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Abstract

Previous methods decompose blind super resolution (SR) problem into two sequen-
tial steps: i) estimating blur kernel from given low-resolution (LR) image and ii)
restoring SR image based on estimated kernel. This two-step solution involves
two independently trained models, which may not be well compatible with each
other. Small estimation error of the first step could cause severe performance drop
of the second one. While on the other hand, the first step can only utilize limited
information from LR image, which makes it difficult to predict highly accurate blur
kernel. Towards these issues, instead of considering these two steps separately, we
adopt an alternating optimization algorithm, which can estimate blur kernel and re-
store SR image in a single model. Specifically, we design two convolutional neural
modules, namely Restorer and Estimator. Restorer restores SR image based on
predicted kernel, and Estimator estimates blur kernel with the help of restored SR
image. We alternate these two modules repeatedly and unfold this process to form
an end-to-end trainable network. In this way, Estimator utilizes information from
both LR and SR images, which makes the estimation of blur kernel easier. More
importantly, Restorer is trained with the kernel estimated by Estimator, instead of
ground-truth kernel, thus Restorer could be more tolerant to the estimation error
of Estimator. Extensive experiments on synthetic datasets and real-world images
show that our model can largely outperform state-of-the-art methods and produce
more visually favorable results at much higher speed. The source code is available
at https://github.com/greatlog/DAN.git.

1 Introduction

Single image super resolution (SISR) aims to recover the high-resolution (HR) version of a given
degraded low-resolution (LR) image. It has wide applications in video enhancement, medical
imaging, as well as security and surveillance imaging. Mathematically, the degradation process can
be expressed as

y = (x⊗ k) ↓s +n (1)

where x is the original HR image, y is the degraded LR image, ⊗ denotes the two-dimensional
convolution of x with blur kernel k, n denotes Additive White Gaussian Noise (AWGN), and ↓s
denotes the standard s-fold downsampler, which means keeping only the upper-left pixel for each
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distinct s × s patch [35]. Then SISR refers to the process of recovering x from y. It is a highly
ill-posed problem due to this inverse property, and thus has always been a challenging task.

Recently, deep neural networks (DNNs) have achieved remarkable results on SISR. But most of
these methods [39, 2, 40, 23, 8, 21] assume that the blur kernel is predefined as the kernel of bicubic
interpolation. In this way, large number of training samples can be manually synthesized and further
used to train powerful DNNs. However, blur kernels in real applications are much more complicated,
and there is a domain gap between bicubically synthesized training samples and real images. This
domain gap will lead to severe performance drop when these networks are applied to real applications.
Thus, more attention should be paid to SR in the context of unknown blur kernels, i.e. blind SR.

In blind SR, there is one more undetermined variable, i.e. blur kernel k, and the optimization also
becomes much more difficult. To make this problem easier to be solved, previous methods [37, 32,
38, 35] usually decompose it into two sequential steps: i) estimating blur kernel from LR image and
ii) restoring SR image based on estimated kernel. This two-step solution involves two independently
trained models, thus they may be not well compatible to each other. Small estimation error of the first
step could cause severe performance drop of the following one [14]. But on the other hand, the first
step can only utilize limited information from LR image, which makes it difficult to predict highly
accurate blur kernel. As a result, although both models can perform well individually, the final result
may be suboptimal when they are combined together.

Instead of considering these two steps separately, we adopt an alternating optimization algorithm,
which can estimate blur kernel k and restore SR image x in the same model. Specifically, we design
two convolutional neural modules, namely Restorer and Estimator. Restorer restores SR image based
on blur kernel predicted by Estimator, and the restored SR image is further used to help Estimator
estimate better blur kernel. Once the blur kernel is manually initialized, the two modules can well
corporate with each other to form a closed loop, which can be iterated over and over. The iterating
process is then unfolded to an end-to-end trainable network, which is called deep alternating network
(DAN). In this way, Estimator can utilize information from both LR and SR images, which makes the
estimation of blur kernel easier. More importantly, Restorer is trained with the kernel estimated by
Estimator, instead of ground-truth kernel. Thus during testing Restorer could be more tolerant to the
estimation error of Estimator. Besides, the results of both modules could be substantially improved
during the iterations, thus it is likely for our alternating optimization algorithm to get better final
results than the direct two-step solutions. We summarize our contributions into three points:

1. We adopt an alternating optimization algorithm to estimate blur kernel and restore SR image
for blind SR in a single network (DAN), which helps the two modules to be well compatible
with each other and likely to get better final results than previous two-step solutions.

2. We design two convolutional neural modules, which can be alternated repeatedly and then
unfolded to form an end-to-end trainable network, without any pre/post-processing. It is
easier to be trained and has higher speed than previous two-step solutions. To the best of our
knowledge, the proposed method is the first end-to-end network for blind SR.

3. Extensive experiments on synthetic datasets and real-world images show that our model can
largely outperform state-of-the art methods and produce more visually favorable results at
much higher speed.

2 Related Work

2.1 Super Resolution in the Context of Bicubic Interpolation

Learning based methods for SISR usually require a large number of paired HR and LR images as
training samples. However, these paired samples are hard to get in real world. As a result, researchers
manually synthesize LR images from HR images with predefined downsampling settings. The most
popular setting is bicubic interpolation, i.e. defining k in Equation 1 as bicubic kernel. From the
arising of SRCNN [9], various DNNs [21, 40, 39, 10, 16, 18] have been proposed based on this setting.
Recently, after the proposal of RCAN [39] and RRDB [30], the performance of these non-blind
methods even start to saturate on common benchmark datasets. However, the blur kernels for real
images are indeed much more complicated. In real applications, kernels are unknown and differ from
image to image. As a result, despite that these methods have excellent performance in the context of
bicubic downsampling, they still cannot be directly applied to real images due to the domain gap.
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Figure 1: The overview structure of the deep alternating network (DAN).

2.2 Super Resolution for Multiple Degradations

Another kind of non-blind SR methods aims to propose a single model for multiple degradations,
i.e. the second step of the two-step solution for blind SR. These methods take both LR image and
its corresponding blur kernel as inputs. In [13, 29], the blur kernel is used to downsample images
and synthesize training samples, which can be used to train a specific model for given kernel and LR
image. In [37], the blur kernel and LR image are directly concatenated at the first layer of a DNN.
Thus, the SR result can be closely correlated to both LR image and blur kernel. In [38], Zhang et al.
proposed a method based on ADMM algorithm. They interpret this problem as MAP optimization
and solve the data term and prior term alternately. In [14], a spatial feature transform (SFT) layer is
proposed to better preserve the details in LR image while blur kernel is an additional input. However,
as pointed out in [14], the SR results of these methods are usually sensitive to the provided blur
kernels. Small deviation of provided kernel from the ground truth will cause severe performance drop
of these non-blind SR methods.

2.3 Blind Super Resolution

Previous methods for blind SR are usually the sequential combinations of a kernel-estimation method
and a non-blind SR method. Thus kernel-estimation methods are also an important part of blind
SR. In [26], Michaeli et al. estimate the blur kernel by utilizing the internal patch recurrence. In [3]
and [5], LR image is firstly downsampled by a generative network, and then a discriminator is used
to verify whether the downsampled image has the same distribution with original LR image. In this
way, the blur kernel can be learned by the generative network. In [14], Gu et al. not only train a
network for kernel estimation, but also propose a correction network to iteratively correct the kernel.
Although the accuracy of estimated kernel is largely improved, it requires training of two or even
three networks, which is rather complicated. Instead, DAN is an end-to-end trainable network that is
much easier to be trained and has much higher speed.

3 End-to-End Blind Super Resolution

3.1 Problem Formulation

As shown in Equation 1, there are three variables, i.e. x, k and n, to be determined in blind SR
problem. In literature, we can apply a denoise algorithm [36, 7, 15] in the first place. Then blind SR
algorithm only needs to focus on solving k and x. It can be mathematically expressed an optimization
problem:

argmin
k,x

‖y − (x⊗ k) ↓s ‖1 + φ(x) (2)

where the former part is the reconstruction term, and φ(x) is prior term for HR image. The prior term
is usually unknown and hard to be analytically expressed. Thus it is extremely difficult to solve this
problem directly. Previous methods decompose this problem into two sequential steps:{

k =M(y)

x = argmin
x

‖y − (x⊗ k) ↓s ‖1 + φ(x) (3)

where M(·) denotes the function that estimates k from y, and the second step is usually solved
by a non-blind SR method described in Sec 2.2. This two-step solution has its drawbacks in
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threefold. Firstly, this algorithm usually requires training of two or even more models, which is rather
complicated. Secondly, M(·) can only utilize information from y, which treats k as a kind of prior
of y. But in fact, k could not be properly solved without information from x. At last, the non-blind
SR model for the second step is trained with ground-truth kernels. While during testing, it can only
have access to kernels estimated in the first step. The difference between ground-truth and estimated
kernels will usually cause serve performance drop of the non-blind SR model [14].

Towards these drawbacks, we propose an end-to-end network that can largely release these issues. We
still split it into two subproblems, but instead of solving them sequentially, we adopt an alternating
optimization algorithm, which restores SR image and estimates corresponding blur kernel alternately.
The mathematical expression is

ki+1 = argmin
k

‖y − (xi ⊗ k) ↓s ‖1

xi+1 = argmin
x

‖y − (x⊗ ki) ↓s ‖1 + φ(x)
(4)

We alternately solve these two subproblems both via convolutional neural modules, namely Estimator
and Restorer respectively. Actually, there even has an analytic solution for Estimator. But we
experimentally find that analytic solution is more time-consuming and not robust enough (when noise
is not fully removed). We fix the number of iterations as T and unfold the iterating process to form
an end-to-end trainable network, which is called deep alternating network (DAN).

As shown in Figure 1, we initialize the kernel by Dirac function, i.e. the center of the kernel is one
and zeros otherwise. Following [14, 37], the kernel is also reshaped and then reduced by principal
component analysis (PCA). We set T = 4 in practice and both modules are supervised only at the last
iteration by L1 loss. The whole network could be well trained without any restrictions on intermediate
results, because the parameters of both modules are shared between different iterations.

In DAN, Estimator takes both LR and SR images as inputs, which makes the estimation of blur
kernel k much easier. More importantly, Restorer is trained with the kernel estimated by Estimator,
instead of ground-truth kernel as previous methods do. Thus, Restorer could be more tolerant to the
estimation error of Estimator during testing. Besides, compared with previous two-step solutions,
the results of both modules in DAN could be substantially improved, and it is likely for DAN to get
better final results. Specially, in the case where the scale factor s = 1, DAN becomes an deblurring
network. Due to limited pages, we only discuss SR cases in this paper.

3.2 Instantiate the Convolutional Neural Modules

Both modules in our network have two inputs. Estimator takes LR and SR image, and Restorer
takes LR image and blur kernel as inputs. We define LR image as basic input, and the other one is
conditional input. For example, blur kernel is the conditional input of Restorer. During iterations,
the basic inputs of both modules keep the same, but their conditional inputs are repeatedly updated.
We claim that it is significantly important to keep the output of each module closely related to its
conditional input. Otherwise, the iterating results will collapse to a fixed point at the first iteration.
Specifically, if Estimator outputs the same kernel regardless the value of SR image, or Restorer
outputs the same SR image regardless of the value of blur kernel, their outputs will only depend on
the basic input, and the results will keep the same during the iterations.

To ensure that the outputs of Estimator and Restorer are closely related to their conditional inputs, we
propose a conditional residual block (CRB). On the basis of the residual block in [39], we concatenate
the conditional and basic inputs at the beginning:

fout = R(Concat([fbasic, fcond])) + fbasic (5)

where R(·) denotes the residual mapping function of CRB and Concat([·, ·]) denotes concatenation.
fbasic and fcond are the basic input and conditional input respectively. As shown in Figure 2 (c),
the residual mapping function consists of two 3× 3 convolutional layers and one channel attention
layer [17]. Both Estimator and Restorer are build by CRBs.

Estimator. The whole structure of Estimator is shown in Figure 2 (b). We firstly downsample SR
image by a convolutional layer with stride s. Then the feature maps are sent to all CRBs as conditional
inputs. At the end of the network, we squeeze the features by global average pooling to form the
elements of predicted kernel. Since the kernel is reduced by PCA, Estimator only needs to estimate
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Figure 2: The details of Estimator and Restorer. (a) (top) The details of Restorer. (c) (bottom-left)
The details of Estimator. (c) (bottom-right) The details of conditional residual block (CRB).

the PCA result of blur kernel. In practice, Estimator has 5 CRBs, and both basic input and conditional
input of each CRB have 32 channels.

Restorer. The whole structure of Restorer is shown in Figure 2 (a). In Restorer, we stretch the kernel
in spatial dimension to the same spatial size as LR image. Then the stretched kernel is sent to all
CRBs of Restorer as conditional inputs. We use PixelShuffle [28] layers to upscale the features to
desired size. In practice, Restorer has 40 CRBs, and the basic input and conditional input of each
CRB has 64 and 10 channels respectively.

4 Experiments

4.1 Experiments on Synthetic Test Images

4.1.1 Data, Training and Testing

We collect 3450 HR images from DIV2K [1] and Flickr2K [11] as training set. To make reasonable
comparison with other methods, we train models with two different degradation settings. One is the
setting in [14], which only focuses on cases with isotropic Gaussian blur kernels. The other is the
setting in [3], which focuses on cases with more general and irregular blur kernels.

Setting 1. Following the setting in [14], the kernel size is set as 21. During training, the kernel width
is uniformly sampled in [0.2, 4.0], [0.2, 3.0] and [0.2, 2.0] for scale factors 4, 3 and 2 respectively.
For quantitative evaluation, we collect HR images from the commonly used benchmark datasets, i.e.
Set5 [4], Set14 [34], Urban100 [19], BSD100 [24] and Manga109 [25]. Since determined kernels
are needed for reasonable comparison, we uniformly choose 8 kernels, denoted as Gaussian8, from
range [1.8, 3.2], [1.35, 2.40] and [0.80, 1.60] for scale factors 4, 3 and 2 respectively. The HR images
are first blurred by the selected blur kernels and then downsampled to form synthetic test images.

Setting 2. Following the setting in [3], we set the kernel size as 11. We firstly generate anisotropic
Gaussian kernels. The lengths of both axises are uniformly distributed in (0.6, 5), rotated by a random
angle uniformly distributed in [−π, π]. To deviate from a regular Gaussian, we further apply uniform
multiplicative noise (up to 25% of each pixel value of the kernel) and normalize it to sum to one. For
testing, we use the benchmark dataset DIV2KRK that is used in [3].

The input size during training is 64× 64 for all scale factors. The batch size is 64. Each model is
trained for 4× 105 iterations. We use Adam [22] as our optimizer, with β1 = 0.9, β2 = 0.99. The
initial learning rate is 2× 10−4, and will decay by half at every 1× 105 iterations. All models are
trained on RTX2080Ti GPUs.
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Table 1: Quantitative comparison with SOTA SR methods with Setting 1. The best two results are
highlighted in red and blue colors respectively.

Method Scale Set5 Set14 BSD100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic

2

28.82 0.8577 26.02 0.7634 25.92 0.7310 23.14 0.7258 25.60 0.8498
CARN [2] 30.99 0.8779 28.10 0.7879 26.78 0.7286 25.27 0.7630 26.86 0.8606
ZSSR [29] 31.08 0.8786 28.35 0.7933 27.92 0.7632 25.25 0.7618 28.05 0.8769

[27]+CARN [2] 24.20 0.7496 21.12 0.6170 22.69 0.6471 18.89 0.5895 21.54 0.7946
CARN [2]+[27] 31.27 0.8974 29.03 0.8267 28.72 0.8033 25.62 0.7981 29.58 0.9134

IKC [14] 36.62 0.9658 32.82 0.8999 31.36 0.9097 30.36 0.8949 36.06 0.9474
DAN 37.33 0.9754 33.07 0.9068 31.76 0.9213 30.60 0.9020 37.23 0.9710

Bicubic

3

26.21 0.7766 24.01 0.6662 24.25 0.6356 21.39 0.6203 22.98 0.7576
CARN [2] 27.26 0.7855 25.06 0.6676 25.85 0.6566 22.67 0.6323 23.84 0.7620
ZSSR [29] 28.25 0.7989 26.11 0.6942 26.06 0.6633 23.26 0.6534 25.19 0.7914

[27]+CARN [2] 19.05 0.5226 17.61 0.4558 20.51 0.5331 16.72 0.4578 18.38 0.6118
CARN [2]+[27] 30.31 0.8562 2757 0.7531 27.14 0.7152 24.45 0.7241 27.67 0.8592

IKC [14] 32.16 0.9420 29.46 0.8229 28.56 0.8493 25.94 0.8165 28.21 0.8739
DAN 34.04 0.9620 30.09 0.8287 28.94 0.8606 27.65 0.8352 33.16 0.9382

Bicubic

4

24.57 0.7108 22.79 0.6032 23.29 0.5786 20.35 0.5532 21.50 0.6933
CARN [2] 26.57 0.7420 24.62 0.6226 24.79 0.5963 22.17 0.5865 21.85 0.6834
ZSSR [29] 26.45 0.7279 24.78 0.6268 24.97 0.5989 22.11 0.5805 23.53 0.7240

[27]+CARN [2] 18.10 0.4843 16.59 0.3994 18.46 0.4481 15.47 0.3872 16.78 0.5371
CARN [2]+[27] 28.69 0.8092 26.40 0.6926 26.10 0.6528 23.46 0.6597 25.84 0.8035

IKC [14] 31.52 0.9278 28.26 0.7688 27.29 0.8041 25.33 0.7760 29.90 0.8793
DAN 31.89 0.9302 28.43 0.7693 27.51 0.8078 25.86 0.7822 30.50 0.9037

GT

PSNR / SSIM 13.47 / 0.0812

CARN ZSSR

13.46 / 0.0612 16.79 / 0.6748

IKC

20.18 / 0.8950

DAN

Figure 3: Visual results of img 005 in Urban100. The width of blur kernel is 1.8.

4.1.2 Quantitative Results

Setting 1. For the first setting, we evaluate our method on test images synthesized by Gaussian8
kernels. We mainly compare our results with ZSSR [29] and IKC [14], which are methods designed
for blind SR. We also include a comparison with CARN [2]. Since it is not designed for blind SR, we
perform deblurring method [27] before or after CARN. The PSNR and SSIM results on Y channel of
transformed YCbCr space are shown in Table 1.

Despite that CARN achieves remarkable results in the context of bicubic downsampling, it suffers
severe performance drop when applied to images with unknown blur kernels. Its performance is
largely improved when it is followed by a deblurring method, but still inferior to that of blind-SR
methods. ZSSR trains specific network for each single tested image by utilizing the internal patch
recurrence. However, ZSSR has an in-born drawback: the training samples for each image are
limited, and thus it cannot learn a good prior for HR images. IKC is also a two-step solution for blind
SR. Although the accuracy of estimated kernel is largely improved in IKC, the final result is still
suboptimal. DAN is trained in an end-to-end scheme, which is not only much easier to be trained
than two-step solutions, but also likely to a reach a better optimum point. As shown in Table 1, the
PSNR result of DAN on Manga109 for scale ×3 is even 4.95dB higher than that of IKC. For other
scales and datasets, DAN also largely outperforms IKC.

The visual results of img 005 in Urban100 are shown in Figure 3 for comparison. As one can see,
CARN and ZSSR even cannot restore the edges for the window. IKC performs better, but the edges
are severely blurred. While DAN can restore sharp edges and produce more visually pleasant result.

Setting 2. The second setting involves irregular blur kernels, which is more general, but also more
difficult to solve. For Setting 2, we mainly compare methods of three different classes: i) SOTA SR
algorithms trained on bicubically downsampled images such as EDSR [23] and RCAN [39] , ii) blind
SR methods designed for NTIRE competition such as PDN [31] and WDSR [33], iii) the two-step
solutions, i.e. the combination of a kernel estimation method and a non-blind SR method, such as
Kernel-GAN [3] and ZSSR [29]. The PSNR and SSIM results on Y channl are shown in Table 2.

Similarly, the performance of methods trained on bicubically downsampled images is limited by the
domain gap. Thus, their results are only slightly better than that of interpolation. The methods in
Class 2 are trained on synthesized images provided in NTIRE competition. Although these methods
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Table 2: Quantitative comparison with SOTA SR methods with Setting 2. The best two results are
highlighted in red and blue colors respectively.

Types Method
Scale

2 4
PSNR SSIM PSNR SSIM

Class 1

Bicubic 28.73 0.8040 25.33 0.6795
Bicubic kernel + ZSSR [29] 29.10 0.8215 25.61 0.6911

EDSR [23] 29.17 0.8216 25.64 0.6928
RCAN [39] 29.20 0.8223 25.66 0.6936

Class 2

PDN [31] - 1st in NTIRE’19 track4 / / 26.34 0.7190
WDSR [33] - 1st in NTIIRE’19 track2 / / 21.55 0.6841
WDSR [33] - 1st in NTIRE’19 track3 / / 21.54 0.7016
WDSR [33] - 2nd in NTIRE’19 track4 / / 25.64 0.7144
Ji et al. [20] - 1st in NITRE’20 track 1 / / 25.43 0.6907

Class 3

Cornillere et al. [6] 29.46 0.8474 / /
Michaeli et al. [26] + SRMD [37] 25.51 0.8083 23.34 0.6530
Michaeli et al. [26] + ZSSR [29] 29.37 0.8370 26.09 0.7138

KernelGAN [3] + SRMD [37] 29.57 0.8564 25.71 0.7265
KernelGAN [3] + USRNet [35] / / 20.06 0.5359
KernelGAN [3]+ ZSSR [29] 30.36 0.8669 26.81 0.7316

Ours DAN 32.56 0.8997 27.55 0.7582

GT

PSNR / SSIM 29.72 / 0.9045

Bicubic KernelGAN + ZSSR

30.65 / 0.8603 38.09 / 0.9724

DAN

Figure 4: Visual results on img 892 in DIV2KRK.

achieve remarkable results in the competition, they still cannot generalize well to irregular blur
kernels.

The comparison between methods of Class 3 can enlighten us a lot. Specifically, USRNet [35]
achieves remarkable results when GT kernels are provided, and KernelGAN also performs well on
kernel estimation. However, when they are combined together, as shown in Table 2, the final SR
results are worse than most other methods. This indicates that it is important for the Estimator and
Restorer to be compatible with each other. Additionally, although better kernel-estimation method
can benefit the SR results, the overall performance is still largely inferior to that of DAN. DAN
outperforms the combination of KernelGAN and ZSSR by 2.20dB and 0.74dB for scales ×2 and
×4 respectively.

The visual results of img 892 in DIVKRK are shown in Figure 4. Although the combination of
KernelGAN and ZSSR can produce slightly shaper edges than interpolation, it suffers from severe
artifacts. The SR image of DAN is obviously much cleaner and has more reliable details.

Table 3: PSNR results when GT kernels are provided.

Methods Set5 Set14 B100 Urban100 Manga109
DAN 31.89 28.43 27.51 25.86 30.50

DAN(GT kernel) 31.85 28.42 27.51 25.87 30.51

4.1.3 Study of Estimated Kernels

To evaluated the accuracy of predicted kernels, we calculate their L1 errors in the reduced space,
and the results on Urban100 are shown in Figure 5 (a). As one can see that the L1 error of reduced
kernels predicted by DAN are much lower than that of IKC. It suggests that the overall improvements
of DAN may partially come from more accurate retrieved kernels. We also plot the PSNR results
with respect to kernels with different sigma in Figure 5 (b). As sigma increases, the performance gap

7



1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2
Sigma

0.000

0.002

0.004

0.006

0.008

0.010

L1
 L

os
s

--IKC
--DAN

(a) Kernel loss on different sigma.

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2
Sigma

24.0

24.5

25.0

25.5

26.0

PS
NR

 (d
B)

--IKC
--DAN

(b) PSNR over kernels with different sigma.

Figure 5: The L1 loss of predicted kernels with different sigma (left) and PSNR results with respect
to different kernels (right).

between IKC and DAN also becomes larger. It indicates that DAN may have better generalization
ability.

We also replace the estimated kernel by ground truth (GT) to further investigate the influence of
Estimator. If GT kernels are provided, the iterating processing becomes meaningless. Thus we test
the Restorer with just once forward propagation. The tested results for Setting 1 is shown in Table 3.
The result almost keeps unchanged and sometimes even gets worser when GT kernels are provided.
It indicates that Predictor may have already satisfied the requirements of Restorer, and the superiority
of DAN also partially comes from the good cooperation between its Predictor and Restorer.

4.1.4 Study of Iterations

After the model is trained, we also change the number of iterations to see whether the two modules
have learned the property of convergence or just have ‘remembered’ the iteration number. The model
is trained with 4 iterations, but during testing we increase the iteration number from 1 to 7. As shown
in Figure 6 (a) and (c), the average PSNR results on Set5 and Set14 firstly increase rapidly and then
gradually converge. It should be noted that when we iterate more times than training, the performance
dose not becomes worse, and sometimes even becomes better. For example, the average PSNR on
Set14 is 20.43dB when the iteration number is 5, higher than 20.42dB when we iterate 4 times.
Although the incremental is relatively small, it suggests that the two modules may have learned to
cooperate with each other, instead of solving this problem like ordinary end-to-end networks, in
which cases, the performance will drop significantly when the setting of testing is different from
that of training. It also suggests that the estimation error of intermediate results does not destroy the
convergence of DAN. In other words, DAN is robust to various estimation error.

4.2 Inference Speed

One more superiority of our end-to-end model is that it has higher inference speed. To make a
quantitative comparison, we evaluate the average speed of different methods on the same platform.
We choose the 40 images synthesized by Gaussian8 kernels from Set5 as testing images, and all
methods are evaluated on the same platform with a RTX2080Ti GPU. We choose KernelGAN [3] +
ZSSR [29] as the one of the representative methods. Its speed is 415.7 seconds per image. IKC [14]
has much faster inference speed, which is only 3.93 seconds per image. As a comparison, the average
speed of DAN is 0.75 seconds per image, nearly 554 times faster than KernelGAN + ZSSR, and 5
times faster than IKC. In other words, DAN not only can largely outperform SOTA blind SR methods
on PSNR results, but also has much higher speed.

4.3 Experiments on Real World Images

We also conduct experiments to prove that DAN can generalize well to real wold images. In this case,
we need to consider the influence of additive noise. As we mentioned in Sec 3.1, we can perform
an denoise algorithm in the first place. But for simplicity, we retrain a different model by adding
AWGN to LR image during training. In this way, DAN would be forced to generalize to noisy images.
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(a) Average PSNR on Set5

GT of butterfly

PSNR/SSIM

Iter 1

23.03 / 0.4843

Iter 2

25.18 / 0.6145

Iter 3

25.30 / 0.6219

Iter 4

25.60 / 0.5340
(b) Visual Results of butterfly in Set5 with different iterations

(c) Average PSNR on Set14 (d) Visual Results of zebra in Set14 with different iterations

GT of zebra

PSNR/SSIM

Iter 1 Iter 2 Iter 3 Iter 4

21.91 / 0.5957 24.19 / 0.781224.13 / 0.7853 24.23 / 0.7851

Figure 6: PSNR and visual results with different iterations during testing on Set5 and Set14.

The covariance of noise is set as 15. We use KernelGAN [3] + ZSSR [29] and IKC [14] as the
representative methods for blind SR, and CARN [2] as the representative method for non-blind SR
method. The commonly used image chip [12] is chosen as test image. It should be noted that it is
a real image and we do not have the ground truth. Thus we can only provide a visual comparison
in Figure [12]. As one can see, the result of KernelGAN + ZSSR is slightly better than bicubic
interpolation, but is still heavily blurred. The result of CARN is over smoothed and the edge is not
sharp enough. IKC produces cleaner result, but there are still some artifacts. The letter ‘X’ restored
by IKC has an obvious dark line at the top right part. But this dark line is much lighter in the image
restored by DAN. It suggests that if trained with noisy images, DAN can also learn to denoise, and
produce more visually pleasant results with more reliable details. This is because that both modules
are implemented via convolutional layers, which are flexible enough to be adapted to different tasks.

Bicubic KernelGAN+ZSSR IKC DANCARN

Figure 7: Visual results on real image chip.

5 Conclusion

In this paper, we have proposed an end-to-end algorithm for blind SR. This algorithm is based on
alternating optimization, the two parts of which are both implemented by convolutional modules,
namely Restorer and Estimator. We unfold the alternating process to form an end-to-end trainable
network. In this way, Estimator can utilize information from both LR and SR images, which makes
it easier to estimate blur kernel. More importantly, Restorer is trained with the kernel estimated by
Estimator, instead of ground-truth kernel, thus Restorer could be more tolerant to with the estimation
error of Estimator. Besides, the results of both modules could be substantially improved during
the iterations, thus it is likely for DAN to get better final results than previous two-step solutions.
Experiments also prove that DAN outperforms SOTA blind SR methods by a large margin. In the
future, if the two parts of DAN can be implemented by more powerful modules, we believe that its
performance could be further improved.

Broader Impact

Super Resolution is a traditional task in computer vision. It has been studied for several decades and
has wide applications in video enhancement, medical imaging, as well as security and surveillance
imaging. These techniques have largely benefited the society in various areas for years and have
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no negative impact yet. The proposed method (DAN) could further improve the merits of these
applications especially in cases where the degradations are unknown. DAN has relatively better
performance and much higher speed, and it is possible for DAN to be used in real-time video
enhancement or surveillance imaging. This work does not present any negative foreseeable societal
consequence.
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