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Abstract

Verification and regression are two general methodologies for prediction in neural
networks. Each has its own strengths: verification can be easier to infer accurately,
and regression is more efficient and applicable to continuous target variables.
Hence, it is often beneficial to carefully combine them to take advantage of their
benefits. In this paper, we take this philosophy to improve state-of-the-art object
detection, specifically by RepPoints. Though RepPoints provides high performance,
we find that its heavy reliance on regression for object localization leaves room
for improvement. We introduce verification tasks into the localization prediction
of RepPoints, producing RepPoints v2, which provides consistent improvements
of about 2.0 mAP over the original RepPoints on the COCO object detection
benchmark using different backbones and training methods. RepPoints v2 also
achieves 52.1 mAP on COCO test-dev by a single model. Moreover, we show
that the proposed approach can more generally elevate other object detection
frameworks as well as applications such as instance segmentation. The code is
available at https://github.com/Scalsol/RepPointsV2.

1 Introduction

Two common methodologies for neural network prediction are verification and regression. While
either can drive network features to fit the final task targets, they each have different strengths. For
the object localization problem, verification can be easier to infer because each feature is spatially
aligned with the target to be verified. On the other hand, regression is often more efficient and it can
also predict continuous target variables that enable subtle localization refinement.

To take advantage of all these benefits, earlier object localization methods [9, 20, 19] combined
verification and regression by first performing coarse localization through verifying several anchor box
hypotheses, and then refining the localization by regressing box offsets. This combination approach
was shown to be effective and led to state-of-the-art performance at the time. However, recent
methods based purely on regression, which directly regress the object extent from each feature map
position [32, 29, 34], could perform competitively or even better, when comparing a representative
regression method, RepPoints, to RetinaNet [19].

In this work, we examine whether pure regression based methods can be enhanced by the inclusion
of verification methodology. We observe that verification has proven to be advantageous when used
in certain ways. In CornerNet [16], feature map points are verified as a bounding box corner or
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not, in contrast to verifying anchor boxes for coarse hypothesis localization in RetinaNet [19]. This
use of verification leads to significantly better localization performance as shown in Table 1. The
difference may be attributed to corner points representing the exact spatial extent of a ground-truth
object box, while an anchor box gives only a coarse hypothesis. In addition, each feature in corner
point verification is well aligned to the corresponding point, while in anchor verification, the center
feature used for verification lies away from the boundary area.

To elevate the performance of regression-based methods, specifically RepPoints [32], we thus seek
to incorporate effective and compatible forms of verification. However, the different granularity of
object representations processed by the two methods, i.e., whole objects in RepPoints and object
parts (corners) in corner verification, presents an obstacle. To address this issue, we propose to model
verification tasks by auxiliary side-branches that are added to the major regression branch at only the
feature level and result level, without affecting intermediate representations. Through these auxiliary
side-branches, verification can be fused with regression to provide the following benefits: better
features by multi-task learning, feature enhancement through inclusion of verification cues, and joint
inference by both methodologies. The fusion is simple, intuitive, general enough to utilize any kind
of verification cue, and does not disrupt the flow of the RepPoints algorithm.

Through different techniques for harnessing verification, the localization and classification ability of
RepPoints is substantially improved. The resulting detector, called RepPoints v2, shows consistent
improvements of about 2.0 mAP over the original RepPoints on the COCO benchmark with different
backbones. It also achieves 52.1 mAP on the COCO object detection test-dev set with a single
ResNeXt-101-DCN model.

The proposed approach of choosing proper verification tasks and introducing them into a regression
framework as auxiliary branches is flexible and general. It can be applied to object detection frame-
works other than RepPoints, such as FCOS [29]. The additional corner and within-box verification
tasks are shown to improve a vanilla FCOS detector by 1.3 mAP on COCO test-dev using a
ResNet-50 model. This approach can be also applied beyond object detection, such as to instance
segmentation by Dense RepPoints [33], where additional contour and mask verification tasks improve
performance by 1.3 mAP using a ResNet-50 model on the COCO instance segmentation test-dev
set, reaching 38.9 mask mAP.

Table 1: Analysis of the performance on COCO val set among different methods. “RepPoints*”
indicates our improved re-implementation of RepPoints.

Method methodology backbone AP AP50 AP60 AP70 AP80 AP90

RetinaNet [19] ver.+reg. ResNeXt-101 40.0 60.9 56.4 48.7 35.8 14.6
CornerNet [16] verification HG-104 40.6 56.1 52.0 46.8 38.8 23.4
RepPoints* [32] regression ResNet-50 39.1 58.8 54.8 48.0 35.5 14.4

RepPoints v2 ver.+reg. ResNet-50 41.0 59.9 55.9 49.1 37.2 18.5

2 Related Works

Verification based object detection Early deep learning based object detection approaches [28, 26]
adopt a multi-scale sliding window mechanism to verify whether each window is an object or not.
Corner/extreme point based verification is also proposed [30, 16, 37, 6, 5] where the verification of
a 4-d hypothesis is factorized into sub-problems of verifying 2-d corners, such that the hypothesis
space is more completely covered. A sub-pixel offset branch is typically included in these methods
to predict continuous corner coordinates through regression. However, since this mainly deals with
quantization error due to the lower resolution of the feature map compared to the input image, we
treat these methods as purely verification based in our taxonomy.

Regression based object detection Achieving object detection by pure regression dates back to
YOLO [22] and DenseBox [13], where four box borders are regressed at each feature map position.
Though attractive for their simplicity, their accuracy is often limited due to the large displacements
of regression targets, the issue of multiple objects located within a feature map bin, and extremely
imbalanced positive and negative samples. Recently, after alleviating these issues by a feature
pyramid network (FPN) [18] structure along with a focal loss [19], regression-based object detection
has regained attention [29, 15, 36, 32], with performance on par or even better than other verification
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or hybrid methods. Our work advances in this direction, by leveraging verification methodology into
regression based detectors without disrupting its flow and largely maintaining the convenience of
the original detectors. We mainly base our study on the RepPoints detector, but the method can be
generally applied to other regression based detectors.

Hybrid approaches Most detectors are hybrid, for example, those built on anchors or proposals [8,
7, 23, 19, 1, 21]. The verification and regression methodologies are employed in succession, where
the anchors and proposals which provide coarse box localization are verified first, and then are refined
by regression to produce the detection output. The regression target is usually at a relatively small
displacement that can be easily inferred. Our work demonstrates a different hybrid approach, where
the verification and regression steps are not run in serial but instead mostly in parallel to better
combine their strengths. Moreover, this paper utilizes the more accurate corner verification tasks to
complement regression based approaches.

Multi-task learning Several methods [11, 5, 4] adopt multi-task learning and observe moderate
gain compared to the baseline. In [11], performance elevation in box mAP is observed when the
mask annotation is utilized for training. Similarly, [4] utilize keypoint prediction as an auxiliary
task and also observe performance gain in the main task. As our work aims to take advantage of all
benefits from verification and regression, thus our proposed method has a high relevance to multi-task
learning. However, unlike these methods, our contribution is far beyond multi-task learning: we
propose a unified and general framework with 3 mechanisms to take advantage of verification tasks
to help regression methods. Moreover, our multi-task learning does not require additional annotation.

3 Verification Meets Regression for Object Detection

3.1 A Brief Review of a Pure Regression Method: RepPoints

RepPoints [32] adopts pure regression to achieve object localization. Starting from a feature map
position p = (x, y), it directly regresses a set of points R′ = {p′i = (x′i, y

′
i)}

n
i=1 to represent the

spatial extent of an object using two successive steps:

pi = p + ∆pi = p + gi (Fp), p′i = pi + ∆p′i = pi + g′i(concat({Fpi}ni=1)) , (1)

whereR = {pi = (xi, yi)}ni=1 is the intermediate point set representation; Fp denotes the feature
vector at position p; gi and g′i are 2-d regression functions implemented by a linear layer. The
bounding boxes of an object are obtained by applying a conversion function T on the point setsR
andR′, where T is modeled as the min-max, partial min-max or moment function.

The direct regression in RepPoints [32] makes it a simple framework without anchoring. Though
no anchor verification step is employed, it performs no worse than anchor-based detectors, i.e.
RetinaNet [19], in localization accuracy as shown in Table 1. Nevertheless, we are motivated by the
potential synergy between regression and verification to consider the following questions: What kind
of verification tasks can benefit the regression-based RepPoints [32]? Can various verification tasks
be conveniently fused into the RepPoints framework without impairing the original detector?

3.2 Verification Tasks

We first discuss a pair of verification tasks that may help regression-based localization methods.

3.2.1 Corner Point Verification

Two corner points, e.g. the top-left corner and bottom-right corner, can determine the spatial extent
of a bounding box, providing an alternative to the usual 4-d descriptor consisting of the box’s center
point and size. This has been used in several bottom-up object detection methods [16, 37, 30], which
in general perform worse than other kinds of detectors in classification, but is significantly better
in object localization, as seen in Table 1. In later sections, we show that this verification task can
complement regression based methods to obtain more accurate object localization.

Corner point verification operates by associating a score to each point in the feature map, indicating
its probability of being a corner point. An additional offset is predicted to produce continuous
coordinates for corner points, which are initially quantized due to the lower resolution of the feature
map compared to the input image, e.g. 8× downsampling. Following the original implementation [16],
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Figure 1: Overview of the general fusion method. The outputs of verification modules (corner and
foreground) are incorporated with the input feature to elevate the performance of regression-based
object localization, and then joint inference is further employed.

corner pooling is computed in the head, with a focal loss [19] to train the corner score prediction and
a smooth L1 loss for the sub-pixel offset prediction. In label assignment, each feature map point is
labeled positive if a ground truth corner point is located within its feature bin, and others are labeled
negative. In computing the loss, the negative samples around each ground truth corner are assigned
lower weights by an inverse Gaussian function with respect to its distance to the ground-truth corner
point. A more detailed description is given in Appendix.

Different from CornerNet [16], which employs a special backbone architecture with an Hourglass
structure and a single-level high resolution feature map (4× downsampled from the original image),
most other recent object detectors adopt an FPN backbone with multi-level feature maps. We adapt
the corner verification to utilize multi-level feature maps, e.g. the C3-C7 settings in RepPoints [32].
Specifically, all ground truth corner points are assigned to every feature map level, contrary to the
usual practice in FPN-based object detection of assignment according to object size. We find that
assignment in this manner performs slightly better although it disregards the scale normalization issue,
probably due to more positive samples at each level in training. It also performs substantially better
than training on a single feature map level of highest resolution, i.e. C3, and then copying/resizing
the predicted score/offset map to other levels.

3.2.2 Within-box foreground verification

Another verification task with potential to benefit regression based object detectors is to verify whether
a feature map point is located within an object box or not. This within-box foreground verification
task provides localization information evenly inside an object box, in contrast to corner points which
focus on the box extremes. It is thus not as precise as corner points in describing object bounds, but
may benefit object detectors given a coarse localization criterion. The centerness prediction task
in FCOS [29] shares some similarity with our within-box foreground verification task but they are
designed for different roles. While FCOS’s centerness aims for adjusting object scores and weighting
the regression loss, the within-box verification aims to complement the main regression branch.

We also differentiate among different object categories by using a non-binary category-aware fore-
ground heatmap. Concretely, for C object categories, there is a C-channel output, with each channel
indicating the probability of a feature point being in the corresponding object category. The same as
for corner point verification, each ground truth object is assigned to every level of an FPN backbone.

Normalized focal loss. In training, a vanilla focal loss lets larger objects contribute significantly
more than smaller objects, resulting in poorly learnt foreground scores for small objects. To address
this issue, a normalized focal loss is proposed, which normalizes every positive feature map point
by the total number of positive points within the same object box in the feature map. For negative
points, the normalized loss uses the number of positive points as the denominator. A more detailed
description is given in Appendix.
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3.3 A General Fusion Method

In this section, we incorporate these forms of verification to elevate the performance of regression-
based methods. In general, regression-based methods detect objects in a top-down manner where all
intermediate representations model the whole object. Since the two verification tasks process object
parts, such as a corner or a foreground point, the different granularity of their object representations
complicates fusion of the two methodologies.

To address this issue, we propose to model verification tasks by auxiliary side-branches that are fused
with the major regression branch in a manner that does not affect its intermediate representations, as
illustrated in Figure 1. Fusion occurs only at the feature level and result level. With these auxiliary
side-branches, the detector can gain several benefits:

Better features by multi-task learning The auxiliary verification tasks provide richer supervision
in learning, yielding stronger features that increase detection accuracy, as shown in Table 4. Note
that this multi-task learning is different from that of Mask R-CNN [10]. In Mask R-CNN [10], the
bounding box object detection benefits from the object mask prediction task, but it requires extra
annotation of the object mask. In contrast, our additional auxiliary tasks are automatically generated
from only the object bounding box annotation, allowing them to be applied in scenarios where just
bounding box annotations are available.
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Figure 2: Illustration of the corner module
and foreground module.

Feature enhancement for better regression The
verification output includes strong cues regarding cor-
ner locations and the foreground area, which should
benefit the regression task. Since the prediction out-
put of these verification tasks has the same resolution
as the feature map used for regression at each FPN
level, we directly fuse them by applying a plus op-
erator on the original feature map and an embedded
feature map produced from the verification output
by one 1 × 1 conv layer. The embedding aims to
project any verification output to the same dimension
as the original feature map, and is shared across fea-
ture map levels. Note that for the verification output,
a copy detached from back-propagation is fed into
the embedding convolution layer to avoid affecting
the learning of that verification task.

Joint inference by both methodologies Feature-level fusion implicitly aids object localization.
We also explicitly utilize the verification output from corner prediction together with regression-based
localization in a joint inference approach that makes use of both of their strengths. Specifically, by
corner verification, the sub-pixel corner localization in a small neighborhood is usually more accurate
than that by the main regression branch, but is worse at judging whether it is a real corner point since
it lacks a whole picture of the object. On the contrary, the main regression branch is better for the
latter while worse in accurate sub-pixel localization. To combine their strengths, we refine a corner
point pt of the bounding box predicted from the main regression branch by

refine(pt) = arg max{
qt

∣∣‖qt−pt‖≤r
} s(qt), (2)

where t indicates the corner type (top-left or bottom-right); qt is a sub-pixel corner point produced
by a corner prediction branch at a feature map position; s(qt) is the verification score; r is the
neighborhood threshold, set to 1 by default. Unlike in training where we assign ground truth corners
to multiple levels, C3-C7, of the feature pyramid, in joint inference only the C3 corner heatmap
is utilized for searching. So r = 1 corresponds to a 8-pixel neighborhood. We find utilizing the
heatmap of the highest resolution performs better than using the corresponding heatmap level. We
hypothesis the reason is that higher resolution would produce more accurate corner prediction results,
just in accordance of the observation in CornerNet [16]. So this design choice is more suitable for
result-level fusion. Note that this result-level fusion is designed for the corner verification task only.
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This fusion method is flexible and general, utilizing any kind of verification cue, as it avoids interaction
with the intermediate representations in the main branch, and thus has few requirements on the types
of verification target. It also does not disrupt the overall flow of the main branch and largely maintains
the convenience of the original detector built on the main branch.

3.4 RepPoints v2: Fusing Verification into RepPoints

RepPoints is a pure regression based object detector. We now complement it with verification tasks of
different forms, specifically for corners and within-box foreground. In Section 3.1, We have a brief
review of the work flow of RepPoints. A set of representative points are predicted to represent the
object through two consecutive regression process, and a conversion function is carried to transform
these points into bounding boxes. To increase the compatibility of RepPoints with the auxiliary
verification tasks, we first make a small modification to it, such that the first two points of the set
R of predicted points now explicitly represent the top-left and bottom-right corner points. We refer
to this as the explicit-corners variant. These corner points replace the conversion function used in
the original RepPoints, so that the bounding box is defined by these corner points instead of by a
min-max or momentum operation on the point set. With the corner points, the conversion function
becomes

T (R) =

(
x1 + x2

2
,
y1 + y2

2
, x2 − x1, y2 − y1

)
. (3)

where the four numbers denote x-center, y-center, width and height, respectively. To this explicit-
corners variant of RepPoints, we add the auxiliary side-branches for verification. Specifically, we
take the feature map right after the 3rd conv layer of the localization head as input, to reuse the
existing head for computational savings. As illustrated in Figure 2, a 3 × 3 convolutional layer is
applied on this feature map, followed by two small sub-networks for the two verification tasks. The
corner sub-network consists of a corner pooling layer [16] followed by a 1× 1 conv layer to predict
heatmap scores and sub-pixel offsets. The foreground sub-network is a single 1× 1 conv layer to
predict the foreground score heatmap. In training, we adopt a multi-task loss:

L = LRepPoints + λ1Lcorner + λ2Lforeground, (4)

with loss weights λ1 = 0.25 and λ2 = 0.1. More details are given in Appendix.

Customizing the general fusion method of Section 3.3 to RepPoints, we use corner verification for
multi-task learning, feature enhancement and joint inference. Foreground verification is instead used
only for multi-task learning and feature enhancement. The resulting detector is named RepPoints v2.

3.5 Extension to Other Detectors and Problems

The fusion method used for RepPoints can also improve other detectors such as FCOS [29]. As
FCOS shares similar classification and localization heads as in RepPoints, the fusion of RepPoints v2
can directly be applied to it. Concretely, the corner and foreground verification heads are applied on
the feature map after the 3rd conv layer. The verification output maps are fused into the main branch,
and the final regression results are obtained by the joint inference described in Section 3.3.

The fusion method can also be extended to other tasks such as instance segmentation by Dense
RepPoints [33], a regression-based method. Since there is an additional object mask annotation, more
fine-grained verification formats can be used, such as object contour verification and category-aware
semantic segmentation. As shown in Table 7, the additional verification methodology brings 1.3 mask
AP gains to Dense RepPoints on the COCO test-dev set. More details are presented in Appendix.

4 Experiments

We conduct experiments on the challenging MS COCO 2017 benchmark [17], which is split into
train, val and test-dev sets with 115K, 5K and 20K images, respectively. We train all the models
using the train set and conduct an ablation study on the val set. A system-level comparison to
other methods is reported on the test-dev set.
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Table 2: Performance of the explicit-corners variant of RepPoints.

variant +verification AP AP50 AP75 APS APM APL

min-max 39.1 58.8 42.4 22.4 42.8 50.5
X 40.7 59.8 43.7 23.3 44.4 54.0

partial min-max 39.0 58.7 42.4 21.8 42.5 50.7
X 40.7 59.7 43.6 23.1 44.4 54.0

momentum 39.1 58.9 42.2 22.3 42.6 50.8
X 40.8 59.7 43.7 23.5 44.7 53.9

explicit-corners 39.1 58.8 42.5 22.4 42.6 50.6
X 41.0 59.9 43.9 23.8 44.8 54.0

Table 3: Ablations on two forms of verification.

corner foreground AP AP50 AP75 AP90 APS APM APL

39.1 58.8 42.5 14.4 22.4 42.6 50.6
X 40.5 59.0 43.5 18.4 23.4 44.1 53.5
X X 41.0 59.9 43.9 18.5 23.8 44.8 54.0

4.1 Implementation Details

We use the mmdetection codebase [2] for experiments. All experiments perform training with an
SGD optimizer on 8 GPUs with 2 images per GPU, using an initial learning rate of 0.01, a weight
decay of 0.0001 and momentum of 0.9. In ablations, most experiments follow the 1× settings where
12 epochs with single-scale training of [800, 1333] are used, with learning rate decayed by 10×
after epoch 8 and 11. Most of the ablations use a ResNet-50 [12] backbone pretrained on ImageNet
[25]. We also test our approach using multi-scale ([480, 960]) and longer training (2× settings with
24 epochs in total and the learning rate decayed at epoch 16 and 22) on stronger backbones to see
whether the gains by the proposed approaches hold on these stronger baselines.

In inference, unless otherwise specified, we adopt a single-scale test approach with the image size
the same as in single-scale training. We also conduct multi-scale testing on the strongest backbone
for comparison with the previous state-of-the-art approaches. An IoU threshold of 0.6 is applied for
Non-Maximum Suppression (NMS) to remove duplicate boxes.

For RepPoints [32], we use an improved implementation by replacing the IoU assigner with an ATSS
assigner [34], yielding 39.1 mAP on COCO val using a ResNet-50 model and the 1× settings, 0.9
mAP higher than that reported in the original paper.

4.2 Ablation Study

Explicit-corners variant. We first validate the effectiveness of the explicit-corners variant of
RepPoints described in Section 3.4, as shown in Table 2. This variant performs on par with the three
variants used in the original RepPoints, but performs 0.2-0.3 mAP better than other variants when
the verification module is added. This could be contributed to more effective interaction between
verification and regression tasks in this explicit-corners variant.

Forms of verification Table 3 ablates the two forms of verification. The corner verification task
alone brings 1.4 mAP gains over the RepPoints baseline. The benefits are mainly for higher IoU
criteria, e.g. AP90 is improved by 4.0 mAP while AP50 increases by only 0.2 mAP. The additional
foreground verification task brings another 0.5 mAP in gains, but mainly on lower IoU criteria, for
example, AP50 is improved by 0.9 AP while AP90 remains about the same.

Table 4: Ablations on three types of fusion.

multi-task enhance feature joint inference AP AP50 AP75 AP90 APS APM APL

39.1 58.8 42.5 14.4 22.4 42.6 50.6
X 39.5 58.9 42.7 14.6 22.5 43.1 51.0
X X 40.2 60.0 43.5 15.7 24.1 43.8 52.5
X X X 41.0 59.9 43.9 18.5 23.8 44.8 54.0
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Types of fusion Table 4 ablates the types of fusion, specifically multi-task learning, feature en-
hancement for regression, and joint inference. Multi-task learning brings a 0.4 mAP gain over the
RepPoints baseline. Note that this multi-task learning does not rely on annotations beyond bounding
boxes, in contrast to that in Mask R-CNN [10]. The additional feature enhancement operation brings
another 0.7 gain. The explicit fusion by joint inference brings increases mAP by 0.8, such that the
full approach surpasses its counterpart without verification modules by 1.9 mAP.

Hyperparamter r in joint inference The hyperparamter r in joint inference controls the searching
range for corner point refinement. r = 1, 2, 3, 4 produce mAP of 41.0, 40.8, 40.5, 40.2, respectively,
indicating r = 1 performs best. A more sophisticated method for corner point refinement may
produce better results but it is not the main focus of this work.

Complexity analysis and runtime. Our approach involves slightly more parameters (38.3M vs
37.0M) and marginally more computation (244.2G vs 211.0G) than the original RepPoints. This
overhead mainly occurs at the additional heads to produce verification score/offset maps. We also
conduct RepPoints with heavier computation, by adding one more convolutional layers on the heads,
resulting in a baseline with similar parameters and computations as our approach (38M/235.8G v.s.
38.3M/244.2G). The enhanced baseline model performs 0.2 mAP better than the vanilla RepPoints,
indicating that the improvements by our approach are mostly not due to more parameters and
computation. For real inference speed, the speed of RepPoints v1 is 12.7 FPS (img/s) using ResNet-
50 on a Titan XP GPU, while that of RepPoints v2 is 10.1 FPS. With a ResNeXt-101-DCN backbone,
the speeds are 4.3 FPS v.s. 3.8 FPS for RepPoints v1 and v2, respectively.

Table 5: Experiments on RepPoints baselines with stronger backbones using 2× settings (24 epochs)
and multi-scale training ([480, 960]) on COCO val set.

backbone +verification AP AP50 AP60 AP70 AP80 AP90

ResNet-50 41.8 61.8 58.1 51.1 38.6 15.9
X 43.9 63.1 59.3 52.5 40.1 20.6

ResNet-101 43.4 63.3 59.4 53.0 40.4 18.0
X 45.5 64.5 60.6 54.1 42.3 22.2

ResNeXt-101 45.5 65.9 62.1 55.2 42.4 19.7
X 47.3 66.9 62.9 56.1 44.0 23.7

Stronger baselines. We further validate our method on stronger RepPoints baselines, using
longer/multi-scale training (2× settings) and stronger backbones, as shown in Table 5. It can
be seen that the gains are well maintained on these stronger RepPoints baselines, at about 2.0 mAP.
This indicates that the proposed approach is largely complementary to improved baseline architecture,
in contrast to many techniques that have exhibited decreasing gains with respect to stronger baselines.

Table 6: Applying the verification module to FCOS, which is implemented in mmdetection.

backbone AP AP50 AP75 AP90 APS APM APL

FCOS ResNet-50 38.2 57.1 41.2 15.3 22.2 42.3 49.5
+verification ResNet-50 39.5 57.7 41.9 18.4 22.3 43.2 52.7

Table 7: Adding the verification module to the instance segmentation algorithm Dense RepPoints on
COCO test-dev.

backbone APmask AP50 AP75 APS APM APL

Dense RepPoints ResNet-50 37.6 60.4 40.2 20.9 40.5 48.6
+verification ResNet-50 38.9 61.5 41.9 21.2 42.0 51.1

Visualization. The visualization results are given in Appendix.

4.3 Comparison to State-of-the-art Methods

We compare the proposed method to other state-of-the-art object detectors on the COCO2017
test-dev set, as shown in Table 8. We use GIoU [24] loss instead of smooth-l1 loss in the regression
branch here. With ResNet-101 as the backbone, our method achieves 46.0 mAP without bells and
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Table 8: Comparison of RepPoints v2 to state-of-the-art detectors on COCO test-dev. * denotes
that the number is obtained by multi-scale testing.

method backbone epoch AP AP50 AP75 APS APM APL

RetinaNet [19] ResNet-101 18 39.1 59.1 42.3 21.8 42.7 50.2
FCOS [29] ResNeXt-101 24 43.2 62.8 46.6 26.5 46.2 53.3

DCN V2* [38] ResNet-101+DCN 18 46.0 67.9 50.8 27.8 49.1 59.5
RepPoints* [32] ResNet-101+DCN 24 46.5 67.4 50.9 30.3 49.7 57.1

MAL* [14] ResNeXt-101 24 47.0 66.1 51.2 30.2 50.1 58.9
FreeAnchor* [35] ResNeXt-101 24 47.3 66.3 51.5 30.6 50.4 59.0

ATSS* [34] ResNeXt-101+DCN 24 50.7 68.9 56.3 33.2 52.9 62.4
TSD* [27] SENet154+DCN 24 51.2 71.9 56.0 33.8 54.8 64.2

CornerNet [16] HG-104 100 40.5 56.5 43.1 19.4 42.7 53.9
ExtremeNet [37] HG-104 100 40.2 55.5 43.2 20.4 43.2 53.1

CenterNet [6] HG-104 100 44.9 62.4 48.1 25.6 47.4 57.4
RepPoints v2 ResNet-50 24 44.4 63.5 47.7 26.6 47 54.6
RepPoints v2 ResNet-101 24 46.0 65.3 49.5 27.4 48.9 57.3
RepPoints v2 ResNeXt-101 24 47.8 67.3 51.7 29.3 50.7 59.5
RepPoints v2 ResNet-101+DCN 24 48.1 67.5 51.8 28.7 50.9 60.8
RepPoints v2 ResNeXt-101+DCN 24 49.4 68.9 53.4 30.3 52.1 62.3

RepPoints v2* ResNeXt-101+DCN 24 52.1 70.1 57.5 34.5 54.6 63.6

whistles. By using stronger ResNeXt-101 [31] and DCN [3] models, the accuracy rises to 49.4 mAP.
With additional multi-scale tests as in [34], the proposed method achieves 52.1 mAP.

4.4 Extension to Other Detectors and Applications

Direct application to FCOS FCOS [29] is another popular regression based object detector. We
directly apply our approach without modification to this detector, and 1.3 mAP improvements are
obtained as shown in Table 6, indicating generality of the proposed approach.

Extension to instance segmentation Table 7 shows the effect of additional verification modules in
the instance segmentation method of Dense RepPoints [33]. The additional contour and foreground
modules improve accuracy by 1.3 mAP, demonstrating the broad applicability of the fusion method.

5 Conclusion

In this paper, we propose RepPoints v2, which enhances the original regression-based RepPoints by
fusing verification tasks in various ways. A new variant of RepPoints is proposed to increase the
compatibility with the auxiliary verification tasks. The resulting object detector shows consistent
improvements over the original RepPoints under different backbones and training approaches. It also
achieves 52.1 mAP on the COCO test-dev. Moreover, this approach could be easily transferred
to other detectors and the instance segmentation domain, boosting the performance of the base
detector/segmenter by a considerable margin.
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Broader Impact

Since this work is about designing better object detectors, researchers and engineers engaged in
object detection and instance segmentation on natural images, medical images and even video data
may benefit from this paper. If there is any failure in this system, the model may not detect objects
correctly. Similar to most object detectors, the detection results may not be interpretable, thus it is
hard to predict failure scenarios. This object detector also leverages biases in the dataset used for
training, and may incur a performance drop on datasets which have a domain gap with the training
dataset.
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