
We thank the reviewers for their time and thoughtful feedback. Overall, the reviewers thought the paper was well1

written (R1, R2, R4) and found the theoretical analysis interesting (R1, R4). They thought the empirical methodology2

was comprehensive (R2) and thorough (R1), and they recognised that Second Order Neural ODEs (SONODEs) have3

application potential (R3). We are very grateful for the suggestions on how to improve this work. A key point is that the4

paper would benefit from further comparisons (theoretical and empirical) between Augmented Neural ODEs (ANODEs)5

and SONODEs, and a discussion about the settings in which ANODEs are expected to outperform SONODEs and vice6

versa (R2, R4). We agree that this would benefit the work, therefore we address this concern and others below. We7

refer to lines, figures and pages from the manuscript as (L, Fig., p).8

Make further comparisons between ANODEs and SONODEs (R2, R4) - Given SONODEs are a special case of9

ANODEs (Eq.4, L65), the reviewers ask when ANODEs might outperform SONODEs (R2) and if ANODEs can10

achieve the same performance with adequate data (R4). This depends on the task and the expected underlying dynamics.11

We believe that for tasks where the trajectory is unimportant, and performance depends only on the end points (such12

as classification), ANODEs might perform better because they are unconstrained in how they use their capacity. To13

investigate this, we followed R4’s suggestion and included ANODEs in the MNIST experiment (as we did for NODEs14

and SONODEs in Appendix E.3), augmenting along the channels as is done in Dupont 2019. We found that ANODEs15

achieve the same accuracy as SONODEs (see figure below), with fewer parameters and only one augmented channel.16

This is consistent with the result from Dissecting Neural ODEs, where ANODEs had a higher accuracy with five17

augmented channels and approximately the same number of parameters.18
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Figure 1: MNIST evaluation: test accuracy and number of
function evaluations (NFE).

We expect SONODEs to outperform ANODEs on time-19

series data when the underlying dynamics is assumed (or20

known) to be second order (also mentioned by R1). In21

this setting, SONODEs have a unique functional solution22

and fewer local minima compared to ANODEs. For ex-23

ample, in theory ANODEs can learn the Silverbox task24

but they are unable to do so (Fig.9). Moreover, better25

interpretability also makes SONODEs more appropriate26

for application in the natural sciences, where second or-27

der dynamics are common and it is useful to recover the28

force equation. Additionally, SONODEs train faster as29

they do not have to learn second order (Fig.6), they are30

more robust to noise (Fig.7), and will require fewer parameters (ẋ = v does not require any parameters). However,31

when the dynamics are not second order we believe ANODEs will perform better as they are not restricted to second32

order solutions as shown in Fig.8 (the airplane benchmark).33

More complex systems, e.g. n-particle dynamics, and higher-order dynamics (R1) - Our approach allows for34

modeling more complex systems, such as n-particle dynamics. For instance, if x = (x1, ...,xn) and v = (v1, ...,vn);35

then ẋ = v, v̇ = f (a)(x,v, t, θf ), v(t0) = g(x(t0), t0, θg) models the dynamics. However, even simple multi-particle36

systems are highly sensitive to initial conditions (chaotic) and it becomes computationally intractable to solve the37

problem to acceptable precision. Moreover, while in this paper we investigate second order dynamics, SONODEs can38

indeed be extended to higher order to model richer behaviour. We will investigate this by comparing third order to39

SONODEs and ANODEs on more difficult modelling tasks, such as the airplane task.40

Motivation for SONODEs and detailed comparison to previous work (R3) - The paper focuses on the theoretical41

and empirical analysis of second order behaviour in ANODEs. We note that second order dynamics are common42

in physics (L27-28), however, we will amend the introduction to better contextualise the importance of this work.43

Moreover, while we discuss most of the relevant related work, we will consider extending this discussion to include a44

broader overview of related work.45

Can SONODEs represent the function used in Dupont et al. 2019? (R4) - Yes, we demonstrate SONODEs on the46

g1d and g (p3,p4). However, we use the names compact parity problem (as we consider the generalised parity problem),47

and nested-n-spheres (name used in Dissecting Neural ODEs). We will add a note on this in the final version.48

Confusing that ‘a’ stands for both acceleration and augmented variable (R4) - Whilst we use only ‘a’ implicitly in49

the function f (a), we agree with the meta-point that, in dynamics, ‘a’ often refers to acceleration, which is very relevant50

in this work. We will amend the text to use a different symbol for the augmented variable to remove this confusion.51

Can you explain how Eq 8. is derived? (R4) - Start from the state z = [x,a]. The velocity can almost be represented52

by a, but in the original formulation a(t0) = 0. This is fixed by adding the constant ẋ(t0). Such that ẋ = a+ ẋ(t0).53

To get the desired acceleration, ẍ = ȧ = f (a)(x,a+ ẋ(t0), t, θf ). Using ẋ(t0) = g(x(t0), t0, θg) from the SONODE54

formulation gives Eq 8. This is consistent with the more general expression in Eq 12.55


