
Estimating decision tree learnability
with polylogarithmic sample complexity

Anonymous Author(s)
Affiliation
Address
email

Abstract

We show that top-down decision tree learning heuristics (such as ID3, C4.5, and1

CART) are amenable to highly efficient learnability estimation: for monotone target2

functions, the error of the decision tree hypothesis constructed by these heuristics3

can be estimated with polylogarithmically many labeled examples, exponentially4

smaller than the number necessary to run these heuristics, and indeed, exponentially5

smaller than information-theoretic minimum required to learn a good decision tree.6

This adds to a small but growing list of fundamental learning algorithms that have7

been shown to be amenable to learnability estimation.8

En route to this result, we design and analyze sample-efficient minibatch versions9

of top-down decision tree learning heuristics and show that they achieve the same10

provable guarantees as the full-batch versions. We further give “active local”11

versions of these heuristics: given a test point x?, we show how the label T (x?)12

of the decision tree hypothesis T can be computed with polylogarithmically many13

labeled examples, exponentially smaller than the number necessary to learn T .14

1 Introduction15

We study the problem of estimating learnability, recently introduced by Kong and Valiant [KV18]16

and Blum and Hu [BH18]. Consider a learning algorithm A and a dataset S of unlabeled examples.17

Can we estimate the performance of A on S—that is, the error of the hypothesis that A would return18

if we were to label the entire dataset S and train A on it—by labeling only very few of the examples19

in S? Are there learning tasks and algorithms for which an accurate estimate of learnability can be20

obtained with far fewer labeled examples than the information-theoretic minimum required to learn a21

good hypothesis?22

Motivating applications. Across domains and applications, the labeling of datasets is often an23

expensive process, requiring either significant computational resources or a large number of person-24

hours. There are therefore numerous natural scenarios in which an efficient learnability estimation25

procedure could serve as a useful exploratory precursor to learning. For example, suppose the error26

estimate returned by this procedure is large. This tells us that if we were to label the entire dataset S27

and run A on it, the error of the hypothesis h that A would return is large. With this information,28

we may decide that h would not have been of much utility anyway, thereby saving ourselves the29

resources and effort to label the entire dataset S (and to run A). Alternatively, we may decide to30

collect more data or to enlarge the feature space of S, in hopes of improving the performance of A.31

The learnability estimation procedure could again serve as a guide in this process, telling us how32

much the performance of A would improve with these decisions. Relatedly, such a procedure could33

be useful for hyperparameter tuning, where the learning algorithm A takes as input a parameter ρ,34

and its performance improves with ρ, but its time and sample complexity also increases with ρ. The35

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.

learnability estimation procedure enables us to efficiently determine the best choice of ρ for our36

application at hand, and run A just a single time with this value of ρ. As a final example, such a37

procedure could also be useful for dataset selection: given unlabeled training sets S1, . . . , Sm, and38

access to labeled examples from a test distributionD, we can efficiently determine the Si for whichA39

would produce a hypothesis that achieves the smallest error with respect to D.40

Prior works on estimating learnability. While this notion is still relatively new, there are by now41

a number of works studying it in a variety of settings, including robust linear regression [KV18],42

learning unions of intervals and k-Nearest-Neighbor algorithms [BH18], contextual bandits [KVB20],43

learning Lipschitz functions, and the Nadaraya–Watson estimator in kernel regression [BBG20]. A44

striking conceptual message has emerged from this line of work: it is often possible to estimate45

learnability with far fewer labeled examples than the number required to run the corresponding46

algorithm, and indeed, far fewer than the information-theoretic minimum required to learn a good47

hypothesis.48

1.1 Top-down decision tree learning49

We study the problem of estimating learnability in the context of decision tree learning. Specifically,50

we focus on top-down decision tree learning heuristics such as ID3 [Qui86], C4.5 [Qui93], and51

CART [Bre17]. These classic and simple heuristics continue to be widely employed in everyday52

machine learning applications and enjoy significant empirical success. They are also the core53

subroutine in modern, state-of-the-art ensemble methods such as random forests [Bre01] and gradient54

boosted trees [CG16].55

We briefly describe how these top-down heuristics work, deferring the formal description to the56

main body of this paper. Each such heuristic TOPDOWNG is defined by impurity function G :57

[0, 1]→ [0, 1] which determines its splitting criterion.1 TOPDOWNG takes as input a labeled dataset58

S ⊆ X × {0, 1} and a size parameter t ∈ N, and constructs a size-t decision tree for S in a greedy,59

top-down fashion. It begins by querying 1[xi ≥ θ] at the root of the tree, where xi and θ are chosen60

to maximize the purity gain with respect to G :61

G (E[y])−
(

Pr[xi ≥ θ] · G (E[y | xi ≥ θ]) + Pr[xi < θ] · G (E[y | xi < θ])
)
,

where the expectations and probabilities are with respect to (x,y) ∼ S. More generally, TOPDOWNG62

grows its current tree T by splitting a leaf ` ∈ T ◦ with a query to 1[xi ≥ θ], where `, xi, and θ are63

chosen to maximize:64

PurityGainG ,S(`, i, θ) := Pr[x reaches `] · LocalGainG ,S(`, i, θ),

where65

LocalGainG ,S(`, i, θ) := G (E[y | x reaches `])

−
(

Pr[xi ≥ θ] · G (E[y | x reaches `, xi ≥ θ])

+ Pr[xi < θ] · G (E[y | x reaches `, xi < θ])
)
.

Provable guarantees for monotone target functions [BLT20a]. Motivated by the tremendous66

popularity and empirical successes of these top-down heuristics, there has been significant interest67

and efforts in establishing provable guarantees on their performance [Kea96, DKM96, KM99, FP04,68

Lee09, BDM19b, BDM19a, BLT20b, BLT20a]. The starting point of our work is a recent result of69

Blanc et al. [BLT20a], which provides a guarantee on their performance when run on monotone target70

functions, with respect to the uniform distribution:71

Theorem (Theorem 2 of [BLT20a]). Let f : {±1}d → {0, 1} be a monotone target function72

and G be any impurity function. For s ∈ N and ε, δ ∈ (0, 1
2), let t = sΘ(log s)/ε2 and S be73

1Impurity functions G are restricted to be concave, symmetric around 1
2

, and to satisfy G (0) = G (1) = 0

and G (1
2
) = 1. For example, ID3 and C4.5 use the binary entropy function G (p) = H(p), and the associated

purity gain is commonly referred to as information gain; CART uses the Gini criterion G (p) = 4p(1 − p);
Kearns and Mansour proposed and analyzed the function G (p) = 2

√
p(1− p) [KM99]. The work of Dietterich,

Kearns, and Mansour [DKM96] provides a detailed discussion and experimental comparison of various impurity
functions.

2

a set of n labeled training examples (x, f(x)) where x ∼ {±1}d is uniform random, and n =74

Õ(t) · poly(log d, log(1/δ)).75

With probability at least 1−δ over the randomness of S, the size-t decision tree hypothesis constructed76

by TOPDOWNG (t,S) satisfies errorf (T) := Prx∼{±1}d [T (x) 6= f(x)] ≤ opts + ε, where opts77

denotes the error of the best size-s decision tree for f .78

We refer the reader to the introduction of [BLT20a] for a discussion of why assumptions on the79

target function are necessary in order to establish provable guarantees. Briefly, as had been noted by80

Kearns [Kea96], there are examples of simple non-monotone target functions f : {±1}d → {0, 1},81

computable by decision trees of constant size, for which any impurity-based heuristic may build a82

complete tree of size Ω(2d) before achieving any non-trivial accuracy.83

Our contributions. We give strengthened provable guarantees on the performance of top-down84

decision tree learning heuristics, focusing on sample complexity. Our three main contributions are as85

follows:86

1. Minibatch top-down decision tree learning. We introduce and analyze MINIBATCHTOPDOWNG ,87

a minibatch version of TOPDOWNG where the purity gain associated with each split is estimated88

with only polylogarithmically many samples within the dataset S rather than all of S. For89

all impurity functions G , we show that MINIBATCHTOPDOWNG achieves the same provable90

guarantees that those that [BLT20a] had established for the full-batch version TOPDOWNG .91

2. Active local learning. We then study MINIBATCHTOPDOWNG within the recently-introduced92

active local learning framework of Backurs, Blum, and Gupta [BBG20], and show that it admits93

an efficient active local learner. Given active access to an unlabeled dataset S and a test point x?,94

we show how T (x?) can be computed by labeling only polylogarithmically many of the examples95

in S, where T is the decision tree hypothesis that MINIBATCHTOPDOWNG would construct if96

we were to label all of S and train MINIBATCHTOPDOWNG on it.97

3. Estimating learnability. Building on both our results above, we show that98

MINIBATCHTOPDOWNG is amendable to highly-efficient learnability estimation. Given99

active access to an unlabeled dataset S, we show that the error of T with respect to any test100

distribution can be approximated by labeling only polylogarithmically many of the examples101

in S, where T is the decision tree hypothesis that MINIBATCHTOPDOWNG would construct if102

we were to label all of S and train MINIBATCHTOPDOWNG on it.103

1.2 Formal statements of our results104

Feature space and distributional assumptions. We work in the setting of binary attributes and105

binary classification, i.e. we focus on the task of learning a target function f : {±1}d → {0, 1}. We106

will assume the learning algorithm receives uniform random examples x ∼ {±1}d, either labeled107

or unlabeled. The error of a decision tree hypothesis T : {±1}d → {0, 1} with respect to f is108

defined to be errorf (T) := Pr[f(x) 6= T (x)] where x ∼ {±1}d is uniform random. We write109

opts(f) to denote min{errorf (T) : T is a size-s decision tree}; when f is clear from context we110

simply write opts. We will also be interested in the error of T with respect to general test sets111

(Pr(x,y)∼Stest
[T (x) 6= y]) and general test distributions (Pr(x,y)∼Dtest

[T (x) 6= y]).112

Notation and terminology. For any decision tree T , we say the size of T is the number of leaves113

in T . We refer to a decision tree with unlabeled leaves as a partial tree, and write T ◦ to denote such114

trees. For a leaf ` of a partial tree T ◦, we write |`| to denote its depth within T ◦, the number of115

attributes queried along the path that leads to `. We say that an input x ∈ {±1}d is consistent with116

a leaf ` if x reaches ` within T ◦, and we write `T◦(x) to denote the (unique) leaf ` of T ◦ that x117

is consistent with. A function f : {±1}d → {0, 1} is said to be monotone if for every coordinate118

i ∈ [d], it is either non-decreasing with respect to i (i.e. f(x) ≤ f(y) for all x, y ∈ {±1}d such119

that xi ≤ yi) or non-increasing with respect to i (i.e. f(x) ≥ f(y) for all x, y ∈ {±1}d such that120

xi ≤ yi).121

We use boldface to denote random variables (e.g. x ∼ {±1}d), and unless otherwise stated, all122

probabilities and expectations are with respect to the uniform distribution. For p ∈ [0, 1], we write123

3

round(p) to denote 1[p ≥ 1
2]. We reserve S to denote a labeled dataset and S◦ to denote an unlabeled124

dataset.125

We are now ready to describe new algorithms and state our main results.126

Definition 1 (Minibatch). Let S be a labeled dataset. A minibatch from S, denoted B ∼ Batchb(S),127

is a set of b uniform random points (x, y) chosen without replacement from S. More generally, for128

a leaf `, a minibatch consistent with ` from S, denoted B ∼ Batchb(S, `), is a set of b uniformly129

random pairs chosen without replacement from among (x, y) ∈ S such that x is consistent with `. (In130

both cases, if there are fewer than b such points, we return all of them.) Minibatches from unlabeled131

datasets S◦ are defined analogously.132

Definition 2 (Minibatch completion of partial trees). Given a partial tree T ◦, we write T ◦Batchb(S)133

to denote the tree obtained by labeling each leaf ` ∈ T ◦ with round(E(x,f(x))∼B[f(x)]) where134

B ∼ Batchb(S, `).135

MINIBATCHTOPDOWNG (t, b, S):

Initialize T ◦ to be the empty tree.
Define D := log t+ log log t.
while (size(T ◦) < t) {

1. Score: For each leaf ` ∈ T ◦ of depth at most D, draw B ∼ Batchb(S, `). For each
coordinate i ∈ [d], compute:

PurityGainG ,B(`, i) := 2−|`| · LocalGainG ,B(`, i), where

LocalGainG ,B(`, i) := G (E[f(x)])

−
(

1
2 G (E[f(x) | xi = −1]) + 1

2 G (E[f(x) | xi = 1])
)
,

where the expectations are with respect to (x, f(x)) ∼ B.
2. Split: Let (`?, i?) be the tuple that maximizes PurityGainG ,B(`, i). Grow T ◦ by

splitting `? with a query to xi? .
}

Output T ◦Batchb(S).

Figure 1: MINIBATCHTOPDOWNG takes as input a size parameter t, a minibatch size b,
and a labeled dataset S. It outputs a size-t decision tree hypothesis for f .

MINIBATCHTOPDOWNG is a minibatch version of TOPDOWNG , which we described informally136

in Section 1.1 and include its full pseudocode in Appendix A. MINIBATCHTOPDOWNG is more137

efficient than TOPDOWNG in two respects: first, purity gains and completions are computed with138

respect to a minibatch B of size b instead of all the entire dataset S; second, MINIBATCHTOPDOWNG139

never splits a leaf of depth greater than D, and hence constructs a decision tree of small size and140

small depth, rather than just small size. (Looking ahead, both optimizations will be crucial for the141

design of our sample-efficient active local learning and learnability estimation procedures.)142

Our first result shows that MINIBATCHTOPDOWNG achieves the same performance guarantees as143

those that [BLT20a] had established for the full-batch version TOPDOWNG :144

Theorem 1 (Provable guarantees for MINIBATCHTOPDOWN; informal version). Let f : {±1}d →145

{0, 1} be a monotone target function and fix an impurity function G . For any s ∈ N, ε, δ ∈ (0, 1
2),146

let t = sΘ(log s)/ε2 , and S be a set of n labeled training examples (x, f(x)) where x ∼ {±1}d is147

uniform random, and148

n = Õ(t) · poly(log d, log(1/δ)).

If the minibatch size is at least149

b = polylog(t) · poly(log d, log(1/δ)),

4

then with probability at least 1 − δ over the randomness of S and the draws of minibatches from150

within S, the size-t decision tree hypothesis constructed by MINIBATCHTOPDOWNG (t, b,S) satis-151

fies errorf (T) ≤ opts + ε.152

Theorem 1 shows that it suffices for the minibatch size b of MINIBATCHTOPDOWNG to depend153

polylogarithmically on t; in contrast, the full-batch version TOPDOWNG uses the entire set S to154

compute purity gains and determine its splits, and |S| = n has a superlinear dependence on t.155

Our next algorithm is an implementation of MINIBATCHTOPDOWNG within the active local learning156

framework of Backurs, Blum, and Gupta [BBG20]:157

LOCALLEARNERG (t, b, S◦, x?):

Initialize T ◦ to be the empty tree.
Define D := log t+ log log t.
Initialize e := 1 and let B◦strands be b uniform random points from {±1}d.
while (e < t) {

1. Score: For each leaf ` ∈ {`T◦(x) : x ∈ B◦strands ∪ {x?}} of depth at most D, draw
B◦ ∼ Batchb(S

◦, `), query f ’s values on these points. For each coordinate i ∈ [d],
compute:

PurityGainG ,B◦(`, i) := 2−|`| · LocalGainG ,B◦(`, i), where

LocalGainG ,B◦(`, i) := G (E[f(x)])

−
(

1
2 G (E[f(x) | xi = −1]) + 1

2 G (E[f(x) | xi = 1])
)
,

where the expectations are with respect to x ∼ B◦.
2. Split: Let (`?, i?) be the tuple that maximizes PurityGainG ,B◦(`, i). Grow T ◦ by

splitting `? with a query to xi? .
3. Estimate size: Update our size estimate to

e = E
x∼B◦strands

[
2|`T◦ (x)|].

}
Draw B◦ ∼ Batchb(S

◦, `T◦(x
?)) and query f ’s values on these points.

Output round(Ex∼B◦ [f(x)]).

Figure 2: LOCALLEARNERG takes as input a size parameter t, a minibatch size b, an unla-
beled dataset S◦, and an input x?. It selectively queries f ’s values on a few points within S◦
and outputs T (x?), where T is a tree of size approximately t that MINIBATCHTOPDOWNG

would return if we were to label all of S◦ and train MINIBATCHTOPDOWNG on it.

Theorem 2 (Active local version of MINIBATCHTOPDOWN; informal version). Let f : {±1}d →158

{0, 1} be a target function, G be an impurity function, and S◦ be an unlabeled training set.159

For all t ∈ N, η, δ ∈ (0, 1
2), if the minibatch size is at least b = poly(log t, log d, 1/η, log(1/δ)),160

then with probability at least 1−δ over the randomness of B◦strands, we have that for all x? ∈ {±1}d,161

LOCALLEARNERG (t, b, S◦, x?) labels162

q = O(b2 log t) = polylog(t) · poly(log d, 1/η, log(1/δ))

points within S◦ and returns T (x?), where T is the size-t′ decision tree hypothesis that163

MINIBATCHTOPDOWNG (t′, b, S) would construct, t′ ∈ t(1 ± η), and S is the labeled dataset164

obtained by labeling all of S◦ with f ’s values.2165

2To ensure that LOCALLEARNERG consistently labels all x? according to the same tree T , we run all
invocations of LOCALLEARNERG with the same outcomes of randomness for B◦

strands and draws of minibatches.
Similarly, if one then wished to actually construct this tree T , they would run MINIBATCHTOPDOWNG with
these same outcomes of randomness.

5

Theorem 2 yields, as a fairly straightforward consequence, our learnability estimation procedure166

EstG that estimates the performance of MINIBATCHTOPDOWNG with respect to any test set Stest:167

Theorem 3 (Estimating learnability of MINIBATCHTOPDOWN; informal version). Let f : {±1}d →168

{0, 1} be a target function, G be an impurity function, S◦ be an unlabeled training set, and Stest be169

a labeled test set.170

For all t ∈ N and η, δ ∈ (0, 1
2), if the minibatch size b is as in Theorem 2, then with probability at171

least 1− δ over the randomness of the draws of minibatches from within S◦, ESTG (t, b, S◦, Stest)172

labels173

q = O(|Stest| · b log t+ b2 log t) = |Stest| · polylog(t) · poly(log d, 1/η, log(1/δ))

points within S◦ and returns the error of T with respect to Stest,174

errorStest
(T) := Pr

(x,y)∼Stest

[T (x) 6= y],

where T is as in Theorem 2.175

We remark that the labels of the test set Stest in Theorem 3 need not be consistent with f . Indeed, as176

an example application of Theorem 3, we can let Stest be Θ(log(1/δ)/ε2) many labeled examples177

(x,y) drawn from an arbitrary test distribution Dtest over {±1}d × {0, 1}, where the marginal over178

{±1}d need not be uniform and the the labels need not be consistent with f , and with probability at179

least 1− δ, the output of EstG will be within ±ε of Pr(x,y)∼Dtest
[T (x) 6= y].180

2 Proof overview for Theorem 1181

Our proof of Theorem 1 builds upon and extends the analysis in [BLT20a]. (Recall that [BLT20a]182

analyzed the full-batch version TOPDOWNG , which we have included in Appendix A of this paper,183

and their guarantee concerning its performance is their Theorem 2, which we have stated in Section 1.1184

of this paper). In this section we give a high-level overview of both [BLT20a]’s and our proof strategy,185

in tandem with a description of the technical challenges that arise as we try to strengthen [BLT20a]’s186

Theorem 2 to our Theorem 1.187

Let f : {±1}d → {0, 1} be a monotone function and fix an impurity function G . Let T ◦ be188

a partial tree that is being built by either TOPDOWNG or MINIBATCHTOPDOWNG . Recall that189

TOPDOWNG and MINIBATCHTOPDOWNG compute, for each leaf ` ∈ T ◦ and coordinate i ∈ [d],190

PurityGainG ,S(`, i) and PurityGainG ,B(`, i) respectively. Both these quantities can be thought of191

as estimates of the true purity gain:192

PurityGainG ,f (`, i) := 2−|`| · LocalGainG ,f (`, i) where

LocalGainG ,f (`, i) := G (E[f(x) | x reaches `])

−
(

1
2 G (E[f(x) | x reaches `, xi = −1])

+ 1
2 G (E[f(x) | x reaches `, xi = 1])

)
,

where here and throughout this section, all expectations are with respect to a uniform random193

x ∼ {±1}d. The fact that MINIBATCHTOPDOWNG ’s estimates of this true purity gain are based on194

minibatches B of size exponentially smaller than that of the full sample set S—and hence could be ex-195

ponentially less accurate—is a major source of technical challenges that arise in extending [BLT20a]’s196

guarantees for TOPDOWNG to MINIBATCHTOPDOWNG .197

[BLT20a] considers the potential function:198

G -impurityf (T ◦) :=
∑

leaves ` ∈ T◦
2−|`| · G (E[f`]).

The following fact about this potential function G -impurityf is straightforward to verify (and is199

proved in [BLT20a]):200

Fact 2.1. For any partial tree T ◦, leaf ` ∈ T ◦, and coordinate i ∈ [d], let T̃ ◦ be the tree obtained201

from T ◦ by splitting ` with a query to xi. Then,202

G -impurityf (T̃ ◦) = G -impurityf (T ◦)− PurityGainG ,f (`, i).

6

A key ingredient in [BLT20a]’s analysis is a proof that as long as errorf (T ◦S) > opts + ε (where203

T ◦S denotes the completion of T ◦ with respect to the full batch S; see Appendix A), there must204

be a leaf ` ∈ T ◦ and coordinate i with high true purity gain, PurityGainG ,f (`, i) ≥ poly(ε/t).205

Since TOPDOWNG ’s estimates PurityGainG ,S of PurityGainG ,f are with respect to a sample of206

size |S| ≥ poly(t/ε), it follows that TOPDOWNG will make a split for which the true purity gain is207

indeed poly(ε/t). By Fact 2.1, such a split constitutes good progress with respect to the potential208

function G -impurityf . Summarizing, [BLT20a] that shows until errorf (T ◦S) < opts + ε is achieved,209

every split that TOPDOWNG makes has high true purity gain, and hence constitutes good progress210

with respect to the potential function G -impurityf .211

The key technical difficulty in analyzing MINIBATCHTOPDOWNG instead of TOPDOWNG is that212

MINIBATCHTOPDOWNG is not guaranteed to choose a split with high true purity gain: it could make213

splits for which its estimate PurityGainG ,B(`, i) is high, but the true purity gain PurityGainG ,f (`, i)214

is actually tiny. In fact, unless we use batches of size b ≥ poly(t), exponentially larger than the215

b = polylog(t) of Theorem 1, MINIBATCHTOPDOWNG could make splits that result in zero true216

purity gain, and hence constitute zero progress with respect to the potential function G -impurityf .217

To overcome this challenge, we instead show that most splits MINIBATCHTOPDOWNG makes have218

high true purity gain. We first show that with high probability over the draws of minibatches B, if219

MINIBATCHTOPDOWNG splits a leaf that is neither too shallow nor too deep within T ◦, then this220

split has high true purity gain (Lemma B.5). We then show the following two lemmas:221

1. Lemma B.6: If MINIBATCHTOPDOWNG splits a leaf of T ◦ that is sufficiently deep, then it must222

be the case that errorf (T ◦Batchb(S)) ≤ opts + ε, i.e. the current tree already achieves sufficiently223

small error. With this Lemma, we are able to define MINIBATCHTOPDOWNG to never split a224

leaf that is too deep, while retaining guarantees on its performance.225

2. Lemma B.7: This lemma shows that only a small fraction of splits made by226

MINIBATCHTOPDOWNG can be too shallow.227

Combining the above Lemmas, we are able to prove Theorem 1. We defer the proof to Appendix B.228

3 Proof overviews for Theorems 2 and 3229

We begin with a proof overview for Theorem 2. Let T be the decision tree hypothesis that230

MINIBATCHTOPDOWNG would construct if we were to all of S◦ and train MINIBATCHTOPDOWNG231

on it. Our goal is to efficiently compute T (x?) for a given x? by selectively labeling only q points232

within S◦, where q is exponentially smaller than the sample complexity of learning and construct-233

ing T .234

Intuitively, we would like LOCALLEARNERG to only grow the single “strand” within T required to235

compute T (x?) instead of the entire tree T—this “strand” is simply the root-to-leaf path of T that x?236

follows. The key challenge that arises in implementing this plan is: how does LOCALLEARNERG237

know when to terminate this strand (i.e. how does it know when it has reached a leaf of T)?238

MINIBATCHTOPDOWNG , the “global” algorithm that LOCALLEARNERG is trying the simulate,239

terminates when the tree is of size t. As LOCALLEARNERG grows the strand corresponding to x?,240

how could it estimate the size of the overall tree without actually growing it? In other words, it is not241

clear how one would define the stopping criterion of the while loop in the following pseudocode:242

Initialize ` to be the leaf of the empty tree.
while (stopping criterion) {

1. Draw B◦ ∼ Batchb(S
◦, `) and query f ’s values on these points. Let i? be the

coordinate that maximizes PurityGainG ,B◦(`, i) among all i ∈ [d].
2. Extend ` according to the value of x?i? .

}
Draw B◦ ∼ Batchb(S, `) and query f ’s values on these points.
Output round(Ex∼B◦ [f(x)]).

7

Roughly speaking, we want “stopping criterion” to answer the following question: if we grew a243

size-t tree using MINIBATCHTOPDOWNG (on the labeled version of S◦), would ` be a leaf of the244

resulting tree, or would it be an internal node? Nearly equivalently, with access to just a single strand245

of a tree, we wish to estimate the size of that tree. If that size is t, then we stop the while loop.246

It is not possible to accurately estimate the size of a tree using just a single strand. However, by comput-247

ing a small number of random strands, we can get an accurate size estimator. In Appendix C, we show248

that for x1, . . . ,xm chosen uniformly at random from {±1}d, the estimator e := 1
m

∑m
i=1 2|`T (xi)|249

accurately estimates the size of T , as long as the depth of T is not too large. Therefore, rather than250

growing only the root-to-leaf path for x?, LOCALLEARNERG samples random additional inputs,251

x1, . . . ,xm. Then, it simultaneously grows the strands for the root-to-leaf paths of x? as well as252

x1, . . . ,xm. These strands do not all grow at the same “rate”, as we want LOCALLEARNERG to253

make splits in the same order as MINIBATCHTOPDOWNG does. As long as it does this, we can use254

the size estimator to, at any step, accurately estimate the size of tree MINIBATCHTOPDOWNG would255

need to build for all the current strands to end at leaves. LOCALLEARNERG terminates when its256

estimate of this size is t.257

Figure 3: Rather than growing the entire tree T (depcited on the LHS) as MINIBATCHTOPDOWNG

does, LOCALLEARNERG only grows m+ 1 strands within T (depicted on the RHS), corresponding
to the given input x? and m additional random inputs x1, ...,xm ∼ {±1}d.

We back the above intuition for LOCALLEARNERG with proofs. In Appendix D, we show that the258

output of LOCALLEARNERG for size parameter t is T (x?), where T is size-t′ tree produced by259

MINIBATCHTOPDOWNG where t ∈ t′(1± η). We also show that LOCALLEARNERG needs to only260

label polylogarithmic many points within S◦ to compute T (x∗). This completes our proof overview261

for Theorem 2, and Theorem 3 is a straightforward consequence of Theorem 2.262

4 Conclusion263

We have given strengthened provable guarantees on the performance of popular and empirically264

successful top-down decision tree learning heuristics such as ID3, C4.5, and CART, focusing265

on sample complexity. First, we designed and analyzed minibatch versions of these heuristics,266

MINIBATCHTOPDOWNG , and proved that they achieve the same performance guarantees as the267

full-batch versions. We then gave an implementation of MINIBATCHTOPDOWNG within the recently-268

introduced active local learning framework of [BBG20]. Building on these results, we showed that269

MINIBATCHTOPDOWNG is amenable to highly efficient learnability estimation [KV18, BH18]: its270

performance can be estimated accurately by selectively labeling very few examples.271

As discussed in [KV18, BH18], this new notion of learnability estimation opens up a whole host of272

theoretical and empirical directions for future work. We discuss several concrete ones that are most273

relevant to our work. Our algorithm EstG efficiently and accurately estimates the quality, relative to274

a test set Stest, of the hypothesis that MINIBATCHTOPDOWNG would produce if trained on a set S◦.275

Could EstG be more broadly useful in assessing the quality of the training data S◦ itself, relative to276

Stest? Could its estimates provide guarantees on the performance of other algorithms when trained277

in S◦ and tested on Stest? It would also be interesting to explore applications of our algorithms to278

the design of training sets. Given training sets S1, . . . , Sm, EstG allows us to efficiently determine279

the Si for which MINIBATCHTOPDOWNG would produce a hypothesis that achieves the smallest280

error with respect to Stest. Could EstG or extensions of it be useful in efficiently creating an S?,281

comprising data from each Si, that is of higher quality than any Si individually? Finally, while we282

have focused on top-down heuristics for learning a single decision tree in this work, a natural next283

step would be to design and analyze learnability estimation procedures for ensemble methods such as284

random forests and gradient boosted trees.285

8

Broader Impact286

This work does not present any foreseeable societal consequence.287

References288

[BBG20] Arturs Backurs, Avrim Blum, and Neha Gupta. Active local learning. In Proceedings of289

the 33rd Conference On Learning Theory (COLT). Proceedings of Machine Learning290

Research, 2020.291

[BDM19a] Alon Brutzkus, Amit Daniely, and Eran Malach. ID3 Learns Juntas for Smoothed292

Product Distributions. ArXiv, abs/1906.08654, 2019.293

[BDM19b] Alon Brutzkus, Amit Daniely, and Eran Malach. On the Optimality of Trees Generated294

by ID3. ArXiv, abs/1907.05444, 2019.295

[BH18] Avrim Blum and Lunjia Hu. Active tolerant testing. In Proceedings of the 31st Conference296

On Learning Theory (COLT), volume 75, pages 474–497. Proceedings of Machine297

Learning Research, 2018.298

[BLT20a] Guy Blanc, Jane Lange, and Li-Yang Tan. Provable guarantees for decision tree induction:299

the agnostic setting. In Proceedings of the 37th International Conference on Machine300

Learning (ICML), 2020. Available at https://arxiv.org/abs/2006.00743.301

[BLT20b] Guy Blanc, Jane Lange, and Li-Yang Tan. Top-down induction of decision trees: rigorous302

guarantees and inherent limitations. In Proceedings of the 11th Innovations in Theoretical303

Computer Science Conference (ITCS), volume 151, pages 1–44, 2020.304

[Bre01] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.305

[Bre17] Leo Breiman. Classification and regression trees. Routledge, 2017.306

[CG16] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceed-307

ings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and308

Data Mining, pages 785–794, 2016.309

[DKM96] Tom Dietterich, Michael Kearns, and Yishay Mansour. Applying the weak learning310

framework to understand and improve C4.5. In Proceedings of the 13th International311

Conference on Machine Learning (ICML), pages 96–104, 1996.312

[FP04] Amos Fiat and Dmitry Pechyony. Decision trees: More theoretical justification for313

practical algorithms. In Proceedings of the 15th International Conference on Algorithmic314

Learning Theory (ALT), pages 156–170, 2004.315

[Kea96] Michael Kearns. Boosting theory towards practice: recent developments in decision tree316

induction and the weak learning framework (invited talk). In Proceedings of the 13th317

National Conference on Artificial intelligence (AAAI), pages 1337–1339, 1996.318

[KM99] Michael Kearns and Yishay Mansour. On the boosting ability of top-down decision tree319

learning algorithms. Journal of Computer and System Sciences, 58(1):109–128, 1999.320

[KV18] Weihao Kong and Gregory Valiant. Estimating learnability in the sublinear data regime.321

In 31st Annual Conference on Neural Information Processing Systems (NeurIPS), pages322

5460–5469, 2018.323

[KVB20] Weihao Kong, Gregory Valiant, and Emma Brunskill. Sublinear optimal policy value324

estimation in contextual bandits. In Proceedings of the 23rd International Conference325

on Artificial Intelligence and Statistics (AISTATS), 2020.326

[Lee09] Homin Lee. On the learnability of monotone functions. PhD thesis, Columbia University,327

2009.328

[Qui86] Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.329

[Qui93] Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers330

Inc., San Francisco, CA, USA, 1993.331

9

https://arxiv.org/abs/2006.00743

A Pseudocode for TOPDOWNG332

TOPDOWNG (t, S):

Initialize T ◦ to be the empty tree.
while (size(T ◦) < t) {

1. Score: For each leaf ` ∈ T ◦ and coordinate i ∈ [d], compute:

PurityGainG ,S(`, i) := 2−|`| · LocalGainG ,S(`, i), where

LocalGainG ,S(`, i) := G (E[f(x) | x reaches `])

−
(

1
2 · G (E[f(x) | x reaches `, xi = −1])

+ 1
2 · G (E[f(x) | x reaches `, xi = 1])

)
,

where (x, f(x)) ∼ S.
2. Split: Let (`?, i?) be the tuple that maximizes PurityGainG ,S(`, i). Grow T ◦ by

splitting `? with a query to xi? .
}

Output T ◦S , the completion of T ◦ with respect to S: label each leaf ` ∈ T ◦ with
round(E[f(x) | x reaches `]), where (x, f(x)) ∼ S.

B Provable guarantees for MINIBATCHTOPDOWN333

In this section we will prove Theorem 1. We first need a couple of definitions:334

Definition 3 (Hölder continuous). For C,α > 0, an impurity function G : [0, 1]→ [0, 1] is (C,α)-335

Hölder continuous if, for all a, b ∈ [0, 1],336

|G (a)− G (b)| ≤ C|a− b|α.
Definition 4 (Strong concavity). For κ > 0, an impurity function G : [0, 1] → [0, 1] is κ-strongly337

concave if for all a, b ∈ [0, 1],338

G (a) + G (b)

2
≤ G

(
a+ b

2

)
− κ

2
· (b− a)2.

Theorem 4 (Provable guarantee for MINIBATCHTOPDOWN; formal version of Theorem 1). Let339

f : {±1}d → {0, 1} be a monotone target function and G be any κ-strongly concave and (C,α)-340

Hölder continuous impurity function. For any s ∈ N, ε, δ ∈ (0, 1
2), let t = sΘ(log(s))/ε2 , and S be a341

set of n labeled training examples (x, f(x)) where x ∼ {±1}d is uniform random, and342

n = t · Ω

((
C2 log(s)4

κ2ε4

) 1
α

· log

(
td

δ

)
· log t

)
.

If the minibatch size is at least343

b = Ω

((
C2 log(s)4

κ2ε4

) 1
α

· log

(
td

δ

))
,

then with probability at least 1−δ over the randomness of S and the draws of minibatches from within344

S, the size-t decision tree hypothesis constructed by MINIBATCHTOPDOWNG (t, b,S) satisfies345

errorf (T) ≤ opts + ε.346

B.1 Properties of batches347

We begin by specifying how large the batch size has to be for accurate estimates of local gain. Later348

on, we will turn accurate estimates of local gain to estimates of purity gain that are accurate at least349

half the time.350

10

Lemma B.1 (Every leaf has a batch of size bmin). Let351

bmin = max

(
8, 2 ·

(
2C

∆

) 2
α

)
· loge

(
9td

δ

)

Then with probability at least 1 − δ
3 , every ` satisfying |`| ≤ log(n/(2bmin)) that352

MINIBATCHTOPDOWNG (t, b,S) constructs has a minibatch, B ∼ Batchb(S, `), of size at least353

bmin.354

Proof. It suffices to show that the number of points in S consistent with each of these ` is at least355

bmin. Fix any such ` satisfying |`| ≤ log(n/(2bmin)). The probability an element in S is consistent356

with ` is at least 2bmin

n , meaning the expected number of points consistent with ` is at least 2bmin. By357

the multiplicative Chernoff bound,358

Pr

 ∑
(x,y)∈S

1[xi consistent with `] < bmin

 ≤ expe

(
−1

8
· 2bmin

)
There are at most t leaves that MINIBATCHTOPDOWNG (t, b,S) will ever estimate impurity gain for,359

so as long as,360

bmin ≥ 4 · loge

(
3t

δ

)
,

with probability at least 1− δ/3, all of them will have a minibatch of size at least bmin.361

Lemma B.2 (Batches are balanced). With probability at least 1− δ/3, there are at least bmin

4 points362

(x, y) in B satisfying xi = −1 and bmin

4 points satisfying xi = 1.363

Proof. The mini batch B is formed by choosing at least bmin points that are consistent with `, without364

replacement, from S, which is itself formed by taking points with replacement from {±1}d. This365

means that the mini batch B has at least bmin points without replacement from {±1}d. Fix any ` and366

let btrue be the number of points in B. By Hoeffding’s inequality,367

Pr

[∣∣∣∣btrue

2
− (Number of (x, y) ∈ B where xi = −1)

∣∣∣∣ ≥ btrue

4

]
≤ expe(−

btrue

8
)

≤ expe(−
bmin

8
)

MINIBATCHTOPDOWNG computes LocalGainG ,B(`, i) for at most t different ` and d different i,368

for a total of t · d different computations. As long as369

bmin ≥ 8 · loge

(
3td

δ

)
,

then with probability at least 1−δ/3, both B[xi = −1] and B[xi = 1] will have at least btrue4 ≥ bmin

4370

points.371

Lemma B.3 (Batch size is logarithmic in td). For any f : {±1}d → {0, 1} and n ∈ N, let S be a372

size n sample of points (x, f(x)) where x ∼ {±1}d. Furthermore, let G : [0, 1] → [0, 1] be any373

(C,α)-Hölder continuous impurity function. For any ∆ > 0, and374

b ≥ bmin = max

(
8, 2 ·

(
2C

∆

) 2
α

)
· loge

(
9td

δ

)
with probability at least 1 − δ, any time MINIBATCHTOPDOWNG (t, b,S) computes375

LocalGainG ,B(`, i) for |`| ≤ log(n/(2bmin)) for a mini batch B ∼ Batchb(S, `)376

|LocalGainG ,B(`, i)− LocalGainG ,f (`, i)| ≤ ∆

11

Proof. For any particular `, i, in order to compute LocalGainG ,B we need to estimate three expecta-377

tions:378

G (E[f(x)]

G (E[f(x) | x reaches `, xi = −1]

G (E[f(x) | x reaches `, xi = 1]

Define ε1, ε2, ε3 to be the errors made in computing these expectations so that379

LocalGainG ,B(`, i) := G (E[f(x) | x reaches `] + ε1)

−
(

1
2 · G (E[f(x) | x reaches `, xi = −1] + ε2)

+ 1
2 · G (E[f(x) | x reaches `, xi = 1] + ε3)

)
.

Suppose that ε1, ε2, ε3 are each bounded as380

|εj | ≤
(

∆

2C

) 1
α

(1)

Then, by the definition of Hölder continuous and triangle inequality,381

|LocalGainG ,B(`, i)− LocalGainG ,f (`, i)|
≤ |G (E[f(x) | x reaches `] + ε1)− G (E[f(x) | x reaches `])|

+
1

2
|G (E[f(x) | x reaches `, xi = −1] + ε2)− G (E[f(x) | x reaches `, xi = −1])|

+
1

2
|G (E[f(x) | x reaches `, xi = 1] + ε3)− G (E[f(x) | x reaches `, xi = 1])|

≤ C · (|ε1|α +
1

2
· |ε2|α +

1

2
· |ε3|α)

≤ ∆

Therefore, it is enough to show that for all `, i, the corresponding ε1, ε2, ε3 satisfy Equation (1).382

By Lemma B.1 and Lemma B.2, with high probability all of these expectations are over at least bmin

4383

terms. Given the above is true, we can use Hoeffding’s inequality to bound each εj ,384

Pr

[
|εj | >

(
∆

2C

) 1
α

]
≤ expe

(
−2 · bmin

4
·
(

∆

2C

) 2
α

)
.

There are a total of at most 3td such εj we wish to bound. Setting bmin to at least385

2 ·
(

2C

∆

) 2
α

· loge

(
9td

δ

)
means all are bounded as desired with probability at least 1− δ/3.386

B.2 Properties of MiniBatchTopDown387

As we discussed in Section 2, a key component of [BLT20a]’s analysis is a proof that if errorf (T ◦S) >388

opts + ε, there must exist a leaf `? ∈ T ◦ and a coordinate i? ∈ [d] such that389

PurityGainG ,f (`?, i?) >
κε2

32j(log s)2
. (2)

Based on how we set ∆ in Lemma B.3, MINIBATCHTOPDOWNG will be able to estimate all local390

gains to additive accuracy ±O(κε2

log(s)2). That accuracy, in conjunction with just Equation (2), is not391

sufficient to prove that MINIBATCHTOPDOWNG will produce a low error tree. Instead, we need the392

following additional fact that [BLT20a] proved one step prior to showing Equation (2); in fact, it393

implies Equation (2) but is stronger, and that strength is needed for our purposes.394

12

Fact B.4 (Showed during the proof of Theorem 2 of [BLT20a]). Let T ◦ be any partial tree. For any395

f : {±1}d → {0, 1} and κ-strongly concave impurity function G : [0, 1]→ [0, 1], if errorf (T ◦S) >396

opts + ε, then397 ∑
leaves ` ∈ T◦

max
i∈[d]

(
PurityGainG ,f (`, i)

)
>

κ

32
·
(

ε

log s

)2

.

Fact B.4 implies Equation (2) because, if T ◦ is size j and the total purity gains of all of its leaves398

is some value z, then at least one leaf has purity gain z
j . We use Fact B.4 to show that, whenever399

MINIBATCHTOPDOWNG picks a leaf that is neither too deep nor too high in the tree, it has picked a400

leaf and index with relatively large purity gain.401

Lemma B.5 (Medium depth splits are good.). Choose any max depth D ∈ N. Let f : {±1}d →402

{0, 1} be a monotone target function and G be any κ-strongly concave and (C,α)-Hölder continuous403

impurity function. For any s ∈ N, ε, δ ∈ (0, 1
2), let t = sO(log(s))/ε2 , and S be a set of n labeled404

examples (x, f(x)) where x ∼ {±1}d is uniform random,405

n = Ω

((
C2 log(s)4

κ2ε4

) 1
α

· log

(
td

δ

)
· 2D

)
and406

b = Ω

((
C2 log(s)4

κ2ε4

) 1
α

· log

(
td

δ

))
.

Then, with probability at least 1 − δ, the following holds for all iterations of407

MINIBATCHTOPDOWNG (t, b,S). If, at iteration j, T ◦ satisfies,408

errorf (T ◦Batchb(S)) ≥ opts + 2ε,

let (`?, i?) be the leaf and coordinate chosen to maximize the PurityGainG ,B . Then, if409

log(j)− 2 ≤ | `? | ≤ D,
then410

PurityGainG ,f (`?, i?) >
κ

64
· ε2

j(log s)2
.

Proof. For the values of n and b given in this lemma statement, using Lemma B.3, we have for411

∆ = κ
32·10 · (

ε
log s)2, for all leaves with |l| ≤ D412

|LocalGainG ,B(`, i)− LocalGainG ,f (`, i)| ≤ κ

32 · 10
· (ε

log s
)2 (3)

with probability atleast 1− δ.413

Since errorf ((T ◦)Batchb(S)) ≥ opts + 2ε and using lemma B.1, we know that errorf ((T ◦)S) ≥414

opts + ε since the batch size is large enough, we can use Fact B.4 to lower bound the estimated purity415

gain of `? and i?. Let c = κ
32416 ∑

leaves ` ∈ T◦
max
i∈[d]

(
PurityGainG ,f (`, i)

)
> c ·

(
ε

log s

)2

Fact B.4

∑
leaves ` ∈ T◦

2−|`| ·max
i∈[d]

(LocalGainG ,f (`, i)) > c ·
(

ε

log s

)2

∑
leaves ` ∈ T◦

2−|`| ·max
i∈[d]

(LocalGainG ,B(`, i)) >
9c

10
·
(

ε

log s

)2

Equation (3) and
∑
` 2−|`| = 1

∑
leaves ` ∈ T◦

max
i∈[d]

(
PurityGainG ,B(`, i)

)
>

9c

10
·
(

ε

log s

)2

13

Since there are j leaves in T ◦ and `?, i? are chosen to maximize PurityGainG ,B(`?, i?),417

PurityGainG ,B(`?, i?) >
9c

10j
·
(

ε

log s

)2

.

Next, we show that since `∗ is sufficiently far down in the tree, then the estimated purity gain and418

true purity gain are close.419

|PurityGainG ,B(`?, i?)−PurityGainG ,f (`?, i?)|

= 2−|`
?| · |LocalGainG ,B(`?, i?)− LocalGainG ,f (`?, i?)|

≤ 2−|`
?| · c

10
·
(

ε

log s

)2

eq. (3)

≤ 4

j
· c

10
·
(

ε

log s

)2

|`?| ≥ log(j)− 2

By triangle inequality, we have that PurityGainG ,f (`?, i?) > c
2j ·

(
ε

log s

)2

, the desired result.420

421

Given that we are only guaranteed to make good progress on splits that are neither too deep nor too422

shallow, we will need to deal with both possibilities. First, we show that if we ever wanted to make423

too deep a split, we would already be done.424

Lemma B.6 (Can stop at very large depth.). Let f : {±1}d → {0, 1} be a monotone target function425

and G be any κ-strongly concave and (C,α)-Hölder continuous impurity function. For any s ∈ N,426

ε, δ ∈ (0, 1
2), let427

t = sΘ(log(s))/(κε2), (4)
set the max depth to428

D = blog(t) + log log tc, (5)

let S be a set of n labeled examples (x, f(x)) where x ∼ {±1}d is uniform random,429

n = Ω

((
C2 log(s)4

κ2ε4

) 1
α

log

(
td

δ

)
· 2D

)
= polyα,κ,C(t, log(d), log(1/δ)),

and batch size at least430

b = Ω

((
C2 log(s)4

κ2ε4

) 1
α

log

(
td

δ

))
.

Let T ◦1 , T ◦2 , . . . , T
◦
t be the size 1, 2, . . . , t partials trees that MINIBATCHTOPDOWNG (t, b,S) builds.431

With probability 1− δ over the randomness of S and the random batches, for any k ∈ [t], if T ◦k has432

depth more than D, then433

errorf ((T ◦k)Batchb(S)) ≤ opts + 2ε. (6)

Proof. Let k be chosen so that T ◦k has depth more than D. For some j ≤ k, there was a leaf `? ∈ T ◦j434

that was split, satisfying,435

|`?| = blog(t) + log log tc − 1

= blog(t) + log
(
Θ
(
(log s)2/(κε2)

))
c − 1.

For any i ∈ [d],436

PurityGainG ,f (`?, i) = 2−|`
?|LocalGainG ,f (`?, i)

≤ 2−|`
?|

≤ 1

t
·Θ

((
(log s)2

κε2

)−1
)

≤ 1

j
·Θ
(

κε2

log s)2

)
. (7)

14

Note that the constant in Equation (7) is inversely related to the constant in the exponent of Equa-437

tion (4). In Lemma B.5, we showed that if errorf ((T ◦j)Batchb(S)) ≥ opts + ε, then for some438

i? ∈ [d],439

PurityGainG ,f (`?, i?) = Ω

(
κε2

j(log s)2

)
. (8)

If we choose the constant in Equation (7) sufficiently low, which can be done by making the constant in440

Equation (4) sufficiently high, then that equation can not be satisfied at the same time as Equation (8).441

Therefore, it must be that errorf ((T ◦j)Batchb(S)) < opts + ε. Since j < k, and adding splits can only442

increase error by atmost ε, it must also be the case that errorf ((T ◦k)Batchb(S)) < opts + 2ε.443

We next show that before Lemma B.6 kicks in, most splits are sufficiently deep to make good progress.444

Lemma B.7 (Few splits are shallow). Let k = 2a be any power of 2 and T ◦1 , . . . , T
◦
k be a series of445

bare trees of size 1, . . . , k respectively where Tj+1 is formed by splitting `j ∈ Tj . Then,446

k∑
j=1

1
[
|`j | < log(j)− 2

]
≤ k

4

Proof. First, since for all j = 1, . . . , k, j ≤ k, we can bound,447

k∑
j=1

1
[
|`j | < log(j)− 2

]
≤

k∑
j=1

1
[
|`j | < log(k)− 2

]
=

k∑
j=1

1
[
|`j | < a− 2

]
.

If `j , a leaf of T ◦j , has depth less than a − 2, then it is also an internal node of T ◦k with depth less448

than a− 2. There are at most 2a−2 − 1 nodes in any tree of depth less than a− 2. Therefore,449

k∑
j=1

1[|`j | ≤ a− 2] ≤ 2a−2 − 1 ≤ k

4
− 1 ≤ k

4
.

450

B.3 Final proof of Theorem 1451

Proof. MINIBATCHTOPDOWNG builds a series of bare trees, T ◦1 , T
◦
2 , . . . , T

◦
t , where Tj has size j.452

We wish to prove that errorf ((T ◦t)Batchb(S)) ≤ opts + 3ε (In the end, we can choose ε appropriately453

to get error opts + ε). To do so, we consider two cases.454

Case 1: There is some k < t for which errorf ((T ◦k)Batchb(S)) ≤ opts + 2ε.455

Since splitting more variables of Tk can only increase it’s error by at most ε,456

errorf ((T ◦t)Batchb(S)) ≤ errorf ((T ◦k)Batchb(S)) + ε ≤ opts + 3ε,

which is the desired result.457

Case 2: There is no k < t for which errorf ((T ◦k)Batchb(S)) ≤ opts + ε.458

459

In this case, we use Lemma B.5 to ensure we make good progress. Lemma B.5 only applies when the460

tree has depth at most D = log t+ log log t. Luckily, Lemma B.6 ensures that if the tree has depth461

more than D, then we are ensured that errorf ((T ◦t)Batchb(S)) ≤ opts + 2ε, and so are done. For the462

remainder of this proof, we assume all partial trees have depth at most D.463

We will show that G -impurity(T ◦t) = 0, which means that errorf ((T ◦t)Batchb(S)) = 0 ≤ opts + 2ε,464

also proving the desired result. For j = 1, . . . , t− 1, let `j be the leaf of Tj that is split, and ij be the465

coordinate placed at `j to form Tj+1. Then,466

G -impurity(T ◦t) = G -impurity(T ◦1)−
t−1∑
j=1

PurityGainG ,f (`j , ij).

15

Since G -impurity(T ◦1) ≤ 1 and our goal is to show that G -impurity(T ◦t+1) = 0, it is sufficient to467

show that
∑t
j=1 PurityGainG ,f (`j , ij) ≥ 1. Lemma B.5 combined with Fact B.4,468

t∑
j=1

PurityGainG ,f (`j , ij) ≥
t∑

j=1

1[|`j | ≥ log(j)− 2] · κ

64j
·
(

ε

log s

)2

We break the above summation into chunks from j = (2a + 1) to j = 2a+1, integer a ≤ log(t). In469

such a chunk, there are 2a choices for j. By Lemma B.7, we know that for at most 2a+1/4 = 2a/2470

of those j is 1[|`j | < log(j)− 2]. Therefore,471

2a+1∑
j=2a+1

1[|`j | ≤ log(j)− 2] · κ

64j
·
(

ε

log s

)2

≥ 2a

2
· κ

64 · (2a+1)
·
(

ε

log s

)2

=
κ

256
·
(

ε

log s

)2

Summing up 256
κ ·

(
log s
ε

)2

such chunks gives a sum of at least 1. Therefore, for472

t = exp

(
Ω

(
(log s)2

κε2

))
it must be the case that G -impurity(T ◦t+1) = 0, proving the desired result.473

C Estimating the size of a decision tree474

In this section, we design a decision tree size estimator. This size estimator only needs to inspect a475

small number of random strands from the decision tree. It is unbiased, and as long as the decision476

tree has a bounded max depth, obeys concentration bounds shown in Lemma C.1.477

Lemma C.1 (Size estimator). For any ∆, δ > 0 and size-s decision tree T , let `? be the deepest leaf478

in T and479

m =
(2|`

?|)2

2∆2
· ln
(

2

δ

)
.

Choose x1, . . . ,xm uniformly random from {±1}d and define the estimator480

e :=
1

m

m∑
i=1

2|`T (xi)|.

With probability at least 1− δ,481

|e− s| ≤ ∆.

Proof. We first show that E[e] = s.482

E[e] = E
x∼{±1}d

[
2|`T (x)|

]
=

∑
leaves ` ∈ T

Pr[x reaches `] · 2|`|

=
∑

leaves ` ∈ T

1

2|`|
· 2|`|

= s,

where the last equality is due to the fact that a size-s tree has s leaves. Furthermore, e is the sum of483

m independent random variables bounded between 0 and 2|`
?|. Therefore, we can apply Hoeffding’s484

inequality,485

Pr[|e− s| ≥ ∆] ≤ 2 expe

(
− 2m∆2

(2|`?|)2

)
.

Plugging in m proves the desired result.486

16

D Provable guarantees for LOCALLEARNER487

In order to facilitate comparisons between the output of LOCALLEARNERG and488

MINIBATCHTOPDOWNG , we will define another algorithm, TOPDOWNSIZEESTIMATEG , that489

shares some elements with LOCALLEARNERG and some elements with MINIBATCHTOPDOWNG .490

TOPDOWNSIZEESTIMATEG (t, b, S):

Initialize T ◦ to be the empty tree.
Define D := log t+ log log t.
Let B◦strands be b uniform random points from {±1}d.
Initialize e := 1, our size estimate.
while (e < t) {

1. Score: For each leaf ` ∈ T ◦ of depth at most D, draw B ∼ Batchb(S, `). For each
coordinate i ∈ [d], compute:

PurityGainG ,B(`, i) := 2−|`| · LocalGainG ,B(`, i), where

LocalGainG ,B(`, i) := G (E[f(x)])

−
(

1
2 G (E[f(x) | xi = −1]) + 1

2 G (E[f(x) | xi = 1])
)
,

where the expectations are with respect to (x, f(x)) ∼ B.
2. Split: Let (`?, i?) be the tuple that maximizes PurityGainG ,B(`, i). Grow T ◦ by

splitting `? with a query to xi? .
3. Estimate size: Update our size estimate to

e = E
x∈X

[2|`T◦ (x)|]
}

For each leaf ` ∈ T ◦, draw B ∼ Batchb(S, `) and label ` with round(E(x,f(x))∼B[f(x)]).

Figure 4: TOPDOWNSIZEESTIMATEG takes as input a size parameter t, a minibatch size
b, and a labeled dataset S. It outputs a size-t′ decision tree hypothesis for f , where t′ is
close to t.

Comparison between MINIBATCHTOPDOWNG and TOPDOWNSIZEESTIMATEG : The only491

difference between MINIBATCHTOPDOWNG and TOPDOWNSIZEESTIMATEG is the stopping cri-492

terion. MINIBATCHTOPDOWNG stops when the size of T ◦ is exactly t. On the other hand,493

TOPDOWNSIZEESTIMATEG estimates the size of T ◦ using the estimator from Appendix C and494

stops when this size estimate is at least t.495

Comparison between LOCALLEARNERG and MINIBATCHTOPDOWNG : For any t, S, b, x?496

that are valid inputs to LOCALLEARNERG , we compare the following two procedures.497

1. Running TOPDOWNSIZEESTIMATEG (t, b, S) to get a decision tree, T , and then computing498

T (x?).499

2. Only running LOCALLEARNERG (t, b, S, x?).500

We claim the output from the above two procedures is identical (given Footnote 2).501

TOPDOWNSIZEESTIMATEG expands all paths in the tree its building, whereas LOCALLEARNERG502

only expands paths that are pertinent to either the input x?, or inputs in B◦strands, which are used to503

compute the size estimate. Aside from that, both of the above procedures are identical. Furthermore,504

paths not containing x? nor any inputs in B◦strands have no effect on how the tree eventually labels x?.505

Therefore, the output of the two above procedures is identical, though LOCALLEARNERG is more506

efficient as it only computes necessary paths.507

Combining the above observations, we are able to prove the formal version of Theorem 2.508

17

Theorem 5 (Formal version of Theorem 2). Let f : {±1}d → {0, 1} be a target function, G be an509

impurity function, and S◦ be an unlabeled training set.510

For all t ∈ N and η, δ ∈ (0, 1
2), if the minibatch size is at least511

b = Ω

(
(log t)2

η2
· log

(
t

δ

))
,

then with probability at least 1− δ over the randomness of B◦strands, there is some t′ ∈ [t−ηt, t+ηt]512

for which the following holds. For all x? ∈ {±1}d, LOCALLEARNERG (t, b, S◦, x?) labels513

q = O(b2 log t)

points within S◦ and returns T (x?), where T is the size-t′ decision tree hypothesis that514

MINIBATCHTOPDOWNG (t′, b, S) would construct, and S is the labeled dataset obtained by la-515

beling all of S◦ with f ’s values.516

We break the proof of Theorem 5 into two pieces. First, we show that it labels only O(b2 log t) points517

within S◦, and then the rest.518

Lemma D.1 (Label efficiency of LOCALLEARNERG). Let f : {±1}d → {0, 1} be a target function,519

G be an impurity function, and S◦ be an unlabeled training set. For any b, t ∈ N and x? ∈ {±1}d,520

LOCALLEARNERG (t, b, S◦, x?) labels at most521

q = O(b2 log t)

points within S◦.522

Proof. It is sufficient for us to show that LOCALLEARNERG labels at most O(b log t) batches.523

LOCALLEARNERG builds a series of bare trees T ◦1 , . . . , T
◦
t′ . During the while loop, the number of524

batches it labels is equal to nodes in the following set525

L :=

t′⋃
j=1

{
`T◦j (x) : x ∈ B◦strands ∪ {x?}, |`T◦j (x)| ≤ D

}
Consider a single x ∈ B◦strands ∪ {x?}, and define526

L(x) :=
{
`T◦j (x) : j ∈ [t′], |`T◦j (x)| ≤ D

}
.

Every node in L(x) has depth at most D, and there is at most one node in L(x) per depth. Therefore,527

|L(x)| ≤ D, and528

|L| ≤
∑

x∈B◦strands∪{x?}

|L(x)|

≤ (b+ 1)D

= O(b log t).

Therefore, LOCALLEARNERG labels only O(b log t) batches during the while loop. After the while529

loop, it labels at most 1 additional batches. Therefore, it labels a total of O(b log t) batches which530

requires labeling O(b2 log t) points.531

We next prove the remainder of Theorem 5.532

Proof. Let T be the tree that TOPDOWNSIZEESTIMATEG (t, b, S) produces. In the comparison533

between LOCALLEARNERG and TOPDOWNSIZEESTIMATEG , we established that, for all x? ∈534

{±1}d,535

LOCALLEARNERG (t, b, S, x?) = T (x?).

Set t′ = |T |. Then, T is also the output of MINIBATCHTOPDOWNG (t′, b,S), as desired. Next, we536

prove that t′ ∈ [t− ηt, t+ ηt] with probability at least 1− δ.537

18

Let T ◦1 , T
◦
2 , . . . , T

◦
t′ be the bare trees of size 1, 2, . . . , t′ that TOPDOWNSIZEESTIMATEG (t, b,S) pro-538

duces, and let e1, e2, . . . et′ be the corresponding size estimates. Since TOPDOWNSIZEESTIMATEG539

halts when the size estimate is at least t,540

et′ ≥ t and et′−1 < t.

We set ∆ := ηt and wish, for all 1 ≤ j ≤ t + ηt, that ej estimate the size of T ◦j to accuracy ±∆.541

Since the size of T ◦j is j, we equivalently wish for542

|ej − j| ≤ ∆ for all j = 1, . . . , t+ ηt. (9)
Each T ◦j has max depth at most log t+ log log t. By Lemma C.1 and a union bound over all t+ ηt543

different j, we can guarantee that Equation (9) holds with probability at least 1− δ if we set544

b ≥ (2log t+log log t)2

2∆2
· ln
(

2t(1 + η)

δ

)
=Ω

(
(t log t)2

(ηt)2
· log

(
t

δ

))
=Ω

(
(log t)2

η2
· log

(
t

δ

))
.

Therefore, for the b we set in Theorem 5, Equation (9) holds with probability at least 1− δ. For the545

remainder of this proof, we suppose it holds and then show that the t′ ∈ [t − ηt, t + ηt]. We first546

show that t′ ≤ t+ ηt. By Equation (9), for j = t+ ηt,547

e(t+ηt) ≥ (t+ ηt)−∆

≥ t.
Recall that t′ is the lowest integer such that et′ ≥ t. Therefore, t′ ≤ t + ηt. We next show that548

t′ ≥ t− ηt. By Equation (9) for j = t′ ≤ t+ ηt,549

t′ ≥ et′ −∆

≥ t− ηt.
Therefore, Equation (9) implies t′ ∈ [t− ηt, t+ ηt] proving that with probability at least 1− δ.550

551

Finally, we show that the following algorithm estimates learnability.552

ESTG (t, b, S◦, Stest):

Return
1

|Stest|
∑

(x,y)∈Stest

1
[
LOCALLEARNERG (t, b, S◦, x) 6= y

]

Figure 5: ESTG takes as input a size parameter t, a minibatch size b, and an unla-
beled dataset S◦ and labeled test set Stest. It outputs the error of the tree returned by
MINIBATCHTOPDOWN(t′, b, S) with respect to Stest, where S is the labeled version
of S◦ and t′ is close to t. As in Footnote 2, the random outcome of B◦strands and the
minibatches should be consistent across all runs of LOCALLEARNERG .

Theorem 6 (Formal version of Theorem 3). Let f : {±1}d → {0, 1} be a target function, G be an553

impurity function, S◦ be an unlabeled training set, and Stest be a labeled test set.554

For all t ∈ N and η, δ ∈ (0, 1
2), if the minibatch size b is as in Theorem 5, then with probability at555

least 1− δ over the randomness of B◦strands, ESTG (t, b, S◦, Stest) labels556

q = O(|Stest| · b log t+ b2 log t)

points within S◦ and returns557

errorStest
(T) := Pr

(x,y)∼Stest

[T (x) 6= y],

where T is as in Theorem 5.558

19

Proof. Based on Theorem 5, ESTG returns the desired result, so we only need to prove it labels559

few points within S◦. As in Footnote 2, the same B◦strands are chosen across multiple runs of560

LOCALLEARNERG . As shown in Lemma D.1, the total number of points it labels is O(b log t) ∗561

m, where m is the number of strands built. ESTG needs to build b strands for points within562

B◦strands and |Stest| strands for the points within Stest. As long as it caches its labels across runs of563

LOCALLEARNERG , the total labels used will be564

q = O(b log t) · (b+ |Stest|) = O(|Stest| · b log t+ b2 log t).

565

20

	Introduction
	Top-down decision tree learning
	Formal statements of our results

	Proof overview for thm:upper bound mini batch
	Proof overviews for thm:local learner,thm:estimate-learn
	Conclusion
	Pseudocode for TopDownG
	Provable guarantees for MiniBatchTopDown
	Properties of batches
	Properties of MiniBatchTopDown
	Final proof of thm:upper bound mini batch

	Estimating the size of a decision tree
	Provable guarantees for LocalLearner

