Latent World Models For Intrinsically Motivated
Exploration

Aleksandr Ermolov, Nicu Sebe
Department of Information Engineering and Computer Science (DIST)
University of Trento, Italy
{aleksandr.ermolov,niculae.sebe}@unitn.it

Abstract

In this work we consider partially observable environments with sparse rewards.
We present a self-supervised representation learning method for image-based obser-
vations, which arranges embeddings respecting temporal distance of observations.
This representation is empirically robust to stochasticity and suitable for novelty
detection from the error of a predictive forward model. We consider episodic and
life-long uncertainties to guide the exploration. We propose to estimate the missing
information about the environment with the world model, which operates in the
learned latent space. As a motivation of the method, we analyse the exploration
problem in a tabular Partially Observable Labyrinth. We demonstrate the method
on image-based hard exploration environments from the Atari benchmark and
report significant improvement with respect to prior work. The source code of the
method and all the experiments is available athttps://github.com/htdt/lwm.

1 Introduction

A sparse reward signal is one of the challenging problems in reinforcement learning (RL). In this
case, random exploration is inefficient, the number of randomly performed steps grows exponentially
with the number of distinct visited states, the agent is unlikely to stumble on the rewarding state. The
intrinsic motivation, or curiosity, approach aims at this problem [4]. This method provides an intrinsic
reward signal to encourage an agent to seek novel or rare states. There are several approaches to detect
such states and calculate the reward: one class of methods estimates the novelty proportionally to an
error of future state prediction (predictive forward models) [31},125| 6], another class approximately
counts visited states and estimates the novelty in an inverse ratio [32, 14,10} 24} 26, |33]]. Most of the
methods estimate novelty in a life-long time frame, states are considered novel only if the agent did
not observe them during the whole training. Some methods use an episodic time frame comparing
only the states inside a specific episode [26} [2].

Often RL environments are only partially observable and the agent must maintain a belief state, i.e.,
a sufficient statistic of the past, required for action selection. For instance, in the Atari Pong game,
the state should include at least two consecutive frames of the environment, making it possible to
determine the direction of the ball movement. This is a common situation, when the environment
is partially observable and the reward is sparse at the same time. For instance, consider a labyrinth
composed of rooms similar to each other. The agent observes only the room in which it is currently
located, the reward is given only when the agent reaches the goal. Our experiments (Tab.[T)) show that
even the 16 room labyrinth is a challenging task for a common RL algorithm. Novelty estimation,
based on current observation, is also inefficient: each room looks similar even during one episode.

Visiting states with high uncertainty can be beneficial for exploration. We distinguish three types of
uncertainty by sources: from partial observability, from novelty (epistemic) and from stochasticity
(aleatoric). The latter type is irrelevant to the exploration strategy, whereas the first and the second

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://github.com/htdt/lwm

indicate states required to explore. We use a world model to estimate the missing information,
i.e., a Recurrent Neural Network (RNN) trained to predict the next state given a current state and
action, where a high prediction error indicates interesting states that may improve knowledge of
the environment. The model maintains a belief state [11] allowing to detect missing information
related to partial observability, e.g. prediction error changes before and after visiting a room during
one episode. Being a predictive forward model, it allows to detect novel states in general, since the
prediction error changes before and after the model is trained on the observation.

The desired properties of the world model for exploration are the insensitivity to stochasticity and
the ability to extrapolate the state dynamics, such that the prediction error can be a measurement for
novelty. We hypothesize that the temporal distance between observations indicates how different
(and possibly novel) they are. We propose a self-supervised representation learning method based
on minimization of Euclidean distance between representations of temporally close observations
and the feature whitening to prevent degenerate solutions. The method produces a low-dimensional
latent representation which is empirically robust to stochastic elements and is arranged respecting the
temporal distance of observations. The proposed world model operates with latent representations,
and the reconstruction error is calculated for low-dimensional latent states during the training, without
relying on generative decoding of observation images.

To learn the exploration policy, we sum the environment (extrinsic) reward with the intrinsic reward
proportional to the prediction error of the world model. Even if the initial environment was fully
observable, the updated reward assignment transforms it into partially observable, i.e., the reward of
a specific state may change during the episode. To address partial observability in our experiments
we use a RNN architecture combined with a DQN (recurrent DQN) [13| [18]]. Being off-policy,
the algorithm maintains a replay buffer and reuses the past experience for training. We propose
to recalculate the intrinsic reward for each sampling from the buffer, thus the estimation is always
up-to-date, improving the sample efficiency of the algorithm. The experience from the buffer is also
used to train the self-supervised representation and the world model.

Our contribution is as follows. We propose a method to estimate missing information and novelty
in the environment with the world model, and we demonstrate it in the tabular Partially Observable
Labyrinth. We introduce the self-supervised representation learning method that scales up the world
model to environments with image observations. We compare our method with other common
representation learning methods, demonstrating arrangement properties. We report the scores on
several challenging Atari environments [3]] with sparse rewards, improving results with respect to
prior exploration methods.

2 Background and Related works

2.1 Partially Observable Markov Decision Processes

We consider a setting in which an agent interacts with an environment to maximize a cumulative
reward signal. The interaction process is defined as a Partially Observable Markov Decision Process
(POMDP) < S, A, T, R,Q,0,~ > [23L[17], where S is a finite state space, A is a finite action space,
R(s, a) is the reward function, T'(+|s, a) is the transition function, 2 is a set of possible observations,
O is a function which maps states to probability distributions over observations and v € [0,1) is a
discount factor used to compute the cumulative discounted reward. Within this framework, at any
given moment, the agent does not have access to the real state s € S of the environment, instead, it
receives the observation o € (2 with some incomplete information. After the agent takes an action
a € A, the environment transitions to state s’ with probability T'(s’|s, a), providing the agent with
new observation o’ ~ O(s’) and reward r ~ R(s, a).

To overcome the short-term partial observability, Mnih et al. [22]] represented the state as a current
observation combined with 3 previous observations. Hausknecht and Stone [13] included a recurrent
layer LSTM [[14]] to the model, thus the agent can summarize previous observations during the episode
in the hidden state of the recurrent layer additionally to the current observation. Kapturowski et al.
[L8] have improved the performance of this algorithm proposing to sample long unrolls from the
reply buffer and to collect the experience with distributed actors, we employ this algorithm for our
experiments.

2.2 Exploration with intrinsic motivation

Several prior works employ predictive forward models on latent representations to estimate novelty.
Stadie et al. [31] utilized an autoencoder representation. Pathak et al. [25] proposed to predict features
obtained from an inverse dynamics model. Burda et al. [S] compared several latent representations:
plain pixels, random features, variational autoencoder (VAE) [20] and inverse dynamics features. Our
predictive forward model maintains a belief state to detect the missing information related to partial
observability in addition to life-long novelty. Also, our method optimises the latent representation to
follow the temporal alignment of observations.

Houthooft et al. [16] proposed a method based on probabilistic modelling of the environment and
training the agent to maximize the information gain of actions. The method represents the agent’s
belief of the environment with parameters of a Bayesian neural network and directly measures the
uncertainty. However, the method was not demonstrated on complex environments with image-based
observations.

Kim et al. [19] have introduced latent representations of observations and actions, preserving linear
topology in the representation space, consequently organizing functionally similar states close to
each other. The method simultaneously arranges observations in a very low dimensional space and
detects novelty from the arrangement error. This error is not always related to novelty; the method
introduces an additional dynamics model to compensate it. Similarly, our method optimizes the latent
representation to capture relationships of observations, although we separate representation learning
from novelty estimation.

Savinov et al. [26] have considered an episodic time frame for novelty detection and proposed to use
the temporal distance between observations to estimate the similarity. During an episode, the agent
collects embeddings of observations in a buffer and compares new observations with previous ones,
rewarding distant observations. The method relies on visual similarity, e.g. different rooms with the
same appearance will be counted as one room.

Badia et al. [2] have reported high scores across both hard exploration and remaining games in the
Atari-57 suite. The presented method for exploration combines a life-long novelty module (forward
model for random features [6]) and an episodic novelty module. The latter encodes observations with
an inverse dynamics model [25] and collects resulting embeddings in an episodic buffer, similar to
[26]. To estimate novelty, the method calculates the Euclidean distance between a new embedding
and its neighbors from the buffer. The main focus of the paper is a joint large scale (35 billion
frames of each environment) training of multiple policies with different exploration and exploitation
tradeoffs.

Sekar et al. [28]] proposed to estimate novelty with a disagreement of an ensemble of predictive
forward models inside a world model. The exploration is performed in a simulation, relying on a
powerful world model that can generalize to novel unseen states. Our method estimates the novelty
retrospectively, i.e., the world model is directly used to detect missing information. We employ a
simple world model that operates with low dimensional latent states and it does not rely on generative
decoding of the observation.

2.3 Self-supervised state representation learning

Unsupervised and self-supervised state representation learning methods aim to extract useful repre-
sentations from state images without annotation and reward signal. One class of methods rely on
generative decoding of the images. These methods minimise the reconstruction error in the pixel
space, encouraging the representation to capture pixel-level details. Ha and Schmidhuber [12] com-
bine VAEs with RNNs in their World Models. VAE provides a compact latent vector representation
of each observation and the recurrent network represents the model of the environment inside this
latent space. This network predicts the next latent vector from the current latent vector and an action,
maintaining a hidden state. Similarly to this work, in our method, the RNN models the latent space.
However, our latent representation is designed specifically for the exploration task and the model is
used directly to estimate the prediction error.

Predictive State Representations [30] provide a theoretically grounded alternative to the World Models
and the POMDP formulation in general. The method represents the state of the environment from a
history of actions and observations as a set of predictions about the outcome of future tests.

The other class of methods is based on mutual information maximization between the representations
of similar elements. Pair of images, sharing the same semantic content, is contrasted with other
samples from the batch. van den Oord et al. [[34] have introduced the Contrastive Predictive Coding
(CPC) method, which optimizes the representation to encode information required to predict next
frames of the sequence. Anand et al. [1] have proposed to maximize the mutual information between
representations of two consecutive frames of the environment. The method relies on the global and
patch-level representation of the image, capturing spatiotemporal factors. The method has been
applied to several games from Atari 2600 suite, evaluating obtained representations in terms of
disentanglement.

Our representation learning approach is conceptually similar to Slow Feature Analysis (SFA) [36]],
this method learns temporally invariant or slowly varying low-dimensional features from a stream of
input data. The gradient-based extension of SFA [27] was demonstrated on image-based observations,
this method can be an alternative to the proposed training procedure [3.1]

Ermolov et al. [9] have introduced a different approach for representation learning of similar elements
(i.e., elements sharing the same semantics). The proposed W-MSE loss scatters representations of the
batch in a spherical distributiorE] and then pulls the predefined similar elements closer to each other,
minimizing the Euclidean distance between representations. Since the prediction error is calculated
with this distance, such alignment in the latent space is preferred; we adopt this loss for our method.

3 Method

3.1 Representation learning for exploration

Xt Zt Vvt
> —_— \
Whitening MSE
—_— — _/
Xt+k Zt+k Vitk

Figure 1: Representation learning procedure. Two temporally close frames are encoded with the
network ® and after whitening transform, the Euclidean distance between them is minimised with
the MSE loss.

Latent representation plays the central role for the novelty estimation with the predictive forward
models. The appropriate representation must filter out the stochasticity of observations (e.g. moving
leaves of a tree in the wind) and should focus on the main scene elements (e.g. the controllable
character in the game). Our method is based on the assumption that if the distance between compact
latent representations of nearby frames is minimised, the stochastic elements will compensate each
other, and at the same time, global trends will emerge. We use a convolutional neural network (CNN)
with the architecture from [22]] as an encoder and the output of the last layer is flattened and projected
with a linear layer (i.e., the projection layer) to 32 dimensions. The encoder with the projection
layer is denoted as ®. We denote frame index as ¢ and temporal shift as k € [1, L], they are sampled
uniformly, frames x; and x;y; are queried from the reply buffer of the DQN agent. Maximum
temporal shift L defines which frames are considered similar; we use L = 2 in all the experiments.
Following the idea of [21]], we randomly shift both frames in a vertical and horizontal direction (0 - 4
pixels); this optional augmentation empirically regularises the representation stabilizing the training.
The training procedure is depicted in Fig.|l|and is described below.

3.2 Whitening MSE Loss

After sampling two frames x; and x4 as described in 3.1} which we call positives and denote
pos(z¢, itk), We obtain two corresponding vectors vy = f(xy,0) and vy = f(x44,0), where f
is a representation parameterized with 6. Our goal is to minimize the distance between these vectors
avoiding a degenerate solution (e.g. f(-,0) = constant). We formulate this problem as:

'“Spherical distribution” denotes a distribution with a zero-mean and an identity-matrix covariance.

® (] ® o o Q. /
L « «
o ® []
°J® o % e° P
e °
o ©0° o %o o ‘®
o ® >(/.
o \
a) Initial latent space Z b) V obtained with ¢) Positives are pulled to
whitening each other
@ | . P
° ® ° ® [o
o®, ® :
L —@
° ° o o [
. PP ® 9 o ®
. i B
d) Intermediate step, e) Final aligned
scattering is preserved representation

Figure 2: Scheme of the optimisation process of the representation with the W-MSE loss. Circles
denote latent vectors corresponding to observations, a similar color denotes temporally close ob-
servations. a) Initially, the representation is not structured. b) Elements are centred and scattered
after whitening. c) MSE pulls positives to each other, while d) centring and scattering are preserved
following Eq. (2). e) The final representation corresponds to the minimum of the target loss (3)
placing consecutive elements sequentially.

ming B ||ve — Virrl|3 (1)
s.t. cov(vi, Vi) = cov(Viyg, Vigr) = 1,)

where [is an identity matrix. Eq. (2) constrains the distribution of v to be a spherical. We adopt the
W-MSE loss [9] to optimise Eq. (I)) and Eq. (Z) is satisfied with the whitening transform [29]. We
sample NN pairs of positives, obtaining a batch of 2NV samples B = {1, ..., xon }. The corresponding
vectors Z = {2y, ..., Za } are obtained from the encoder z = ®(x). We minimize the Mean Squared
Error (MSE) over N pairs after reparameterization of the z variables with whitened v variables:

1
Lw_mse(V) = N > [Ivi = v,l13, &)

(vi,v;)€V,pos(i,j)

where v = Whitening(z), W hitening(z) = Wz(z —), 5 is the mean of the elements in Z,
Bz = 55 3, Zn, the matrix W is such that: W] Wz = $,', being ¥ the covariance matrix of

Z,%7 = ﬁ Zn(zn —) (zn — HZ)T-

Each vector z € Z is transformed with the whitening transform and the resulting set of vectors
V = {vy,..., van } lies in a zero-centered distribution with a covariance matrix equal to the identity
matrix (Fig.[2). For the whitening transform we adopt the efficient and stable Cholesky decomposition
[8] proposed in [29]. For more details on the W-MSE loss we refer to Ermolov et al. [9], and for
whitening transform to Siarohin et al. [29].

W-MSE
N .
P -e o' ""Aqe o o
o :. 0': 0
: " 0. - PN o
eﬁ%‘ a o . 6 o - .'o
o ;29 ° 7 :
o o .. .0 o
“ ©-.
0: ‘ N <
RF IDF CPC|Action

Figure 3: Trajectory visualisation in the latent space. Top-left image is a screenshot of the Mon-
tezuma’s Revenge environment, white curve depicts the agent trajectory and numbers 1-9 match the
corresponding points on visualisations. Each plot shows 32 dimensional embeddings of observations
projected with the T-SNE method. The trajectory is created manually for demonstration, while
representations are trained on random transitions.

3.3 Visual analysis of representations

To demonstrate the properties of the representation and to compare it with alternative common
methods, we train methods on 400k observations of a random agent in Montezuma’s Revenge
environment and plot the obtained embeddings of one trajectory with the T-SNE [35] method in
Fig.[3] We use ® as the network architecture for all experiments.

Random Features (RF) [6] are embeddings produced with a network with randomly initialized and
fixed weights. The intuition is that the architecture of the network itself produces the transformation,
which is sufficient for suitable features. From the corresponding plot, we can see that the trajectory
is structured, but the pattern is difficult to capture. Inverse Dynamics Features (IDF) [25] are
obtained from a CNN trained on the prediction of action between two consecutive observations.
Each observation is encoded with one network, two low dimensional outputs are concatenated and
fed into a fully-connected network, the output dimension is equal to the number of actions. The
intuition is that the network focuses on the elements that the agent can control, ignoring the rest. In
our experiments, the action prediction accuracy after convergence was around 15% (random guessing
is 6%) indicating that it does not always provide a strong training signal. The plot shows a better
alignment compared to RF. However, several distant points are mixed as the network focuses on
specific movements for action recognition.

CPClAction [[L1] is an extension of the CPC [34] algorithm. A sequence of observations is processed
with the CNN and the obtained embeddings are concatenated with the one-hot representation of
actions. The sequence is aggregated with a RNN, and the resulting hidden state is used to predict the
embedding of the next state of the sequence. The method is based on the InfoNCE loss [34], which
requires the network to classify the positive pair (prediction and the target embedding) out of other

embeddings. From the plot, we can see that the network focused on repetitive animations, which are
indeed valuable to contrast the frame from others, but are irrelevant to the exploration.

The W-MSE plot shows that states are arranged in curves, each curve corresponds to the semantic
part of the trajectory. Similar states are pulled close to each other, and important events produce
discontinuities in the trajectory. Such an arrangement simplifies the novelty estimation task and a
very simple predictive forward model can capture these patterns.

3.4 Latent World Model

We employ [18]] as an implementation of the recurrent DQN with some modifications: we use 1 frame
as a state instead of 4; we do not decouple actors and learner, thus there is no lag in actors parameters
update; we employ GRU [7]] as RNN; full technical details are listed in the Supplementary.

The novelty and missing information are estimated as a prediction error of the world model. Our
predictive forward model, which we call Latent World Model (LWM), operates with the representation
obtained from the ® encoder. The purpose of LWM is to approximate environment dynamics in
the latent space. The encoding of the observation z; = ®(x;) is concatenated with the one-hot
action representation a;, projected with a fully-connected layer and input to GRU, followed by two
fully-connected layers. The network is optimised to predict the next encoding 2;4; with the MSE
loss.

The LWM and the recurrent DQN are trained jointly. During the warm-up phase, the experience is
collected with a random policy and used to pretrain ® and LWM (these steps are also included to
the reply buffer and taken into account in the training budget). Next, for each training iteration, the
unroll is sampled from the reply buffer and primarily processed with the LWM. The model produces
the prediction error for each step of the unroll:

it = [|[LW M (®(23), ai, bs) — ®(2i41)] 3,)

where i is a step of the unroll, x; is the observation, a; is the action taken in x;, b; is the belief state
of the LWN. We set by = 0 for each unroll and the model performs 40 burn-in steps to obtain the
actual starting belief state, following [[18]]. The error is backpropagated to update the weights of
LWM and at the same time, it is used for novelty estimation. It is normalized with a running average
of its mean and standard deviation; we use 0.999 momentum to update the running average. We clip
the normalized value to range [—10, 10] to remove outliers, and after this we multiply the resulting
value with the coefficient 5 to compensate for different magnitudes of intrinsic and extrinsic rewards.
Finally, the resulting value for each step is summed with the extrinsic reward from the reply buffer
and input to the recurrent DQN. Actors calculate LWM prediction error for the previous step and
input it as a part of observation to the DQN. We adopt e-greedy action selection of [[15], combining
intrinsically motivated and random exploration policy with different e for each actor. Note that the
encoder ® is updated with W-MSE loss during the whole training; empirically, the representation
adapts to the changing distribution of observations. The algorithm and the configuration are available
in the Supplementary.

4 Experiments

4.1 Partially Observable Labyrinth

We present a tabular environment with sparse rewards and partial observability. Each observation
consists of 4 binary values, indicating the available doors on four walls in the square room. There
are four possible actions: move up, move down, move left and move right. If there is a door in the
chosen direction, the agent moves to a new room and receives a new observation. Otherwise, the
agent stays in the same room and receives the same observation. At each step the agent receives the
reward -1 and the episode finishes when all the rooms of the labyrinth are visited. Thus to get the
highest cumulative reward, the agent must finish the episode as soon as possible, avoiding visiting the
same rooms many times. At each new episode, the labyrinth is generated randomly with the recursive
backtracker algorithm. The initial position of the agent is also sampled randomly. Thus the agent
cannot memorize the layout and the solution requires to infer a simple navigation strategy. The agent
does not have access to the full map of the labyrinth, current observation represents only the room
where it is located (Fig.).

1
=

S EEENEN

a) b)

Figure 4: Scheme of the Partially Observable Labyrinth. The red circle shows the starting position.
In this example, the agent takes actions "left" and "up". a) demonstrates the whole labyrinth, this
information is not available to the agent. Instead, it observes only a current room; sequence of the
observations is depicted in b). Each observation consists of 4 binary numbers.

Table 1: Final cumulative rewards for Partially Observable Labyrinth. Episode length is limited to
1000. The recurrent DQN algorithm failed to solve the labyrinth starting from 4 x 4. The last column
shows the results of the recurrent DQN with the world model for exploration, this method learned the
optimal strategy for all sizes.

Size Random walk Recurrent DQN R. DQN + WM

3x3 -156 -12.4 -10.8
4x4 -518 -1000 -23.5
5 X5 -848 -1000 -72.1

The size of the labyrinth allows to regulate the complexity of the problem; this parameter is fixed
during the training. We limit the length of the episode to 1000 steps. For evaluation, we average the
cumulative reward over 128 different layouts of the labyrinth. We have performed experiments with 3
sizes of the labyrinth: 3 x 3,4 x 4 and 5 x 5 . Table[I|shows the performance of three agents: random,
recurrent DQN and recurrent DQN with the world model for exploration. We estimate the intrinsic
reward as described in @, and, since the observation is low dimensional, we do not use encoder
(®(x) = x). Technical details of the agents are listed in supplementary. Despite the simplicity of
the environment, even a 4 X 4 labyrinth is challenging for the recurrent DQN agent. In this case,
the random walk requires 518 steps on average to solve the task, giving rise to a long-term credit
assignment problem for the recurrent DQN algorithm. As a result, the greedy policy shows worse
performance with respect to a random walk. Our method addresses the problem. The error of the
world model indicates rooms that have not been visited during the current episode, and stimulates the
agent to learn to explore them. As a result, the agent inferred an exploration strategy, keeping track
of visited rooms in the belief state.

4.2 Atari
We adopt the training and evaluation procedure of Kim et al. [19]. We train the LWM method

on 6 hard exploration Atari [3] environments: Freeway, Frostbite, Venture, Gravitar, Solaris and
Montezuma’s Revenge. The training budget is S0M environment frames, the final scores averaged

Table 2: Final cumulative rewards for Atari. Listed results, except our LWM, are reported in [19].

EMI [19] EX2[10] ICM [25] RND [6] AE-SimHash [33] LWM

Freeway 33.8 27.1 33.6 33.3 33.5 30.8
Frostbite 7002 3387 4465 2227 5214 8409
Venture 646 589 418 707 445 998
Gravitar 558 550 424 546 482 1376
Solaris 2688 2276 2453 2051 4467 1268
Montezuma 387 0 161 377 75 2276

over 128 episodes of an e-greedy agent with e = 0.001, each experiment is performed with 5 different
random seeds. One experiment requires 7.5h of a virtual machine with one Nvidia T4 GPU. Each
environment has different magnitude of the reward values, we use intrinsic reward scaling 8 = 0.01
for Freeway and 3 = 1 for others. Results are listed in Table[2] Our method demonstrates an increase
in performance with respect to prior work in 4 environments out of 6. It is noteworthy that the method
has significantly improved the score of the notorious Montezuma’s Revenge.

5 Conclusion

The simple tabular environment Partially Observable Labyrinth has demonstrated that the problem of
partial observability with sparse rewards is challenging. We have employed a world model to indicate
states required to explore addressing the problem. We have introduced the representation learning
method for image-based observations, which arranges representations in the latent space according
to the temporal distance of observations with W-MSE loss. We have proposed the LWM method, a
predictive model of this latent space, to tackle the exploration problem for image-based environments
and have demonstrated the performance on the Atari benchmark.

Acknowledgments

We are grateful to Aliaksandr Siarohin and Enver Sangineto for insightful discussions that helped
writing this paper. We thank Google Cloud Platform (GCP) for providing computing support.

Broader Impact

The presented work is a research in the field of reinforcement learning, focusing on the problem
of exploration in real-world conditions (image-based observations, partial observability). Such
algorithms can help searching for new important information, for non-trivial solutions. These
algorithms can be the crucial component for the development of autonomous intelligent systems for
solving complex tasks. Such systems can be used in many different fields, having both strong positive
and negative impacts on society, and should be treated with care.

Funding Disclosure

Funding in direct support of this work: Ph.D. scholarship by the University of Trento, Italy.

References

[1] Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre C6té, and R Devon
Hjelm. Unsupervised state representation learning in atari, 2019.

[2] Adria Puigdoménech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martin Arjovsky, Alexander Pritzel, Andew Bolt, and Charles
Blundell. Never give up: Learning directed exploration strategies, 2020.

[3] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research 47, 47:253-279, 2012.

[4] Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi
Munos. Unifying count-based exploration and intrinsic motivation, 2016.

[5] Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A. Efros.
Large-scale study of curiosity-driven learning, 2018.

[6] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random
network distillation, 2018.

[7] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-
decoder for statistical machine translation. In EMNLP, 2014.

[8] Dariusz Dereniowski and Kubale Marek. Cholesky factorization of matrices in parallel and
ranking of graphs. In 5th Int. Conference on Parallel Processing and Applied Mathematics,
2004.

[9] Aleksandr Ermolov, Aliaksandr Siarohin, Enver Sangineto, and Nicu Sebe. Whitening for
self-supervised representation learning. arXiv preprint arXiv:2007.06346, 2020.

[10] Justin Fu, John D. Co-Reyes, and Sergey Levine. Ex2: Exploration with exemplar models for
deep reinforcement learning, 2017.

[11] Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Bernardo A. Pires, and Rémi
Munos. Neural predictive belief representations, 2018.

[12] David Ha and Jiirgen Schmidhuber. Recurrent world models facilitate policy evolution. In
Advances in Neural Information Processing Systems 31, pages 2451-2463. Curran Associates,
Inc., 2018.

[13] Matthew Hausknecht and Peter Stone. Deep recurrent g-learning for partially observable mdps,
2015.

[14] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Computation, 9
(8):1735-1780, 1997.

[15] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado van
Hasselt, and David Silver. Distributed prioritized experience replay, 2018.

[16] Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime:
Variational information maximizing exploration, 2016.

[17] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101(1):99 — 134, 1998. ISSN
0004-3702.

[18] Steven Kapturowski, Georg Ostrovski, Will Dabney, John Quan, and Remi Munos. Recurrent
experience replay in distributed reinforcement learning. In ICLR, 2019.

[19] Hyoungseok Kim, Jackyeom Kim, Yeonwoo Jeong, Sergey Levine, and Hyun Oh Song. Emi:
Exploration with mutual information, 2018.

[20] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.

[21] Tlya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels, 2020.

[22] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. In NIPS Deep
Learning Workshop, 2013.

[23] George E. Monahan. State of the art—a survey of partially observable markov decision
processes: Theory, models, and algorithms. Management Science, 28(1):1-16, January 1982.

[24] Georg Ostrovski, Marc G. Bellemare, Aaron van den Oord, and Remi Munos. Count-based
exploration with neural density models, 2017.

[25] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven explo-
ration by self-supervised prediction. 2017 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), Jul 2017.

[26] Nikolay Savinov, Anton Raichuk, Raphaél Marinier, Damien Vincent, Marc Pollefeys, Timothy
Lillicrap, and Sylvain Gelly. Episodic curiosity through reachability, 2018.

[27] Merlin Schiiler, Hlynur David Hlynsson, and Laurenz Wiskott. Gradient-based training of slow
feature analysis by differentiable approximate whitening, 2019.

10

[28] Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak
Pathak. Planning to explore via self-supervised world models, 2020.

[29] Aliaksandr Siarohin, Enver Sangineto, and Nicu Sebe. Whitening and Coloring Batch Transform
for GANs. In ICLR, 2019.

[30] Satinder Singh, Michael R. James, and Matthew R. Rudary. Predictive state representations:
A new theory for modeling dynamical systems. In Proceedings of the 20th Conference on
Uncertainty in Artificial Intelligence, UAI *04, page 512-519. AUAI Press, 2004. ISBN
0974903906.

[31] Bradly C. Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models, 2015.

[32] Alexander L. Strehl and Michael L. Littman. An analysis of model-based interval estimation
for markov decision processes. Journal of Computer and System Sciences, 74(8):1309 — 1331,
2008. ISSN 0022-0000. Learning Theory 2005.

[33] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John Schulman,
Filip De Turck, and Pieter Abbeel. exploration: A study of count-based exploration for deep
reinforcement learning, 2016.

[34] Adron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv:1807.03748, 2018.

[35] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine
Learning Research, 9:2579-2605, 2008.

[36] Laurenz Wiskott and Terrence J. Sejnowski. Slow feature analysis: Unsupervised learning of
invariances. Neural Comput., 14(4):715-770, 2002. ISSN 0899-7667.

11

	Introduction
	Background and Related works
	Partially Observable Markov Decision Processes
	Exploration with intrinsic motivation
	Self-supervised state representation learning

	Method
	Representation learning for exploration
	Whitening MSE Loss
	Visual analysis of representations
	Latent World Model

	Experiments
	Partially Observable Labyrinth
	Atari

	Conclusion

