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1 Additional experimental details

This section documents hyperparameters and other design choices used to run the experiments in
Section 4 of the main paper.

1.1 Eigenvector centrality

In all eigenvector centrality experiments, we isolate the largest connected component of the input
graph and work exclusively within that component. We work with the unnormalized version of
the adjacency matrix, since the normalized version admits the vector d1/2 := diag(

√
d1, . . . ,

√
dn),

where di is the degree of the ith node, as its principal eigenvector.

We initialize the estimate v̂1 := 1√
n
1, the normalized all-ones vector. In the absence of incoherence,

we use the expression of Equation (10) in the main text to evaluate the `2→∞ stopping criterion, and
set gap = λ1 − λ2 using the values returned by Arpack, to ensure a fair comparison. At each step of
the iterative method, we multiply with ±1 accordingly, to ensure that all entries of the approximate
eigenvector are positive.

Ranking distance. To measure the “distance” between the approximate ranking produced by our
eigenvector estimate, we employ Kendall’s τ criterion Kendall (1948). In particular, we define

distτ (v1, v̂1) :=
1− τ(v1, v̂1)

2
(1)

to compare the rankings induced by v1 and v̂1. It is easy to verify that when the rankings are identical,
distτ = 0, and when the rankings are the most dissimilar, distτ = 1, since τ(v1, v̂1) ∈ [−1, 1].

The convergence plots for 4 datasets, where we depict the “oracle” `2 and `2→∞ subspace distances
as well as distτ as a function of the iteration index t, are shown in Figure 1. In all cases, we identify
the correct ranking when the residual is in the low-to-moderate accuracy regime (ε ≤ 10−4).

1.2 Spectral clustering

In this section, we describe the methodology used for the spectral clustering experiments in the
main text. We opt to use the Algorithm of Damle et al. (2018) which is based on the column-
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Figure 1: Distance plots for 4 datasets, for which the top b√nc nodes are being ranked. From left to
right: CA-HEPPH, CA-ASTROPH (top), GEMSEC, COM-LIVEJOURNAL (bottom).

pivoted QR decomposition of an appropriately defined matrix. For completeness, the full algorithm
is listed in Algorithm 1. Since the algorithm is deterministic, we do not have to worry about
randomness pertaining to initialization (e.g. as in kmeans++), and only run the experiment once for
each configuration of parameters.

Algorithm 1 CPQR-based clustering

1: Input: invariant subspace Vk ∈ Rn×r
2: Compute the CPQR factorization

V >k Π = QR,

where Π is a column selection matrix.
3: Let C denote the first k columns identified by Π.
4: Compute the polar factorization

(V >k ):,C = UH.

5: for j ∈ [n] do
6: assign node j to cluster

Cj := argmax
i
|(UV >k )i,j |

7: end for

For all the datasets involved, we hand-pick the target number of clusters r by inspecting the successive
ratios of the leading few eigenvalues and setting r so that the ratio λr+1

λr
is small, but also taking into

account the fact that we don’t want r to be too small. Additionally, we use the regularized version of
the normalized adjacency matrix Aρ Amini et al. (2013), which augments the adjacency and degree
matrices A,D using a regularization parameter ρ:

Aρ := A+
ρ

n
11>, Dρ := D + ρ (2)
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Table 1: Parameters for spectral clustering
Dataset r τ

CA-HEPPH 17 1.0
CA-ASTROPH 6 1.0

GEMSEC 12 1.0
DBLP 28 5.0

Following standard practice Qin & Rohe (2013); Zhang & Rohe (2018), we set ρ equal to a constant
which is near the average degree of the graph and then perform the eigendecomposition of

Ãρ = D−1/2ρ AρD
−1/2
ρ + I,

shifting by +I to ensure that the algebraically largest eigenvalues are also the largest in magnitude,
in order for subspace iteration to be applicable. We summarize the hyperparameter choices for each
dataset in Table 1. To evaluate the quality of a given clustering assignment, we use the normalized
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Figure 2: Ratio of iterations required to satisfy res2→∞(t) ≤ ε (tcomp) over number of iterations
required to satisfy res2(t) ≤ ε (tnaive) in eigenvector centrality computations.

cut metric. Specifically, given a vertex set V and a partition (S, Sc) such that V = S ∪ Sc, we define
the conductance of the cut induced by S as

φ(S) :=

∑
i∈S,j /∈S Aij
A(S)

A(S) :=
∑
i∈S

∑
j∈V

Aij (3)

Note that in (3), A refers to the unnormalized adjacency matrix, with Aij = Aji = 1 if the edge
(i, j) exists in the graph, and 0 otherwise. Then any clustering assignment with k clusters induces k
partitions {(Sk, Sck)}, for which the normalized cut metric is defined as

ncut(S1, . . . , Sk) :=
1

2

k∑
i=1

φ(Sk). (4)

Figure 3 depicts the value of ncut(S1, . . . , Sk) when the input to Algorithm 1 is computed using
subspace iteration, using the proposed stopping criterion, for different levels ε. Having established
that low-to-moderate accuracy is sufficient for this problem, we plot the ratio of tcomp over tnaive; the
former is the number of iterations required to satisfy res2→∞(t) ≤ ε, while the latter is the number
of iterations required to satisfy res2(t) :=

∥∥Av̂t − λ̂tv̂t∥∥ ≤ λ̂tε. We observe computational gains of
over 50% in all cases.
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Figure 3: Value of ncut(S1, . . . , Sk) for various
datasets, with V̂k computed using subspace it-
eration until the residual drops below level ε,
for different values of ε. In all cases, the met-
ric stabilizes while in the low accuracy regime
(ε ≈ 10−2). Dashed lines indicate the value of
ncut(S1, . . . , Sk) found by computing the sub-
space to machine accuracy.
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Figure 4: Ratio of iterations required to satisfy
res2→∞(t) ≤ ε (tcomp) over number of itera-
tions required to satisfy res2(t) ≤ ε (tnaive) in
the spectral clustering setting, showing compu-
tational gains of over 50%.

1.3 Empirically verifying Assumption 1

We verified that Assumption 1 from the main text holds in practice for the real world datasets used in
the experimental section. Recall that Assumption 1 asks that the matrix A = V ΛV T + V⊥Λ⊥V T

⊥
(where V ∈ On,r is the leading r-dimensional invariant subspace of A) satisfies:

‖V⊥Λt⊥V
T
⊥ ‖∞ ≤ C · λtmax(Λ⊥) · ‖V⊥V T

⊥ ‖∞ , (5)

where C is a constant independent of n, for all t ∈ N. First, observe that for our purposes, we only
want this assumption to hold for all t until our iterative algorithm stops. Since all our experiments
take fewer than T = 1500 iterations to run, we opt to verify (5) for t ∈ {1, . . . , T}. We first rephrase
the assumption as

‖At − V ΛtV T‖∞ ≤ C · λtmax(Λ⊥) · ‖I − V V T‖∞ , (6)

which can be checked after computing the top r + 1 eigenvectors and eigenvalues of A; these were
computed to machine precision using eigs. For t = 1 up to t = T , we checked (6) exhaustively, and
output

C := sup
t∈{1,...,T}

{ ‖At − V ΛtV T‖∞
λtr+1 ‖I − V V T‖∞

}
In all cases, we end up with a constant C ≤ 1.5.

2 Auxiliary results

Lemma 1 (Incoherence). Consider a subspace V of dimension r and a matrix V ∈ On,r whose
columns span V . If µ is the coherence of V , i.e. ‖V ‖2→∞ ≤ µ

√
r
n , then for its complementary

subspace V⊥ it holds that ∥∥V⊥V⊥T
∥∥
∞ ≤ (1 + µ

√
r).

Proof. Observe that ‖A‖∞ ≤
√
n ‖A‖2→∞, tus∥∥V⊥V⊥T

∥∥
∞ = ‖I − V V T‖∞ ≤ 1 + ‖V V T‖∞
≤ 1 +

√
n ‖V V T‖2→∞ ≤ 1 +

√
nµ
√
r/n.
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The next theorem, originally stated without assuming symmetry, is adapted for the case of a symmetric
initial matrix.

Theorem 1 (Theorem 5.1 in (Damle & Sun, 2020)). Suppose Ã = A + E with A symmetric,
having eigenvalue decomposition A = V ΛV T + V⊥Λ⊥V T

⊥ , where V ∈ Rn×r, V⊥ ∈ Rn×(n−r)
have orthonormal columns. Moreover, let gap := min

{
λr − λr+1, sep(2,∞),V⊥

(Λ, V⊥Λ⊥V⊥
T)
}

. If
‖E‖2 ≤ gap

5 , then the leading invariant subspace of Ã, Ṽ , satisfies

inf
O∈Or

∥∥Ṽ − V O∥∥
2→∞ ≤ 8 ‖V ‖2→∞

( ‖E‖2
λr − λr+1

)2

+
2
∥∥V⊥V⊥TEV

∥∥
2→∞

gap

+
4
∥∥V⊥V⊥TE

∥∥
2→∞ ‖E‖2

gap · (λr − λr+1)
.

(7)

Lemma 2 (Cape et al. (2019)). We have

‖AB‖2→∞ ≤ ‖A‖2→∞ ‖B‖2 (8)
‖AB‖2→∞ ≤ ‖A‖∞ ‖B‖2→∞ (9)

Moreover, for any matrix V with orthonormal columns, it holds that

‖AV T‖2→∞ = ‖A‖2→∞ . (10)

We also prove the following claim, which is used throughout the proof of Proposition 1 in the next
section.

Lemma 3. We have infZ∈Or

∥∥Ṽ − V Z∥∥
2
≤
√

2dist2(V, Ṽ ).

Proof. Recall the solution of the orthogonal Procrustes problem, given by the SVD of V TṼ , UΣWT.
Since UWT ∈ Or, with UTU = UUT = WTW = WWT = Ir, we have

inf
Z∈Or

∥∥Ṽ − V Z∥∥
2
≤
∥∥Ṽ − V UWT

∥∥
2

=

√
sup
x

〈
x, (Ṽ − V UWT)T(Ṽ − V UWT)x

〉
(11)

=

√
sup
x

〈
x, (I − Ṽ TV UWT −WUTV TṼ + I)x

〉
(12)

(])
=
√

sup
x
〈x, 2(I −WΣWT)x〉 =

√
2 ‖I −WΣWT‖2 (13)

=
√

2
√
‖I − Σ‖2 =

√
2

√
1− σr(V TṼ ) (14)

(\)

≤
√

2

√
1− σ2

r(V TṼ ) =
√

2
∥∥V TṼ

∥∥
2
, (15)

where (]) follows after replacing V TṼ = UΣWT in the expression and gathering terms, while (\)

simply uses the fact that σr(V TṼ ) ≤ 1 to upper bound the expression inside the square root. Finally,
we use the fact that:

1− σ2
min(V TṼ ) =

∥∥V T
⊥ Ṽ

∥∥2
2

= dist22(V, Ṽ ).

3 Omitted proofs

3.1 Proof of Proposition 1

Starting with the definition of the 2→∞ distance, we have

dist2→∞(Qt, V ) = inf
Z∈Or

‖Qt − V Z‖2→∞ = inf
Z∈Or

‖(V V T + V⊥V
T
⊥ )(Qt − V Z)‖2→∞ (16)

(])

≤
√

2 ‖V V T‖2→∞ dist2(Qt, V ) + ‖V⊥V T
⊥ (Qt − V Z)‖2→∞ (17)

5



where (]) follows from Lemma 2 and the fact that infZ∈Or ‖Qt − V Z‖2 ≤
√

2dist2(Qt, V ). At this
point, note that standard convergence results (Saad, 2011; Golub & Van Loan, 2013) state that

dist2(Qt, V ) ≤
(λr+1

λr

)t d0√
1− d20

,

and additionally ‖V V T‖2→∞ ≤ µ
√

r
n , where µ is the coherence of V .

For the remainder, let us first recall a fact from the analysis of subspace iteration; the tth iterate Qt
satisfies

QtRt = AtV (0), with Rt invertible ⇒ V T
⊥Qt = V T

⊥A
tV (0)R−1t = Λt⊥V

T
⊥V

(0)R−1t . (18)

Then, notice that V T
⊥V = 0 and therefore we can rewrite the second term in (22) as

‖V⊥V T
⊥Qt‖2→∞

(∗)
= ‖V⊥Λt⊥V

T
⊥Q0R

−1
t ‖2→∞

([)
= inf

Z∈Or

‖V⊥Λt⊥V
T
⊥ (Q0 − V Z)R−1t ‖2→∞ (19)

(\)

≤ inf
Z∈Or

C ‖V⊥V T
⊥ ‖∞ λtr+1 ‖(Q0 − V Z)R−1t ‖2→∞ (20)

≤ C ‖V⊥V T
⊥ ‖∞ λtr+1 inf

Z∈Or

‖Q0 − V Z‖2→∞︸ ︷︷ ︸
=dist2→∞(Q0,V )

‖R−1t ‖2 (21)

where (∗) follows from Eq. (18), ([) holds since we can reintroduce V Z for any Z, as V T
⊥V = 0, (\)

holds after combining Eq. (9) and Assumption 1 from the main text, and the last inequality is Eq. (8).
Notice that ‖R−1t ‖2 = 1√

1−d20
λ−tr , by tracing the proof of (Golub & Van Loan, 2013, Theorem

8.2.2). Finally, by Lemma 1, ‖V⊥V T
⊥ ‖∞ ≤ 1 + µ

√
r.

3.2 Proof of Proposition 2

For simplicity, let us define Ṽ := [V vr+1] ∈ Rn×(r+1) and Ṽ⊥ for the remaining n − r − 1

eigenvectors forming a basis of Rn. Similarly, let Λ̃⊥ = diag(λr+2, . . . , λn). Starting with the
definition of the 2→∞ distance, we have

dist2→∞(Qt, V ) = inf
Z∈Or

‖Qt − V Z‖2→∞ = inf
Z∈Or

‖(V V T + V⊥V
T
⊥ )(Qt − V Z)‖2→∞

(])

≤
√

2 ‖V V T‖2→∞ dist2(Qt, V ) + ‖V⊥V T
⊥ (Qt − V Z)‖2→∞

, (22)

where (]) follows from Lemma 2 in the main text and the fact that infZ∈Or
‖Qt − V Z‖2 ≤√

2dist2(Qt, V ). Now we may rewrite the second term as∥∥(vr+1v
T
r+1 + Ṽ⊥Ṽ

T
⊥ )Qt

∥∥
2→∞ ≤ ‖vr+1v

T
r+1Qt‖2→∞ +

∥∥Ṽ⊥Ṽ T
⊥Qt

∥∥
2→∞

= ‖vr+1λ
t
r+1v

T
r+1Q0R

−1
t ‖2→∞ +

∥∥Ṽ⊥Λ̃t⊥Ṽ
T
⊥Q0R

−1
t

∥∥
2→∞ .

(23)

Pulling λtr+1 out of the first norm in (23) yields

‖vr+1v
T
r+1(Q0 − V Z?)‖2→∞ ‖R

−1
t ‖2 ≤ ‖vr+1v

T
r+1‖∞ dist2→∞(Q0, V ) · λ−tr√

1− d20
,

after using Lemma 2 and the fact that ‖R−1t ‖2 ≤
λ−t
r√
1−d20

, while the second norm in (23) can be upper

bounded by ∥∥∥��̃V⊥Λ̃t⊥

∥∥∥
2

∥∥Ṽ T
⊥Q−

∥∥
2
‖R−1t ‖2 =

(λr+2

λr

)t dist2(Q0, Ṽ )√
1− d20

,

but as the respective subspaces satisfy V ⊂ Ṽ we have dist2(Q0, Ṽ ) ≤ dist2(Q0, V ). Combining all
the ingredients above completes the proof.

6



3.3 Proof of Proposition 3

The condition on ‖E‖2 combined with the assumption that Q is the leading invariant subspace of the
perturbed matrix A−EQT allows us to apply Theorem 1 for the perturbation EQT, from which we
deduce that the approximate eigenvector matrix V satisfies

dist2→∞(Q,V ) ≤ 8 ‖V ‖2→∞
( ‖E‖2
λr − λr+1

)2

+ 2
‖V⊥V T

⊥EQ
TV ‖2→∞

gap
+ 4
‖V⊥V T

⊥E‖2→∞ ‖E‖2
gap · (λr − λr+1)

with the appropriate definition of gap. Using Lemma 2, we can upper bound the terms above as

‖V⊥V T
⊥EQ

TV ‖2→∞ ≤ ‖V⊥V T
⊥ ‖∞ ‖EQTV ‖2→∞ ≤ ‖V⊥V T

⊥ ‖∞ ‖E‖2→∞ ‖QTV ‖2︸ ︷︷ ︸
≤1

, (24)

and similarly for the term ‖V⊥V T
⊥E‖2→∞.

4 Miscellanea

Discussion: eigenvalue localization issues. We briefly address the issue of when we can safely
assume that the approximate invariant subspace Q, utilized in Proposition 3, is the leading invariant
subspace of the perturbed matrix A− EQT. While the matrix of Ritz values, S, is within

√
2 ‖E‖2

distance of a set of r eigenvalues of A, we do not know whether or not these eigenvalues correspond
to the largest (in magnitude) eigenvalues of A− EQT.

In this case, one has to appeal to algorithm-specific arguments. Recall that A has spectral decomposi-
tion A = V ΛV T + V⊥Λ⊥V T

⊥ , where Λ contains the dominant r eigenvalues. Let Q⊥ ∈ On,n−r be
orthogonal to the approximate eigenvector matrix Q ∈ On,r. Then the following[

QT

QT
⊥

]
(A− EQT) [Q Q⊥] =

[
S QT(A− EQT)Q⊥

QT
⊥QS QT

⊥(A− EQT)Q⊥

]
=

[
S QTAQ⊥
0 QT

⊥AQ⊥

]
is a Schur decomposition of A− EQT, with its eigenvalues being the union S ∪ Λ(QT

⊥AQ⊥) – the
objective becomes showing that ‖Λ(QT

⊥AQ⊥)‖2 is sufficiently small, after enough progress of the
algorithm. By the variational characterization of singular values for symmetric matrices, we have

‖QT
⊥AQ⊥‖2 = sup

x∈Sn−1

|〈x,QT
⊥AQ⊥x〉| (25)

= sup
x∈Sn−1

|〈x,QT
⊥V ΛV TQ⊥x〉+ 〈x,QT

⊥V⊥Λ⊥V
T
⊥Q⊥x〉| (26)

(∗)
≤ |λ1(A)| ‖QT

⊥V ‖
2

2 + |λr+1(A)|����
�:≤ 1

‖QT
⊥V⊥‖ (27)

Therefore, as soon as dist2(V,Q) ≤ √ε, we know that Λ(QT
⊥AQ⊥) ≤ |λ1| ε+ |λr+1|; thus when

both ‖E‖2 and ε are small enough, we can “match” S with the leading invariant subspace ofA−EQT,
via the leading eigenvalues of A itself.

Discussion: entrywise convergence of Procrustes solution. Let V1, V̂1 be a pair of matrices with
orthogonal columns. Recall that the Procrustes solution is the solution to the following matrix
nearness problem:

ZF := argmin
Z∈Or

∥∥V̂1Z − V1∥∥F , (28)

for which the solution is available via the SVD of V̂ T
1 V1 Higham (1988). For the iterates {Qt}t∈N

produced by Algorithm 1 in the main text, notice that

inf
Z∈Or

‖Qt − V Z‖2→∞ ≤ ‖Qt − V ZF ‖2→∞ ≤ µ
√
r

n
‖Qt − V ZF ‖2 + ‖V⊥V T

⊥Qt‖2→∞ . (29)

For the first term, using the definition of ZF and choosing Z2 := argminZ∈Or
‖Qt − V Z‖2, we

may obtain

‖Qt − V ZF ‖2 ≤ ‖Qt − V ZF ‖F ≤ ‖Qt − V Z2‖F (30)
(])

≤
√

2r · ‖Qt − V Z2‖2
([)

≤ 2
√
r · dist2(Qt, V ), (31)

7



where (]) follows by the fact that rank(Qt − V Z2) ≤ 2r combined with norm equivalence, and ([)
follows from Lemma 3. Together with the second term in Eq. (29), these can be analyzed as in the
proofs of Propositions 1 and 2.

Discussion: preliminary convergence results without Assumption 1. Here, we provide a proof
showing that the convergence of subspace iteration w.r.t. the 2→∞ norm improves upon the spectral
norm results without the need for Assumption 1 from the main text on the data matrix’s eigenspaces.
We show this by studying a “worse-case” version of A, Ã, instead; given A = V ΛV T + V⊥Λ⊥V T

⊥ ,
we define Ã as

Ã := V ΛV T + λr+2(A) · V⊥V⊥T. (32)

In the forthcoming proof, we denote Λ̃⊥ := λr+2(A) · In−r. The Proposition below gives an
improved rate compared to the analysis w.r.t. spectral norm convergence, albeit for a limited set of
spectra.

Proposition. The iterates {Qt}t∈[T ] produced by Algorithm 1 in the main text with initial guess V (0)

satisfy

dist2→∞(Qt, V ) ≤ 3
1 + µ

√
r√

1− d20

(λr+2

λr

)t
· dist2→∞(V (0), V )

+ µ

√
r

n

(λr+1

λr

)t
· tan(θ0) + max

{
λtr+1 − λtr+2

λtr
,
λtr+2 − λtn

λtr

}
· tan(θ0),

(33)

where tan(θ0) := d0√
1−d20

, d0 := dist2(Q0, V ).

Proof. Let us introduce some notation to be used in the proof; given the true subspace Q, we write
dist‖·‖,⊥(A,B) := dist‖·‖(V⊥V T

⊥A, V⊥V
T
⊥B). By splitting up Qt into its projections to V and V⊥

respectively, we can upper bound the desired distance in the following way:

dist2,∞(Qt, V ) = inf
Z
‖Qt − V Z‖2→∞ = inf

Z
‖(V V T + V⊥V

T
⊥ )Qt − V Z‖2→∞

≤ inf
Z
‖V V T(Qt − V Z)‖2→∞ + ‖V⊥V T

⊥Qt‖2→∞ (34)

≤ ‖V ‖2→∞ dist2(Qt, V ) + dist2→∞,⊥(Qt, V ) (35)

since V T
⊥V = 0. The first term in (35) is upper bounded by

µ

√
r

n

(λr+1

λr

)t
tan(θ0),

(where µ is the coherence of V ), which is known from the standard convergence analysis of Algo-
rithm 1 measured in the spectral norm. In addition, using the triangle inequality for the second term
in (35), we can further upper bound

‖V⊥V T
⊥Qt‖2→∞ = dist2→∞,⊥(Qt, V ) ≤ dist2→∞,⊥(Qt, Q̃t) + dist2→∞,⊥(Q̃t, V ) (36)

where Q̃t is the aforementioned “ghost” iterate resulting from applying Algorithm 1 to the matrix Ã,
which is defined as

Ã := [V V⊥]
[
Λ 0
0 λr+2(A)In−r

]
[V V⊥]

T
, (37)

and obviously Q0 = Q̃0 := V (0). In the forthcoming steps, we bound each distance above separately.
For the second term in (36), we have:

Lemma 4. The iterates
{
Q̃t
}
t∈[T ]

produced by Algorithm 1 when applied to Ã, as defined in (37),
satisfy

dist2→∞,⊥(Q̃t, V ) ≤
(λr+2

λr

)t 1√
1− d20

(1 + µ
√
r) · dist2→∞(Q0, V ) (38)

where d0 := dist2(Q0, V ), and µ is the coherence of V .
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Proof. We build heavily on the proof of the analogous convergence result for the spectral norm given
in (Golub & Van Loan, 2013). First, observe that Ã has the same eigenvectors as A and same first r
as well as last n− r − 1 eigenvalues.

From the proof of (Golub & Van Loan, 2013, Theorem 8.2.2), we know that Q̃tR̃t = ÃtV (0), with
R̃t invertible and satisfying∥∥R̃−1t ∥∥2 ≤ λ−tr√

1− d20
, d0 := dist2(V (0), V ), (39)

Then we have

dist2→∞,⊥(Q̃t, V ) =
∥∥V⊥V T

⊥ Q̃t
∥∥
2→∞ =

∥∥V⊥Λ̃T
⊥V

T
⊥V

(0)R̃−1t
∥∥
2→∞

≤ inf
Z

∥∥V⊥Λ̃T
⊥V

T
⊥ (V (0) − V Z)

∥∥
2→∞

∥∥R̃−1t ∥∥2
(])

≤
(λr+2

λr

)t
‖V⊥V T

⊥ ‖∞ dist2→∞(V (0), V )
1√

1− d20

(40)

where the second step of the proof uses (8) and (]) uses Equations (9) and (39). Finally, an appeal
to Lemma 1 yields the desired expression.

For the first term in (36), we follow a similar approach and write (for Z attaining the infimum in the
definition of the subspace distance):

dist2→∞,⊥(Qt, Q̃t) =
∥∥V⊥V T

⊥ (Qt − Q̃tZ)
∥∥
2→∞ =

∥∥V⊥Λt⊥V
T
⊥R
−1
t − V⊥Λ̃t⊥V

T
⊥ R̃
−1
t Z

∥∥
2→∞ ,

where again we recall from the proof of (Golub & Van Loan, 2013, Theorem 8.2.2) that

V T
⊥Qt = Λt⊥V

T
⊥V

(0)R−1t , V T
⊥ Q̃t = λtr+2V

T
⊥V

(0)R̃−1t ,

as in the proof of Lemma 4. Consequently, we can write R̃−1t Z = R−1t + (R̃−1t Z − R−1t ) and
substitute above to obtain∥∥V⊥V T

⊥ (Qt − Q̃tZ)
∥∥
2→∞ ≤

∥∥V⊥ (Λt⊥ − λtr+2In−r)V
T
⊥V

(0)R−1t
∥∥
2→∞

+ λtr+2

∥∥V⊥V T
⊥V

(0)(R̃−1t Z −R−1t )
∥∥
2→∞ ,

(41)

after appropriate rearrangements and the triangle inequality. Rewriting V T
⊥V

(0) = V T
⊥ (V (0) −

V Z2→∞) yields∥∥V⊥V T
⊥V

(0)(R̃−1t −R−1t )
∥∥
2→∞ ≤ ‖V⊥V

T
⊥ ‖∞ dist2→∞(V (0), V )

(∥∥R̃−1t ∥∥2 + ‖R−1t ‖2
)

≤ 2 (1 + µ
√
r)

1

λtr

dist2,∞(V (0), V )√
1− d20

,
(42)

since R−1t and R̃−1t both satisfy (39) as A and Ã have the same first r + 1 eigenvalues. Finally

‖Λt⊥ − λtr+2In−r‖2 = max {|λtr+1 − λtr+2| , |λtr+2 − λtn|} , (43)

which we may use to bound the first term in (41) by noticing∥∥V⊥(Λt⊥ − λtr+2I)V T
⊥V

(0)R−1t
∥∥
2→∞ ≤ ‖V⊥‖2→∞ ‖Λ

t
⊥ − λtr+2‖2

∥∥V T
⊥V

(0)
∥∥
2
‖R−1t ‖2 (44)

The proof follows by combining Equations (42) to (44), the fact that d0 = ‖V T
⊥V

(0)‖2, and Lemma 4.

5 Reproducibility

We provide an open-source implementation of the algorithms and all experiments in Julia in the
following repository: https://github.com/VHarisop/entrywise-convergence. The experi-
ments were run in a machine running Manjaro Linux with 16 GB of RAM and Intel®Core™ i7-7700
CPU @ 3.60 GHz, using Julia version 1.1.
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