
Supplementary Material

1. Training normalizing flows

Energy-based training and forward weight maximization. If the target density µX is known up
to a constant ZX , we minimize the forward KL divergence between the generated and the target
distribution.

KL(pX ‖ µX) (23)
= Ex∼pX(x) [log pX(x)− logµX(x)]

= Ez∼µZ(z) [uX(FZX(z))−∆SZX(z)] + const.

The importance weights wrt the target distribution can be computed as:

wX(x) = exp (−uX (FZX(z)) + uZ(z) + ∆SZX(z)) ∝ µX(x)

pX(x)
. (24)

As Ez∼pZ(z) [uZ(z)] is a constant, we can equivalently minimize KL or maximize log weights:

maxEz∼pZ(z) [logwX(x)] = min KL(pX ‖ µX), (25)

Maximum likelihood and backward weight maximization. The backward KL divergence
KL(µX ‖ pX) is not always tractable as µX(x) can be difficult to sample from. Replacing µX(x)
by the empirical data distribution ρX(x), the KL becomes a negative log-likelihood:

NLL(ρX ‖ pX) (26)
= Ex∼ρX(x) [uZ(FXZ(x))−∆SXZ(x)] + const.

Using Ex∼ρX(x) [− log ρX(x)] = const and the weights:

wZ(z) = exp (−uZ (FXZ(x))− log ρX(x) + ∆SXZ(x)) ∝ µZ(z)

pZ(z)
,

maximum likelihood equals log weight maximization:

maxEx∼ρX(x) [logwZ(z)] = min NLL(ρX ‖ pX). (27)

2. Proof of theorem 1 (unbiased sampling with SNF importance weights)

Considering

EµX
[O] =

∫
µX(x)O(x)dx

=

∫∫
µX(x)Pb(x→ z)O(x)dzdx

=

∫∫
µZ(z)Pf (z→ x)

[
µX(x)Pb(x→ z)

µZ(z)Pf (z→ x)
O(x)

]
dzdx

= Ef
[
µX(x)Pb(x→ z)

µZ(z)Pf (z→ x)
O(x)

]
,

where Ef denotes the expectation over forward path realizations. In practice, we do not know the
normalization constant of µX and we therefore replace µX(x)Pb(x→z)

µZ(z)Pf (z→x) by the unnormalized path
weights in Eq. (11). Then we must normalize the estimator for expectation values, obtaining:∑N

k=1 w(zk → xk)O(xk)∑N
k=1 w(zk → xk)

p→ Eµ[O]

which converges towards Eµ[O] with N →∞ according to the law of large numbers.

1

3. Derivation of the deterministic layer probability ratio

In order to work with delta distributions, we define δσ(x) = N (x;0, σI), i.e. a Gaussian normal
distribution with mean 0 and variance σ and then consider the limit σ → 0+. In the case where
σ > 0, by defining

qσt (yt → yt+1) = δσ(yt+1 − Ft(yt)),
and

q̃σt (yt+1 → yt) =
pt(yt)q

σ
t (yt → yt+1)∫

pt(y)qσt (y→ yt+1)dy

=
pt(yt)δ

σ(yt+1 − Ft(yt))∫
pt(y)δσ(yt+1 − Ft(y))dy

,

we have
q̃σt (yt+1 → yt)

qσt (yt → yt+1)
=

pt(yt)∫
pt(y)δσ(yt+1 − F (y))dy

,

where pt(yt) denotes the marginal distribution of yt. By considering

lim
σ→0+

∫
pt(y)δσ(yt+1 − Ft(y))dy = lim

σ→0+

∫
pt(F

−1
t (y′))δσ(yt+1 − y′)

∣∣∣∣det

(
∂F−1t (y′)

∂y′

)∣∣∣∣ dy′
= pt(F

−1
t (yt+1))

∣∣∣∣det

(
∂F−1t (yt+1)

∂yt+1

)∣∣∣∣
= pt(yt) |detJt(yt)|−1

and using the definition of ∆St in terms of path probability rations, we obtain:

exp (∆St) =
q̃t(yt+1 → yt)

qt(yt → yt+1)
= lim
σ→0+

q̃σt (yt+1 → yt)

qσt (yt → yt+1)

= lim
σ→0+

pt(yt)∫
pt(y)δσ(yt+1 − F (y))dy

= |detJt(yt)|
and thus

∆St = log |detJt(yt)| .

4. Derivation of the overdamped Langevin path probability ratio

These results follow [31]. The backward step is realized by

yt = yt+1 − εt∇uλ(yt+1) +

√
2ε

β
η̃t. (28)

Combining Equations (18) and (28):

−εt∇uλ(yt) +

√
2εt
β

ηt = εt∇uλ(yt+1)−
√

2εt
β

η̃t.

and thus

η̃t =

√
εtβ

2
[∇uλ(yt) +∇uλ(yt+1)]− ηt.

Resulting in the path probability ratio:

exp (∆St) =
qt(yt+1 → yt)

qt(yt → yt+1)
=

p(η̃t)
∣∣∣ ∂yt

∂η̃t

∣∣∣
p(ηt)

∣∣∣det
(
∂yt+1

∂ηt

)∣∣∣
=
p(η̃t)

p(ηt)
= e−

1
2 (‖η̃t‖2−‖ηt‖2).

and thus
−∆St =

1

2

(
‖η̃t‖

2 − ‖ηt‖
2
)

2

5. Derivation of the Langevin probability ratio

These results follow [31]. We define constants:

c1 =
∆t

2m

c2 =

√
4γm

∆tβ

c3 = 1 +
γ∆t

2

Then, the forward step of Brooks-Brünger-Karplus (BBK, leap-frog) Langevin dynamics are defined
as:

v′ = vt + c1 [−∇uλ(xt)− γmvt + c2ηt] (29)

xt+1 = xt + ∆tv′ (30)

vt+1 =
1

c3
[v′ + c1 (−∇uλ(xt+1) + c2η

′
t)] (31)

Note that the factor 4 in sqrt is different from [31] – this factor is needed as we employ ∆t/2 in both
half-steps. The backward step with reversed momenta, (xt+1,−vt+1)→ (xt,−vt) is then defined
by:

v′′ = −vt+1 + c1 [−∇uλ(xt+1) + γmvt+1 + c2η̃t] (32)

xt = xt+1 + ∆tv′′ (33)

−vt =
1

c3

[
v′′ + c1

(
−∇uλ(xt) + c2η̃

′
t

)]
(34)

To compute the momenta η̃t, η̃
′
t that realize the reverse step, we first combine Eqs. (30-33) to obtain:

v′ = −v′′ (35)

Combining Eqs. (31), (32) and (35), we obtain:(
1 +

γ∆t

2

)
vt+1 = v′ + c1 (−∇uλ(xt+1) + c2η

′
t)(

1− γ∆t

2

)
vt+1 = v′ + c1 (−∇uλ(xt+1) + c2η̃t) ,

and:

η̃t = η′t −
√
γ∆tmβvt+1

Combining Eqs. (29), (34) and (35), we obtain:

−vt
(

1− γ∆t

2

)
= v′′ + c1 (−∇uλ(xt) + c2ηt)

−vt
(

1 +
γ∆t

2

)
= v′′ + c1

(
−∇uλ(xt) + c2η̃

′
t

)
,

and:

−vt
(

1− γ∆t

2

)
− c2ηt = −vt

(
1 +

γ∆t

2

)
− c2η̃′t

η̃′t = ηt −
√
γ∆tmβvt

To compute the path probability ratio we introduce the Jacobian

J(ηt,η
′
t) = det

[
∂xt+1

∂ηt

∂vt+1

∂ηt
∂xt+1

∂η′t

∂vt+1

∂η′t

]

3

and find:

exp (∆St) =
q̃t ((xt+1,−vt+1)→ (xt,vt))

qt ((xt,vt)→ (xt+1,−vt+1))

=
p(η̃t)p(η̃

′
t)J(η̃t, η̃

′
t)

p(ηt)p(η
′
t)J(ηt,η

′
t)

−∆St =
1

2

((
‖η̃t‖

2
+
∥∥η̃′t∥∥2)− (‖ηt‖2 + ‖η′t‖

2
))

where the Jacobian ratio cancels as the Jacobians are independent of the noise variables.

6. Derivation of the probability ratio for Markov Chain Monte Carlo

For MCMC, qt satisfies the detailed balance condition

exp(−uλ(yt)) · qt(yt → yt+1) = exp(−uλ(yt+1)) · q̃t(yt+1 → yt)

with respect to the potential function uλ. We have

∆St = log
q̃t(yt+1 → yt)

qt(yt → yt+1)

= log
exp(−uλ(yt))

exp(−uλ(yt+1))

= uλ(yt+1)− uλ(yt)

7. Derivation of the probability ratio for Hamiltonian MC with Metropolis acceptance

Hamiltonian MC with Metropolis acceptance defines a forward path density

qt
(
(yt,v)→ (yt+1,v

K)
)

which satisfies the joint detailed balance condition

exp(−uλ(yt))N (v|0, I) · qt
(
(yt,v)→ (yt+1,v

K)
)

= exp(−uλ(yt+1))N (vK |0, I) · q̃t
(
(yt+1,v

K)→ (yt,v)
)
. (36)

Considering the velocity v is independently drawn from N (v|0, I), the “marginal” forward path
density of yt → yt+1 is

qt (yt → yt+1) =

∫∫
N (v|0, I) · qt

(
(yt,v)→ (yt+1,v

K)
)

dvdvK .

Then, it can be obtained from (36) that

exp(−uλ(yt))qt (yt → yt+1) =

∫∫
exp(−uλ(yt))N (v|0, I)

(
(yt,v)→ (yt+1,v

K)
)

dvdvK

=

∫∫
exp(−uλ(yt+1))N (vK |0, I)q̃t

(
(yt+1,v

K)→ (yt,v)
)

dvdvK

= exp(−uλ(yt+1))q̃t (yt+1 → yt) ,

and

∆St = log
q̃t (yt+1 → yt)

qt (yt → yt+1)

= uλ(yt+1)− uλ(yt)

8. Details on using SNFs for variational inference

Here we elaborate on the details of using SNFs as a variational approximation of the posterior
distribution of a variational autoencoder (VAE) [21] as presented in our last results section. In
contrast to the usual notation used in common VAE literature, we choose x to indicate the latent

4

variable, while we call the observed variable s. This is due to being consistent with the use of x as
the sampled variable of interest throughout our former discussions.

For a given data set {s1, . . . , sN}, the decoder D of a VAE characterizes each s as a random variable
with a tractable distribution PD(s|x) depending on a unknown latent variable x. Furthermore, the
prior distribution is assumed to be tractable as well (e.g. an isotropic normal distribution). Here we
take the prior

P(x) = N (x | 0, I).
Together, this defines the joint distribution

PD(x, s) = P(x) · PD(s|x).

Conditioned on a given s, we can utilize a SNF to approximate the posterior distribution

PD(x|s) =
PD(x, s)

PD(s)
.

For convenience and consistency with the former discussion, we define µX(x) = PD(x|s) and
uX(x) = − logPD(x, s). Thus, the parameters of the SNF and the decoder D can be trained by
minimizing JKL which provides an upper bound of the negative log-likelihood of s as follows:

JKL(s) = Ez∼µZ ,y1,...,yT
[uX(yT)−

T−1∑
t=0

∆St]

= Ez∼µZ ,y1,...,yT
[− logµX(yT)−

T−1∑
t=0

∆St]− logPD(s)

= KL(µZ(z)Pf (z→ x) ‖ µX(x)Pb(x→ z))− logPD(s)

≥ − logPD(s)

If the SNF consists of only deterministic transformations, JKL is equivalent to F in [35].

We estimate JKL(s) on samples as

ĴKL(s) =
1

M

M∑
i=1

uX(y
(i)
T)−

T−1∑
t=0

∆S
(i)
t , (37)

by sampling M paths {(y(i)
0 , . . . ,y

(i)
T)}Mi=1 for each s and setting M = 5.

Estimating the evidence. After training we approximate − logPD(s) by marginalizing out the
latent variable x via Monte Carlo sampling. In order to improve sampling efficiency and have a fair
comparison among the three different SNF instantiations, we approximate the posterior distribution
PD(x|s) of the trained model using the same variational approximation:

1. We define a simple base distribution q(z) = N (z|0, I), together with a conditional diffeo-
morphism FLL(x|s) transforming z to x and vice-versa conditioned on s:

F−1LL(·|s)
x � z.

FLL(·|s)
We realize such a conditional flow via RealNVP transformations, where coupling layers are
additionally conditioned on s and only x/z is transformed during the flow. Together with
q(z) this defines the conditional distribution

qLL(x|s) = q(F−1LL(x|s))
∣∣∣∣det

(
∂F−1LL(x|s)

∂x

)∣∣∣∣
which we use as variational approximation to the true posterior. We then train qLL by
minimizing the KL divergence

Es,z∼q(z) [log qLL(FLL(z|s)|s)− logP(FLL(z|s))− logPD(s|FLL(z|s))] + const.

until convergence. This loss is minimized iff qLL(x|s) = PD(x|s).

5

2. Now considering

PD(s) =

∫
P(x)PD(s|x)dx

=

∫
qLL(x|s)P(x)PD(s|x)

qLL(x|s)
dx

=Ex∼qLL(x|s)

[
P(x)PD(s|x)

qLL(x|s)

]

=Ez∼N (z|0,I)

P(FLL(z|s))PD(s|FLL(z|s))

q(z)
∣∣∣det

(
∂F−1

LL(x|s)
∂x

)∣∣∣−1
 ,

we can draw N samples z(1), . . . , z(N) and approximate PD(s) by

P̂D(s) =
1

N

N∑
i=1

P(FLL(z(i)|s))PD(s|FLL(z(i)|s))

q(z(i))
∣∣∣det

(
∂F−1

LL(x|s)
∂x

)∣∣∣−1 .

In experiments, N is set to be 2000.

In table 3, the first column is the mean value of ĴKL(s) on the test data set as a variational bound
of the mean of − log p(s) (related to Fig. 4a in [35]). The second column is the mean value of
− log P̂D(s) on the test data set (related to Fig. 4c in [35]).

9. Hyper-parameters and other benchmark details

All experiments were run using PyTorch 1.2 and on GTX1080Ti cards. Optimization uses Adam [20]
with step-size 0.001 and otherwise default parameters. All deterministic flow transformations use
RealNVP [6]. A RealNVP block is defined by two subsequent RealNVP layers that are swapped such
that each channel gets transformed once as a function of the other channel. The affine transformation
of each RealNVP layer is given by a fully connected ReLU network. For the NSF layers we
substitute the simple affine transformations used in RealNVP by the rational-quadratic (RQ) spline
transformation implemented in https://github.com/bayesiains/nflows. As before the width,
height and slope of the RQ transformations are given by fully connected ReLU networks. Again a
NSF block consists of two subsequent NSF layers with intermediate swap layers.

Double well examples in Figures 1 and 4

• Both normalizing flow and SNF networks use 3 RealNVP blocks with three hidden layers
of dimension 64. The SNF additionally uses 20 Metropolis MC steps per block using a
Gaussian proposal density with standard deviation 0.25.

• Training is done by minimizing JML for 300 iterations and 1
2JML+ 1

2KL for 300 iterations
using a batch-size of 128.

• “Biased data” is defined by running local Metropolis MC in each of the two wells. These
simulations do not transition to the other well and we use 1000 data points in each well for
training.

• “Unbiased data” is produced by running Metropolis MC with a large proposal step (standard
deviation 1.5) to convergence and retaining 10000 data points for training.

• In Table S1, the sampling results of SNFs with RealNVP blocks and Metropolis MC steps.
MC step sizes of the first SNF is fixed to be 0.25 as before, and all step sizes of the second
one are trainable parameters in [0.01, 0.3]. The other settings are the same as in Table 1.

Two-dimensional image densities in Figure 3

• RealNVP and NSF flows both use 5 blocks. All involved transformation parameters (transla-
tion/scale in RealNVP layers, width/height/slope in NSF layers) use three hidden layers of
dimension 64. For the NSF layers we used 20 knot points in the RQ-spline transformation.
Training was done by minimizing JML for 2000 iterations with batch-size 250.

6

Table S1: Unbiased sampling for double well potential by SNFs with nontrainable/trainable MC step
sizes.

not reweighted reweighted
bias

√
var

√
bias2+var bias

√
var

√
bias2+var

RNVP + MC 1.5± 0.2 0.3± 0.1 1.5± 0.2 0.2± 0.1 0.6± 0.1 0.6± 0.1
RNVP + MC with
trainable step sizes 1.0± 0.2 0.2± 0.1 1.0± 0.2 0.1± 0.1 0.4± 0.1 0.4± 0.1

• Purely stochastic flow (column 2) uses five blocks with 10 Metropolis MC steps each using
a Gaussian proposal density with standard deviation 0.1.

• SNF (column 3/5) uses 5 blocks (RNVP/NSF block and 10 Metropolis MC steps with same
parameters as above). Training was done by minimizing JML for 6000 iterations with
batch-size 250.

Alanine dipeptide in Fig. 5

• Normalizing flow uses 3 RealNVP blocks with 3 hidden layers and [128, 128, 128] nodes
in their transformers. Training was done by minimizing JML for 1000 iterations with
batch-size 256.

• SNF uses the same architecture and training parameters, but additionally 20 Metropolis MC
steps each using a Gaussian proposal density with standard deviation 0.1.

• As a last flow layer before x, we used an invertible transformation between Cartesian
coordinates and internal coordinates (bond lengths, angles, torsion angles) following the
procedure described in [32]. The internal coordinates were normalized by removing the
mean and dividing by the standard deviation of their values in the training data.

• Training data: We set up Alanine dipeptide in vacuum using OpenMMTools. Parameters
are defined by the force field ff96 of the AMBER program [34]. Simulations are run at
standard OpenMMTools parameters with no bond constraints, 1 femtosecond time-step
for 106 time-steps (1 nanosecond) at a temperature of 1000 K in order to facilitate rapid
exploration of the φ/ψ torsion angles and a few hundred transitions between metastable
states. 105 atom positions were saved as training data.

MNIST and Fashion-MNIST VAE in Table 3

• The latent space dimension was set to 50. The decoder consists of 2 fully connected hidden
layers, with 1024 units and ReLU non-linearities for each hidden layer. The activation
function of the the output layer is sigmoid function. PD(s|x) is defined as

logPD(s|x) = logPD(s|D(x))

=

784∑
i=1

[s]i log[D(x)]i + (1− [s]i) log (1− [D(x)]i) ,

where [s]i, [D(x)]i denote the ith pixel of s and the ith output of D.

• Adam algorithm is used to train all models. Training was done by minimizing ĴKL (see
(37)) for 40 epochs with batch-size 128 and step size 10−3 unless otherwise stated.

• In simple VAE, the encoder E consists of 2 fully connected hidden layers, with 1024 nodes
and ReLU non-linearities for each hidden layer. The encoder has 100 outputs, where the
activation function of the first 50 outputs is the linear function and the activation function of
the last 50 outputs is the absolute value function. The transformation from z to x is given by

[x]i = [E(s)]i + [z]i · [E(s)]i+50. (38)

• MCMC uses 30 Metropolis MC steps each using a overdamped Langevin proposal, where
the interpolated potential are used. The interpolation coefficients and the step size of the
proposal are both trained as parameters of the flow.

7

https://openmmtools.readthedocs.io/en/0.18.1/

• Normalizing flow uses 6 RealNVP blocks with 2 hidden layers and [64, 64] nodes in their
transformers.

• SNF uses three units with each unit consisting of 2 RealNVP blocks + 10 Metropolis MC
steps, where architectures are the same as the above. During the training procedure, we first
train parameters of the 6 RealNVP blocks without the Metropolis MC steps for 20 epochs,
and then train all parameters for another 20 epochs. The training step size is 10−3 for the
first 20 epochs and 10−4 for the last 20 epochs.

• For calculating the marginal likelihood PD(s), FLL uses 12 RealNVP blocks with 2 hidden
layers and [256, 256] nodes in their transformers.

10. Comparison with related sampling methods

A brief comparison of the proposed SNF and selected sampling methods with learnable proposals
and transformations is provided in Table S2. Most previous sampling methods are developed based
on the detailed balance in each step, except that HVI presented in [36] can perform nonequilibrium
sampling steps by using annealed target distributions. Furthermore, some sampling techniques [16]
and [17] also improve the sampling efficiency by linear or nonlinear deterministic transformation,
where the transformation is performed only once. It can be seen from the comparison that SNF
provides a universal framework for sampling, where the deterministic and stochastic blocks can be
flexibly designed and combined.

Table S2: A comparison of samplers with learnable proposals/transformations.

Method Containing nonequilibrium
sampling steps

Combining with learnable
deterministic transformation

HVI [36] X ×
L2HMC [24] × ×

A-NICE-MC [38] × ×
HMC for DLGMs [16] × X

NeuTra [17] × X
SNF X X

8

Supplementary Figures

a

c

b

d

Figure S1: Reproducibility of normalizing flows for the double well. Red arrows indicate de-
terministic transformations (perturbations), blue arrows indicate stochastic dynamics (relaxations).
a-b) Two independent runs of 3 RealNVP blocks (6 layers). c-d) Two independent runs of same
architecture with 20 BD steps before/after RealNVP blocks.

1 10 100
Metropolis steps per RNVP / NSF layer

1

2

5

10

Tr
ai

ni
ng

 ti
m

e
(n

or
m

al
ize

d)

RNVP
NSF

Figure S2: Computational cost of adding stochastic layers. Time required for training SNFs of
images shown in 3 with a fixed number of steps, as a function of the number of stochastic layers per
RNVP or NSF layer. Timings are normalized to one RNVP or NSF layer. While details of these
timings depend on hyperparameters, implementation and compute platform, the main feature is that
deterministic flow layers are much more computationally expensive than stochastic flow layers, and
therefore a few stochastic flow layers can be added to each deterministic flow layer without significant
increase in computational cost.

9

