(2)
k,r − η

(
−ζ∗ + µx

(2)
k,r

)
=
ζ∗
µ

+ (1− µη)

(
x

(2)
k,r −

ζ∗
µ

)
(59)

and x̂4 = 1
2

(
x

(1)
K,R + x

(2)
K,R

)
= x0,R+1. Unravelling this recursion, we have that

x0,r+1 = x
(1)
0,r+1 = x

(2)
0,r+1 =

1

2

(
ζ∗
µ
− ζ∗
L

+ (1− µη)
K

(
x0,r −

ζ∗
µ

)
+ (1− Lη)

K

(
x0,r +

ζ∗
L

))
(60)

Furthermore, if η ≤ 1
L then (1− Lη) ≥ 0, so if x0,r ≥ 0 then

x0,r+1 ≥
ζ∗
2µ
− ζ∗

2L
+ (1− µη)

K

(
x0,r

2
− ζ∗

2µ

)
≥ ζ∗

2µ

(
L− µ
L
− (1− µη)

K

)
(61)

Finally, since x0,0 = 0 ≥ 0, the condition x0,r ≥ 0 will hold throughout optimization, so

x̂4 ≥
ζ∗
2µ

(
L− µ
L
− (1− µη)

K

)
(62)

Therefore, if η ≤ 1
L and (1− µη)

K ≤ L−µ
L then

(L+ µ)x̂2
4

4
≥ ζ2

∗(L+ µ)

16µ2

(
L− µ
L
− (1− µη)

K

)2

(63)

This completes the proof.

We now prove the theorem:
Theorem 2. For any M , K, and R there exist objectives in four dimensions such that Local SGD
initialized at zero and using any fixed stepsize η will have suboptimality at least

EF (x̂)− F ∗ ≥ c ·

(
min

{
HB2

R
,

(
Hζ2
∗B

4
)1/3

R2/3

}
+

(
Hσ2B4

)1/3
K2/3R2/3

+
σB√
MKR

)

EF (x̂)− F ∗ ≥ c ·
(

min

{
∆ exp

(
−6λR

H

)
,
Hζ2
∗

λ2R2

}
+ min

{
∆,

Hσ2

λ2K2R2

}
+

σ2

λMKR

)
under the convex and strongly convex assumptions (for H ≥ 16λ), respectively.

20



Proof. Since the four different coordinates are completely decoupled from each other, it suffices to
analyze each coordinate separately.

In the course of proving [Theorem 3 23], Woodworth et al. prove that

EG(x̂1, x̂2, x̂3)−G
(
c,

√
µc
√
H
, 0

)
≥ µc2(1− µη)

KR

2
+
µc2

2
1{η> 2

H } +
Hη2σ2

18432
1{η≤ 2

H }1{η≥ 8
HKR} (64)

Furthermore, by Lemma 6

(L+ λ)x̂2
4

4
≥ ζ2

∗(L+ µ)

16µ2

(
L− µ
L
− (1− µη)

K

)2

1{η≤ 1
L}1{(1−µη)K≤L−µL } (65)

Therefore, choosing L = H
2

EF (x̂)− F ∗ = EG(x̂1, x̂2, x̂3)−G
(
c,

√
µc
√
H
, 0

)
+
H + 2λ

8
x̂2

4 (66)

≥ µc2(1− µη)
KR

2
+
µc2

2
1{η> 2

H } +
Hη2σ2

18432
1{η≤ 2

H }1{η≥ 8
HKR}

+
ζ2
∗(H + 2µ)

32µ2

(
H − 2µ

H
− (1− µη)

K

)2

1{η≤ 2
H }1{(1−µη)K≤H−2µ

H } (67)

Stochastic terms

First, we will show a lower bound in terms of σ2 using solely the first three terms of (67). Consider
three cases:

Case 1 η ≥ 2
H : In this case, from the second term of (67) we see that

EF (x̂)− F ∗ ≥ µc2

2
(68)

Case 2 1
2µKR ≤ η ≤

2
H : In this case, the third term of (67) shows

EF (x̂)− F ∗ ≥ Hη2σ2

18432
(69)

where we recalled that µ ≤ H
16 , so η ≥ 1

2µKR ≥
8

HKR . This is non-decreasing in η, so for any η

EF (x̂)− F ∗ ≥ Hσ2

73728µ2K2R2
(70)

Case 3 η ≤ 2
H and η ≤ 1

2µKR : In this case, from the first term of (67),

EF (x̂)− F ∗ ≥ µc2(1− µη)
KR

2
≥
µc2
(
1− 1

2KR

)KR
2

≥ µc2

4
(71)

Combination: Combining these three cases, we conclude that for any η

EF (x̂)− F ∗ ≥ min

{
µc2

2
,

Hσ2

73728µ2K2R2
,
µc2

4

}
= min

{
µc2

3
,

Hσ2

73728µ2K2R2

}
(72)

This lower bound holds for any stepsize, and any µ ∈
[
λ, H16

]
and regardless of ζ∗. In the strongly

convex case, we recall that F (0)− F (x∗) = µc2, therefore, we choose µ = λ, and c2 = ∆
λ so the

lower bound reads (for a universal constant β)

EF (x̂)− F ∗ ≥ β ·min

{
∆,

Hσ2

λ2K2R2

}
(73)
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To conclude, it is well known that any first-order method which accesses at most MKR stochastic
gradients with variance σ2 for a λ-strongly convex objective will suffer error at least β σ2

λMKR in the
worst case [17]. Therefore, the strongly convex lower bound is

EF (x̂)− F ∗ ≥ β ·min

{
∆,

Hσ2

λ2K2R2

}
+ β · σ2

λMKR
(74)

In the convex case, we recall that ‖x∗‖2 ≤ 2c2, so we choose c2 = B2

2 , and set µ =
(

Hσ2

B2K2R2

)1/3

so the lower bound reads

EF (x̂)− F ∗ ≥ β ·
(
Hσ2B4

)
K2/3R2/3

(75)

To conclude, it is well known that any first-order method which accesses at most MKR stochastic
gradients with variance σ2 for a convex objective with ‖x∗‖ ≤ B will suffer error at least β σB√

MKR
in the worst case [17]. Therefore, the convex lower bound is

EF (x̂)− F ∗ ≥ β ·
(
Hσ2B4

)
K2/3R2/3

+ β · σB√
MKR

(76)

Heterogeneity terms

Next, we consider solely the first, second, and fourth terms of (67) in order to show a lower bound
with respect to ζ∗. Again, we consider three cases:

Case 1 η ≥ 2
H : Again, in this case, from the second term of (67) we see that

EF (x̂)− F ∗ ≥ µc2

2
(77)

Case 2 η ≤ 2
H and (1− µη)

K
> H−2µ

H : In this case, from the first term of (67), we have

EF (x̂)− F ∗ ≥ µc2(1− µη)
KR

2
(78)

≥ µc2

2

(
1− 2µ

H

)R
(79)

≥ µc2

2

((
1− 4µ

H

(
1− 1

e

)) H
4µ

) 4µR
H

(80)

≥ µc2

2
exp

(
−4µR

H

)
(81)

Case 3 η ≤ 2
H and (1− µη)

K ≤ H−2µ
H : In this case, from the first and fourth terms of (67), we

have

EF (x̂)− F ∗ ≥ µc2

2
(1− µη)

KR
+
ζ2
∗(H + 2µ)

32µ2

(
H − 2µ

H
− (1− µη)

K

)2

(82)

Suppose that (1− µη)
K ≥ H−2µ

H − 1
4R , then

µc2

2
(1− µη)

KR ≥ µc2

2

(
1− 2µ

H
− 1

4R

)R
(83)

Then, if R ≥ H
4µ , then

µc2

2
(1− µη)

KR ≥ µc2

2

(
1− 3µ

H

)R
≥ µc2

2

((
1− 6µ

H

(
1− 1

e

)) H
6µ

) 6µR
H

≥ µc2

2
exp

(
−6µR

H

)
(84)
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Otherwise, if R ≤ H
4µ , then

µc2

2
(1− µη)

KR ≥ µc2

2

(
1− 1

2R

)R
≥ µc2

4
≥ µc2

4
exp

(
−6µR

H

)
(85)

Therefore, when (1− µη)
K ≥ H−2µ

H − 1
4R ,

EF (x̂)− F ∗ ≥ µc2

4
exp

(
−6µR

H

)
(86)

On the other hand, if (1− µη)
K ≤ H−2µ

H − 1
4R , then

EF (x̂)− F ∗ ≥ ζ2
∗(H + 2µ)

32µ2

(
H − 2µ

H
− (1− µη)

K

)2

(87)

≥ ζ2
∗(H + 2µ)

32µ2

(
1

4R

)2

(88)

≥ Hζ2
∗

512µ2R2
(89)

Combination: Combining these three cases, we conclude that

EF (x̂)− F ∗ ≥ min

{
µc2

4
exp

(
−6µR

H

)
,

Hζ2
∗

512µ2R2

}
(90)

In the strongly convex case, we recall that F (0)− F (x∗) = µc2, so we choose µ = λ and c2 = ∆
λ

so that the objective satisfies the strongly convex assumptions. Now, the lower bound reads (for a
universal constant β)

EF (x̂)− F ∗ ≥ β ·min

{
∆ exp

(
−6λR

H

)
,

Hζ2
∗

512λ2R2

}
(91)

In the convex case, we recall that ‖x∗‖2 ≤ 2c2, so we choose c2 = B
2 so that the convex assumptions

are satisfied. We now have two options, if R ≤ H2B2

ζ2∗
, then we pick µ =

(
Hζ2∗
B2R2

)1/3

so that the
lower bound reads

EF (x̂)− F ∗ ≥ β ·
(
Hζ2
∗B

4
)1/3

R2/3
exp

(
−6ζ

2/3
∗ R1/3

H2/3B2/3

)
(92)

≥ β ·
(
Hζ2
∗B

4
)1/3

R2/3
exp(−6) (93)

≥ β′ ·
(
Hζ2
∗B

4
)1/3

R2/3
(94)

On the other hand, if R ≥ H2B2

ζ2∗
, then we pick µ = H

6R so the lower bound reads

EF (x̂)− F ∗ ≥ β ·min

{
HB2

R
,
ζ2
∗
H

}
= β · HB

2

R
(95)

Consequently,

EF (x̂)− F ∗ ≥ β ·min

{
HB2

R
,

(
Hζ2
∗B

4
)1/3

R2/3

}
(96)

Combining these with the stochastic terms completes the proof.
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E Proof of Theorem 3

We prove the theorem with the help of several technical lemmas.
Lemma 7. For any stepsize ηt ≤ 1

10H

E[F (x̄t)− F ∗] ≤
(

1

ηt
− λ
)
E‖x̄t − x∗‖2−

1

ηt
E‖x̄t+1 − x∗‖2 +

3σ2
∗ηt
M

+
2H

M

M∑
m=1

E‖x̄t − xmt ‖
2

Proof. This lemma and its proof are nearly identical to [Lemma 8 12]. We include a proof here in
order to keep the paper self-contained.

Let x̄t+1 = 1
M

∑M
m=1 x

m
t be the average of the machines’ local iterates at time t. Then,

E‖x̄t+1 − x∗‖2 = E

∥∥∥∥∥x̄t − ηt
M

M∑
m=1

∇Fm(xmt )− x∗
∥∥∥∥∥

2

+ η2
tE

∥∥∥∥∥ 1

M

M∑
m=1

∇f(xmt ; zmt )−∇Fm(xmt )

∥∥∥∥∥
2

(97)

Beginning with the first term of (97):

E

∥∥∥∥∥x̄t − ηt
M

M∑
m=1

∇Fm(xmt )− x∗
∥∥∥∥∥

2

= E‖x̄t − x∗‖2 + η2
tE

∥∥∥∥∥ 1

M

M∑
m=1

∇Fm(xmt )

∥∥∥∥∥
2

− 2ηt
M

M∑
m=1

E 〈x̄t − x∗, ∇Fm(xmt )〉 (98)

We can bound the second term of (98) with:

η2
tE

∥∥∥∥∥ 1

M

M∑
m=1

∇Fm(xmt )

∥∥∥∥∥
2

≤ 2η2
tE

∥∥∥∥∥ 1

M

M∑
m=1

∇Fm(xmt )−∇Fm(x̄t)

∥∥∥∥∥
2

+ 2η2
tE

∥∥∥∥∥ 1

M

M∑
m=1

∇Fm(x̄t)−∇Fm(x∗)

∥∥∥∥∥
2

(99)

≤ 2η2
t

M

M∑
m=1

E‖∇Fm(xmt )−∇Fm(x̄t)‖2 + 2η2
tE‖∇F (x̄t)−∇F (x∗)‖2 (100)

≤ 2H2η2
t

M

M∑
m=1

E‖xmt − x̄t‖
2

+ 4Hη2
tE[F (x̄t)− F (x∗)] (101)

For the third term of (98):

−2ηt
M

M∑
m=1

E 〈x̄t − x∗, ∇Fm(xmt )〉

= −2ηt
M

M∑
m=1

E 〈xmt − x∗, ∇Fm(xmt )〉+
2ηt
M

M∑
m=1

E 〈xmt − x̄t, ∇Fm(xmt )〉 (102)

≤ −2ηt
M

M∑
m=1

E
[
Fm(xmt )− Fm(x∗) +

λ

2
‖xmt − x∗‖

2

]

+
2ηt
M

M∑
m=1

E
[
Fm(xmt )− Fm(x̄t) +

H

2
‖xmt − x̄t‖

2

]
(103)

≤ −2ηtE
[
F (x̄t)− F (x∗) +

λ

2
‖x̄t − x∗‖2

]
+
Hηt
M

M∑
m=1

‖xmt − x̄t‖
2 (104)
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Finally, for the second term of (97)

η2
tE

∥∥∥∥∥ 1

M

M∑
m=1

∇f(xmt ; zmt )−∇Fm(xmt )

∥∥∥∥∥
2

=
η2
t

M2

M∑
m=1

E‖∇f(xmt ; zmt )−∇Fm(xmt )‖2 (105)

≤ 3η2
t

M2

M∑
m=1

[
E‖∇f(xmt ; zmt )−∇f(x̄t; z

m
t )‖2 + E‖∇f(x̄t; z

m
t )−∇f(x∗; zmt )‖2

+ E‖∇f(x∗; zmt )−∇Fm(x∗)‖2
]

(106)

≤ 3η2
t

M2

M∑
m=1

[
H2E‖xmt − x̄t‖

2
+ 2HE[Fm(x̄t)− Fm(x∗)] + σ2

∗,m
]

(107)

≤ 3η2
t

M2

M∑
m=1

[
H2E‖xmt − x̄t‖

2
+ 2HE[F (x̄t)− F (x∗)] + σ2

∗,m
]

(108)

Combining all these results back into (97), we have

E‖x̄t+1 − x∗‖2 ≤ (1− ληt)E‖x̄t − x∗‖2 +
Hηt + 5H2η2

t

M

M∑
m=1

E‖xmt − x̄t‖
2

+ (10Hη2
t − 2ηt)E[F (x̄t)− F (x∗)] +

3η2
t σ

2
∗

M
(109)

≤ (1− ληt)E‖x̄t − x∗‖2 +
2Hηt
M

M∑
m=1

E‖xmt − x̄t‖
2

− ηtE[F (x̄t)− F (x∗)] +
3η2
t σ

2
∗

M
(110)

where for the final line we used that ηt ≤ 1
10H . Rearranging completes the proof.

Lemma 8. If supx,m‖∇Fm(x)−∇F (x)‖2 ≤ ζ̄2, then for any fixed stepsize η

1

M

M∑
m=1

E‖xmt − x̄t‖
2 ≤ 3Kσ2η2 + 6K2η2ζ̄2

Similarly, the decreasing stepsize ηt = 2
λ(a+t+1) for any a

1

M

M∑
m=1

E‖xmt − x̄t‖
2 ≤ 3Kσ2η2

t−1 + 6K2ζ̄2η2
t−1

Proof. By Jensen’s inequality

E‖xmt − x̄t‖
2 ≤ 1

M

M∑
n=1

E‖xmt − xnt ‖
2 (111)
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Therefore, it suffices to bound E‖xmt − xnt ‖
2, which we do now:

E‖xmt − xnt ‖
2

≤ E
∥∥xmt−1 − xnt−1 − ηt−1

(
∇F (xmt−1)−∇F (xnt−1)

)
+ ηt−1

(
∇F (xmt−1)−∇Fm(xmt−1)−∇F (xnt−1) +∇Fn(xnt−1)

)∥∥2
+ η2

t−1σ
2
m (112)

≤ inf
γ>0

(
1 +

1

γ

)
E
∥∥xmt−1 − xnt−1 − ηt−1

(
∇F (xmt−1)−∇F (xnt−1)

)∥∥2

+ (1 + γ)η2
t−1E

∥∥∇F (xmt−1)−∇Fm(xmt−1)−∇F (xnt−1) +∇Fn(xnt−1)
∥∥2

+ η2
t−1σ

2
m

(113)

≤ inf
γ>0

(
1 +

1

γ

)
(1− ληt−1)E

∥∥xmt−1 − xnt−1

∥∥2
+ η2

t−1σ
2
m

+ (1 + γ)η2
t−1E

∥∥∇F (xmt−1)−∇Fm(xmt−1)
∥∥2

+ (1 + γ)η2
t−1E

∥∥∇F (xnt−1)−∇Fn(xnt−1)
∥∥2

− 2(1 + γ)η2
t−1E

〈
∇F (xmt−1)−∇Fm(xmt−1), ∇F (xnt−1)−∇Fn(xnt−1)

〉
(114)

For the third inequality we used Lemma 1. Therefore,

1

M2

M∑
m=1

M∑
n=1

E‖xmt − xnt ‖
2

≤ 1

M2

M∑
m=1

inf
γ>0

(
1 +

1

γ

)
(1− ληt−1)E

∥∥xmt−1 − xnt−1

∥∥2
+ η2

t−1σ
2
m + 2(1 + γ)η2

t−1ζ̄
2

(115)

We will unroll this recurrence, using that xmt0 = xnt0 for all m,n where t0 is the most recent time that
the iterates were synchronized, so t− t0 ≤ K − 1. Taking γ = K − 1, we have

1

M2

M∑
m=1

M∑
n=1

E‖xmt − xnt ‖
2

=

t−1∑
i=t0

(
η2
i σ

2 + 2(1 + γ)η2
i ζ̄

2
) t−1∏
j=i+1

(
1 +

1

γ

)
(1− ληj) (116)

≤
t−1∑
i=t0

(
η2
i σ

2 + 2Kη2
i ζ̄

2
) t−1∏
j=i+1

(
1 +

1

K − 1

)
(1− ληj) (117)

≤
t−1∑
i=t0

(
η2
i σ

2 + 2Kη2
i ζ̄

2
)(

1 +
1

K − 1

)K−1 t−1∏
j=i+1

(1− ληj) (118)

≤ 3
(
σ2 + 2Kζ̄2

) t−1∑
i=t0

η2
i

t−1∏
j=i+1

(1− ληj) (119)

For a constant stepsize η,

1

M2

M∑
m=1

M∑
n=1

E‖xmt − xnt ‖
2 ≤ 3

(
σ2 + 2Kζ̄2

) t−1∑
i=t0

η2 (120)

≤ 3K
(
σ2 + 2Kζ̄2

)
η2 (121)
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For decreasing stepsize ηt = 2
λ(a+t+1)

1

M2

M∑
m=1

M∑
n=1

E‖xmt − xnt ‖
2 ≤ 3

(
σ2 + 2Kζ̄2

) t−1∑
i=t0

η2
i

t−1∏
j=i+1

a+ j − 1

a+ j + 1
(122)

= 3
(
σ2 + 2Kζ̄2

) t−1∑
i=t0

η2
i

(a+ i)(a+ i+ 1)

(a+ t)(a+ t+ 1)
(123)

= 3
(
σ2 + 2Kζ̄2

) t−1∑
i=t0

η2
i

ηt−1ηt
ηi−1ηi

(124)

≤ 3
(
σ2 + 2Kζ̄2

) t−1∑
i=t0

η2
i

η2
t−1

η2
i

(125)

= 3K
(
σ2 + 2Kζ̄2

)
η2
t−1 (126)

Theorem 3. When supx
1
M

∑M
m=1‖∇Fm(x)−∇F (x)‖2 ≤ ζ̄2, an average of the Local SGD

iterates guarantees under the convex and strongly convex assumptions, respectively

EF (x̂)− F ∗ ≤ c ·

(
HB2

KR
+

(
Hζ̄2B4

)1/3
R2/3

+

(
Hσ2B4

)1/3
K1/3R2/3

+
σ∗B√
MKR

)
,

EF (x̂)− F ∗ ≤ c ·
(

H2B2

HKR+ λK2R2
+

(
Hζ̄2

λ2R2
+

Hσ2

λ2KR2

)
log

(
H

λ
+KR

)
+

σ2
∗

λMKR

)
.

Proof. By Lemma 7, for any ηt ≤ 1
10H

E[F (x̄t)− F ∗] ≤
(

1

ηt
− λ
)
E‖x̄t − x∗‖2−

1

ηt
E‖x̄t+1 − x∗‖2 +

3σ2
∗ηt
M

+
2H

M

M∑
m=1

E‖x̄t − xmt ‖
2

(127)
By Lemma 8, when ηt = η is constant then

1

M

M∑
m=1

E‖xmt − x̄t‖
2 ≤ 3Kσ2η2 + 6K2η2ζ̄2 (128)

and when ηt = 2
λ(a+t+1)

1

M

M∑
m=1

E‖xmt − x̄t‖
2 ≤ 3Kσ2η2

t−1 + 6K2ζ̄2η2
t−1 (129)

We now consider the convex and strongly convex cases separately:

Convex case: In the convex case, we use a constant stepsize η, so
E[F (x̄t)− F ∗]

≤ 1

η
E‖x̄t − x∗‖2 −

1

η
E‖x̄t+1 − x∗‖2 +

3σ2
∗η
M

+
2H

M

M∑
m=1

E‖x̄t − xmt ‖
2 (130)

≤ 1

η
E‖x̄t − x∗‖2 −

1

η
E‖x̄t+1 − x∗‖2 +

3σ2
∗η
M

+ 6HKσ2η2 + 12HK2η2ζ̄2 (131)

Therefore, by the convexity of F

E

[
F

(
1

KR

KR∑
t=1

x̄t

)
− F ∗

]
≤ 1

KR

KR∑
t=1

E[F (x̄t)− F ∗] (132)

≤ B2

ηKR
+

3σ2
∗η
M

+ 6HKσ2η2 + 12HK2η2ζ̄2 (133)
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Choosing

η = min

{
1

10H
,
B
√
M

σ∗
√
KR

,

(
B2

HK2σ2

)1/3

,

(
B2

HK2ζ̄2

)1/3
}

(134)

then ensures

E

[
F

(
1

KR

KR∑
t=1

x̄t

)
− F ∗

]
≤ 10HB2

KR

13
(
Hζ̄2B4

)1/3
R2/3

+
7
(
Hσ2B4

)1/3
K1/3R2/3

+
4σ∗B√
MKR

(135)

Strongly convex case: In the strongly convex case, we take the stepsize ηt = 2
λ(a+t+1) for

a = 20H/λ which ensures ηt ≤ 1
10H . In addition, we define weights wt = (a+ t) and define

x̄ =
1

W

KR∑
t=1

wtx̄t (136)

where W =
∑KR
t=1 wt ≥

1
2KR(a+KR). By the convexity of F ,

EF (x̄)− F ∗

≤ 1

W

KR∑
t=1

(a+ t)EF (x̄t)− F ∗ (137)

≤ λ(a+ 1)(a+ 2)B2

2W
+

1

W

KR∑
t=1

[
6σ2
∗

λM
+

2H(a+ t)

M

M∑
m=1

E‖x̄t − xmt ‖
2

]
(138)

≤ λ(a+ 1)(a+ 2)B2

2W
+

6σ2
∗KR

WλM
+

6HKσ2 + 12HK2ζ̄2

W

KR∑
t=1

(a+ t)η2
t−1 (139)

≤ λ(a+ 1)(a+ 2)B2

2W
+

6σ2
∗KR

WλM
+

6HKσ2 + 12HK2ζ̄2

λ2W
(1 + log(a+KR)) (140)

≤ 132H2B2

λKR(10H/λ+KR)
+

(
12Hζ̄2

λ2R2
+

6Hσ2

λ2KR2

)
log

(
13H

λ
+KR

)
+

6σ2
∗

λMKR
(141)

Note that in the strongly convex case, it is likely possible to achieve a first term scaling with
exp(−KR) using a method similar to Lemma 2. However, the recurrence we derived here has a
different form, and it is difficult to determine the correct stepsize and weighting schedule to achieve
linear convergence.

F Details of Experiments

The training set of MNIST (60,000 examples) was divided by digit into ten groups of equal size
n ≈ 6, 000 (which required discarding some examples from the more common digits). PCA was
used to reduce the dimensionality to 100, but no other preprocessing was used.

Then, for each of the 25 combinations (i,j) for even i and odd j, a binary classification “task”
was created, i.e. classifying even (+1) versus odd (−1). These tasks were arbitrarily labelled task
1, 2, . . . , 25.

For each p ∈ [0.0, 0.2, 0.4, 0.6, 0.8, 1.0], machine m was assigned data composed of p · 2n random
examples from task m, and (1− p) · 2n random examples from a mixture of all the tasks.

Local and Minibatch SGD were then used to optimize the logistic loss for each of the six described
local datasets. The constant stepsize was tuned (from a log-scale grid of 10 points ranging from
e−6, . . . , e0 for Minibatch SGD, and a log-scale grid of 10 points ranging from e−8, . . . , e−1 for
Local SGD) for each value of p, K, and R individually, and the average loss over four runs is reported
for the best stepsize for each point in the plot. That is, each point in the plot represents the best
possible performance of the algorithm for that p, K, and R specifically.

Finally, we computed the value of ζ2
∗ as a function of p by using Newton’s method to compute a very

accurate estimate of the minimizer, and then explicitly calculating ζ2
∗(p) at that point.
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G Proof of Theorem 4

For this lower bound, the gradients will always be noiseless, so we simply define the expectation of
the local functions. Furthermore, we will construct just two local functions F1 and F2. For the case
M > 2, F1 will be assigned to the first bM/2c machines, and F2 to the next bM/2c machines. If
there is an odd number of machines, we simply assign the last machine F3(x) = λ

2 ‖x‖
2, which will

reduce the lower bound by a factor of at most M−1
M . Therefore, we proceed by focusing on the case

M = 2.

We define the following H-smooth and λ-strongly convex functions on Rd for even d:

F (x) =
1

2
(F1(x) + F2(x)) (142)

F1(x) =
H − λ

8

x2
1 − 2Cx1 + βx2

d +

d/2−1∑
i=1

(x2i+1 − x2i)
2

+
λ

2
‖x‖2 (143)

F2(x) =
H − λ

8

d/2∑
i=1

(x2i − x2i−1)
2

+
λ

2
‖x‖2 (144)

Here, β and C are constants which will be chosen later.

These functions are identical to ones used by Woodworth and Srebro [24] to prove lower bounds for
finite sum optimization, and are very similar both to classic work by Nesterov [18] on lower bounds
and to more closely related work by Arjevani and Shamir [1]. Arjevani and Shamir also prove lower
bounds for distributed optimization algorithms, but their slightly different construction made it more
difficult to tune ζ2

∗ , which is necessary for our lower bound.

These functions have the following important property: let Ek = span{e1, . . . , ek} be the set of
vectors whose k + 1, . . . , d coordinates are all zero, then for all xk ∈ Ek for even k

∇F1(xk) ∈ Ek+1 and ∇F2(xk) ∈ Ek (145)

and for xk ∈ Ek for odd k

∇F1(xk) ∈ Ek and ∇F2(xk) ∈ Ek+1 (146)

For algorithms whose iterates, for example, remain in the span of previous gradients, the only way
to access the next coordinate is to query the gradient of one of the two functions—F1 if the next
coordinate is odd, and F2 if the next coordinate is even. Since each machine will only have access to
one of the two functions throughout each round of communication, this means that each round of
communication can only unlock a single new coordinate. We now formalize this.

Following Carmon et al. [5], we define:
Definition 2 (Distributed zero-respecting algorithm). For a vector v, let supp(v) =
{i ∈ {1, . . . , d} : vi 6= 0}. We say that an optimization algorithm is distributed zero-respecting
if for all t and m, the tth query on the mth machine, xmt satisfies

supp(xmt ) ⊆
⋃
s<t

supp(∇f(xms ; zms )) ∪
⋃

m′ 6=m

⋃
s≤πm(t,m′)

supp(∇f(xm
′

s ; zm
′

s ))

where πm(t,m′) is the most recent time before t when machines m and m′ communicated with each
other.

This definition captures a very wide variety of distributed optimization algorithms, including mini-
batch SGD, accelerated minibatch SGD, local SGD, coordinate descent methods, and many more.
Algorithms which are not distributed zero-respecting are those whose iterates have components in
directions about which the algorithm has no information, meaning that in some sense, it is just “wild
guessing.” Using techniques similar to Woodworth and Srebro [Theorem 7 24] and Carmon et al. [5],
it should be possible to extend this lower bound beyond distributed zero-respecting algorithms to
arbitrary randomized algorithms.

We now argue that the progress of distributed zero-respecting algorithms is controlled by the number
of rounds of communication, R, regardless of K:
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Lemma 9. Let x̂ be the output after R rounds of communication of a distributed zero-respecting
algorithm optimizing F = 1

2 (F1 + F2) as defined in (142). Then,

supp(xmt ) ∈ ER

Proof. The definition of a zero-respecting algorithm requires that every machine’s initial iterate
xm0 = 0. We will now prove the Lemma by induction on the round of communication.

As a base case, for the first iteration of the first round of communication:

∇F1(x1
0) = ∇F1(0) =

(λ−H)C

4
e1 ∈ E1 and ∇F2(x2

1) = ∇F2(0) = 0 ∈ E0 (147)

Therefore, by the distributed zero-respecting property, x1
2 ∈ E1 and x2

2 ∈ E0. Furthermore, for all
y1 ∈ E1, ∇F1(y1) ∈ E1 and for all y0 ∈ E0, ∇F2(y0) ∈ E0. Therefore, further gradient queries
on each machine will not change the set of coordinates that the distributed zero-respecting property
allows to be non-zero. We conclude that x1

t ∈ E1 and x2
t ∈ E0 for all t until machines 1 and 2

communicate with each other.

Now, suppose that after r−1 rounds of communication, x1
t , x

2
t ∈ Er−1. If r is even, then∇F1(x1

t ) ∈
Er−1 and ∇F2(x2

t ) ∈ Er. Furthermore, additional gradient computations within the rth round of
communication will not expand the set of coordinates that the distributed zero-respecting property
will allow to be non-zero. Therefore, both machines’ coordinates will remain in Er until the end of
the rth round of communication. A similar argument can be made for odd r.

Now, we will compute the minimizer of F . We note that by the definition of F1 and F2,

F (x) =
H − λ

16

(
x2

1 − 2Cx1 + βx2
d +

d∑
i=2

(xi − xi−1)
2

)
+
λ

2
‖x‖2 (148)

Calculating the gradient of F , we see that x∗ = arg minx F (x) must satisfy

C =

(
2 +

8λ

H − λ

)
x∗1 − x∗2

0 =

(
2 +

8λ

H − λ

)
x∗i − x∗i+1 − x∗i−1 ∀i∈{2,...,d−1}

0 =

(
1 + β +

8λ

H − λ

)
x∗d − x∗d−1

(149)

Let q be the smaller solution of the quadratic equation

1−
(

2 +
8λ

H − λ

)
q + q2 = 0 (150)

That is,

q = 1 +
4λ

H − λ
−

√
16λ2

(H − λ)2
+

8λ

H − λ
(151)

= 1 +
4λ

H − λ

(
1−

√
1 +

H − λ
2λ

)
(152)

= 1− 2(
1−

√
1 + H−λ

2λ

)(
1 +

√
1 + H−λ

2λ

)(1−
√

1 +
H − λ

2λ

)
(153)

=

√
1 + H−λ

2λ − 1√
1 + H−λ

2λ + 1
(154)
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Let α =
√

1 + H−λ
2λ so that q = α−1

α+1 , and define β = 1− q. Then it is straightforward to confirm
that

x∗ = C

d∑
i=1

qiei (155)

satisfies all of the conditions (149), and is thus the minimizer of F . This point has value

F (x∗) =
C2(H − λ)

16

(
q2 − 2q + βq2d + (1− q)2

d∑
i=2

q2i−2 +
8λ

H − λ

d∑
i=1

q2i

)
(156)

=
C2(H − λ)

16

(
−1 + βq2d + (1− q)2

d∑
i=1

q2i−2 +
8λ

H − λ

d∑
i=1

q2i

)
(157)

=
C2(H − λ)

16

(
−1 + (1− q)q2d +

8λ

H − λ

d∑
i=1

q2i−1 + q2i

)
(158)

=
C2(H − λ)

16

(
−1 + (1− q)q2d +

8λ

H − λ

(
q(1− q2d)

1− q2
+
q2(1− q2d)

1− q2

))
(159)

=
C2(H − λ)

16

(
−1 + (1− q)q2d +

(1− q)2

q

(
q(1− q2d)

1− q2
+
q2(1− q2d)

1− q2

))
(160)

=
C2(H − λ)

16

(
−1 + (1− q)q2d + (1− q)(1− q2d)

)
(161)

=
−qC2(H − λ)

16
(162)

For the third equality, we used that (150) implies (1− q)2 = 8λq
H−λ . For the fifth inequality, we used

that 8λ
H−λ = (1−q)2

q . This solution has norm

‖x∗‖2 = C2
d∑
i=1

q2i = C2 q
2(1− q2d)

1− q2
≤ q2C2

1− q2
=
C2(α− 1)2

4α
≤ αC2

4
(163)

Furthermore,

F (0)− F (x∗) = −F (x∗) =
qC2(H − λ)

16
(164)

Finally, we evaluate the degree of heterogeneity:

ζ2
∗ =

1

2

2∑
m=1

‖∇Fm(x∗)‖2 = ‖∇F1(x∗)‖2 = ‖∇F2(x∗)‖2 (165)

=
(H − λ)2

64

∥∥∥∥∥∥2

d/2∑
i=1

(
x∗2i − x∗2i−1

)
(e2i − e2i−1) +

4λ

H − λ
x∗

∥∥∥∥∥∥
2

(166)

=
(H − λ)2

16

d/2∑
i=1

[(
x∗2i−1

(
−1 +

4λ

H − λ

))2

+

(
x∗2i

(
1 +

4λ

H − λ

))2
]

(167)

=
C2(H − λ)2

16

d/2∑
i=1

[
q4i−2 (H − 5λ)2

(H − λ)2
+ q4i (H + 3λ)2

(H − λ)2

]
(168)

≤ (H + 3λ)2

16
‖x∗‖2 (169)

≤ αC2(H + 3λ)2

64
(170)

With this, we are ready to prove the lower bound.
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Theorem 4. For any M , K, and R, there exist two quadratic objectives satisfying the convex and
strongly convex assumptions (for H ≥ 7λ) such that the output of any distributed zero-respecting
algorithm will have suboptimality in the convex and strongly convex case respectively,

F (x̂)− F ∗ ≥ c
(

min

{
ζ2
∗

HR2
,
HB2

R2

}
+

σB√
MKR

)
,

F (x̂)− F ∗ ≥ c

(
min

{
λζ2
∗

H2
,

∆
√
λ√
H

}
exp

(
−8R

√
λ√

H

)
+

σ2

λMKR

)
.

Proof. By Lemma 9, the output of the algorithm x̂ ∈ ER. Furthermore, since F is λ-strongly convex,
F (x̂)− F ∗ ≥ λ

2 ‖x̂− x
∗‖2. Therefore,

F (x̂)− F ∗

F (0)− F ∗
≥

λ
2 ‖x̂− x

∗‖2
qC2(H−λ)

16

(171)

≥ 8λ

q(H − λ)

d∑
i=R+1

q2i (172)

=
8λq(q2R − q2d)

(H − λ)(1− q2)
(173)

=
(1− q)2(q2R − q2d)

1− q2
(174)

=
(1− q)(q2R − q2d)

1 + q
(175)

=
q2R − q2d

α
(176)

For the third equality we used that (150) implies 8λq
H−λ = (1− q)2. For the final equality, we used

that q = α−1
α+1 . Taking d ≥ R+ 1

2 ln(1/q) ensures that q2d ≤ q2R

2 so

F (x̂)− F ∗

F (0)− F ∗
≥ q2R

2α
=

(
1− 2

α+1

)2R

2α
(177)

Therefore,

R ≤
ln
(
F (0)−F∗

2αε

)
ln
(

1 + 2
α−1

) =⇒ F (x̂)− F ∗ ≥ ε (178)

Using the fact that ln(1 + x) ≤ x and solving the above inequality on R for ε, we conclude that

F (x̂)− F ∗ ≥ F (0)− F ∗

2α
exp

(
− 2R

α− 1

)
(179)

In order to satisfy the strongly convex assumptions, we recall from (170) and (164) that we must
choose C such that

αC2(H + 3λ)2

64
≤ αC2H2

16
≤ ζ2
∗ (180)

qC2(H − λ)

16
≤ C2H

16
≤ ∆ (181)
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Therefore, we choose C2 = 16 min
{

ζ2∗
αH2 ,

∆
H

}
meaning that

F (x̂)− F ∗ ≥ F (0)− F ∗

2α
exp

(
− 2R

α− 1

)
(182)

≥
min

{
ζ2∗
αH , ∆

}
2α

exp

(
− 2R

α− 1

)
(183)

≥ min

{
λζ2
∗

H2
,

√
λ∆

2
√
H

}
exp

(
−8
√
λR√
H

)
(184)

For the convex case, we note that in order to satisfy the convex assumptions, we must choose C such
that

αC2(H + 3λ)2

64
≤ αC2H2

16
≤ ζ2
∗ (185)

αC2

4
≤ B2 (186)

We therefore choose C2 = 4 min
{

ζ2∗
αH2 ,

B2

α

}
. Returning to (179), this means

F (x̂)− F ∗ ≥ F (0)− F ∗

2α
exp

(
− 2R

α− 1

)
(187)

=
qC2(H − λ)

32α
exp

(
− 2R

α− 1

)
(188)

≥
q(H − λ) min

{
ζ2∗
αH2

B2

α

}
8α

exp

(
−8
√
λR√
H

)
(189)

≥ qmin

{
ζ2
∗

16α2H
,
HB2

16α2

}
exp

(
−8
√
λR√
H

)
(190)

From here, we use that H ≥ 7λ implies α ≥ 2 so q ≥ 1/3, so

F (x̂)− F ∗ ≥ min

{
λζ2
∗

48H2
,
λB2

48

}
exp

(
−8
√
λR√
H

)
(191)

Finally, this holds for any λ ≥ 0, so it holds, in particular, for λ = H
64R2 thus

F (x̂)− F ∗ ≥ c ·min

{
ζ2
∗

HR2
,
HB2

R2

}
(192)

Finally, it is well known that any first-order method which accesses at most MKR stochastic
gradients with variance σ2 for a λ-strongly convex objective will suffer error at least β σ2

λMKR in the
worst case for a universal constant β [17]. Similarly, any first-order method which accesses at most
MKR stochastic gradients with variance σ2 for a convex objective with ‖x∗‖ ≤ B will suffer error
at least β σB√

MKR
in the worst case for a universal constant β [17].

H Proof of Corollary 1

Corollary 1. Accelerated Minibatch SGD is optimal when ζ∗ ≥ HB in the convex case, and is
optimal up to log factors when ζ2

∗ ≥ H3/2/
√
λ in the strongly convex case.

Proof. In the convex case, Theorem 1 ensures Accelerated Minibatch SGD converges at a rate
proportional to

HB2

R2
+

σB√
MKR

(193)
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The lower bound for convex functions in Theorem 4 precisely matches this whenever

HB2

R2
= min

{
ζ2
∗

HR2
,
HB2

R2

}
=⇒ ζ∗ ≥ HB (194)

For the strongly convex case, Theorem 1 ensures convergence at a rate porportional to

∆ exp

(
−
√
λR

c3
√
H

)
+

σ2

λMKR
(195)

The lower bound is given by

min

{
λζ2
∗

H2
,

∆
√
λ√
H

}
exp

(
−8R

√
λ√

H

)
+

σ2

λMKR
(196)

When ζ2
∗ ≥ H3/2/

√
λ, this reduces to

∆
√
λ√
H

exp

(
−8R

√
λ√

H

)
+

σ2

λMKR
= ∆ exp

(
−8R

√
λ√

H
− log

√
λ√
H

)
+

σ2

λMKR
(197)

Comparing this with (195), we see that the R needed to guarantee error ε using Theorem 1 is larger
than the minimum possible R, as lower bounded by (197), by at most a log factor.
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