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A Appendix

A.1 Structured Convolutions with arbitrary Padding, Stride and Dilation

In the main paper, we showed that a Structured Convolution can be decomposed into a Sum-Pooling
component followed by a smaller convolution operation with a kernel composed of the α’s. In
this section, we discuss how to calculate the equivalent stride, padding and dilation needed for the
resulting decomposed sum-pooling and convolution operations.

A.1.1 Padding

The easiest of these three attributes is padding. Fig. 1 shows an example of a structured convolution
with a 3× 3 kernel (i.e. N = 3) with underlying parameter n = 2. Hence, it can be decomposed into
a 2× 2 sum-pooling operation followed by a 2× 2 convolution. As shown in the figure, to preserve
the same output after the decomposition, the sum-pooling component should use the same padding as
the original 3× 3 convolution, whereas the smaller 2× 2 convolution is performed without padding.

This leads us to a more general result that - if the original convolution uses a padding of p, then, after
the decomposition, the sum-pooling should be performed with padding p and the smaller convolution
(with α’s) should be performed without padding.

A.1.2 Stride

The above rule can be simply extended to the case where the original 3× 3 structured convolution
has a stride associated with it. The general rule is - if the original convolution uses a stride of s, then,
after the decomposition, the sum-pooling should be performed with a stride of 1 and the smaller
convolution (with α’s) should be performed with a stride of s.

A.1.3 Dilation

Dilated or atrous convolutions are prominent in semantic segmentation architectures. Hence, it
is important to consider how we can decompose dilated structured convolutions. Fig. 2 shows an
example of a 3×3 structured convolution with a dilation of 2. As can be seen in the figure, to preserve
the same output after decomposition, both the sum-pooling component and the smaller convolution
(with α’s) has to be performed with a dilation factor same as the original convolution.

Fig. 3 summarizes the aforementioned rules regarding padding, stride and dilation.
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Figure 1: Decomposition of a 3 × 3 Structured Convolution with a padding of 1. Top shows the
conventional operation of the convolution. Bottom shows the equivalent operation using sum-pooling.

Figure 2: Decomposition of a 3 × 3 Structured Convolution with a dilation of 2. Top shows the
conventional operation of the convolution. Bottom shows the equivalent operation using sum-pooling.

A.2 Training Implementation Details

Image Classification. For both ImageNet and CIFAR-10 benchmarks, we train all the ResNet
architectures from scratch with the Structural Regularization (SR) loss. We set λ to 0.1 for the
Struct-A versions and 1.0 for the Struct-B versions throughout training. For MobileNetV2, we first
train the deep network from scratch without SR loss (i.e. λ = 0) for 90 epochs to obtain pretrained
weights and then apply SR loss with λ = 1.0 for further 150 epochs. For EfficientNet-B0, we first
train without SR loss for 90 epochs and then apply SR loss with λ = 1.0 for further 250 epochs.

For CIFAR-10, we train the ResNets for 200 epochs using a batch size of 128 and an initial learing
rate of 0.1 which is decayed by a factor of 10 at 80 and 120 epochs. We use a weight decay of 0.0001
throughout training. On ImageNet, we use a cosine learning rate schedule with an SGD optimizer for
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Figure 3: Decomposition of a general structured convolution with stride, padding and dilation. The
blocked arrows indicate the dimensions of the input and output tensors. Top shows the conventional
operation of the convolution. Bottom shows the equivalent operation using sum-pooling.

training all architectures. We train the ResNets using a batch size of 256 and weight decay of 0.0001
for 200 epochs starting with an initial learning rate of 0.1.

For MobileNetV2, we use a weight decay of 0.00004 and batch size 128 throughout training. In the
first phase (with λ = 0), we use an initial learning rate of 0.5 for 90 epochs and in the second phase,
we start a new cosine schedule with an initial learning rate of 0.1 for the next 150 epochs. We train
EfficientNet-B0 using Autoaugment, a weight decay of 0.00004 and batch size 384. We use an initial
learning rate of 0.5 in the first phase and we start a new cosine schedule for the second phase with an
initial learning rate of 0.1 for the next 250 epochs.

Semantic Segmentation. For training Struct-HRNet-A on Cityscapes, we start from a pre-trained
HRNet model and train using structural regularization loss. We set λ to 1.0. We use a cosine learning
rate schedule with an initial learning rate of 0.01. The use image resolution of 1024 × 2048 for
training, same as the original image size. We train for 90000 iterations using a batch size of 4.

We show additional results with PSPNet in Sec. A.3 below. We follow a similar training process for
training Struct-PSPNet-A where we start from a pre-trained PSPNet101 [5].

A.3 Additional results on Semantic Segmentation

In Table 1 and 2, we present additional results for HRNetV2-W18-Small-v1 [3] (note this is different
from HRNetV2-W18-Small-v2 reported in the main paper) and PSPNet101 [5] on Cityscapes dataset.

Table 1: Evaluation of proposed method on Cityscapes using HRNetV2-W18-Small-v1 [3].

HRNetV2-W18
-Small-v1

#adds
(×109)

#mults
(×109)

#params
(×106)

mIoU
(in %)

Original 33.4 33.6 1.5 70.3
Struct-HR-A-V1 24.6 24.5 0.77 67.5

Table 2: Evaluation of proposed method on Cityscapes using PSPNet101 [5].

PSPNet101
#adds

(×109)
#mults
(×109)

#params
(×106)

mIoU
(in %)

Original 2094 2096 68.1 79.3
Struct-PSP-A 1325 1327 43.0 76.6
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A.4 Layer-wise compression ratios for compared architectures

As mentioned in the Experiments section of the main paper, we use non-uniform selection for the
per-layer compression ratios (CN2/cn2) for MobileNetV2 and EfficientNet-B0 as well as HRNet
for semantic segmentation. Tables 6 and 7 show the layerwise {c, n} parameters for each layer of the
Struct-MV2-A and Struct-MV2-B architectures. Table 8 shows these per-layer {c, n} parameters for
Struct-EffNet.

For Struct-HRNet-A, we apply Structured Convolutions only in the spatial dimension, i.e. we use
c = C, hence there’s no decomposition across the channel dimension. For 3×3 convolutional kernels,
we use n = 2, which means a 3×3 convolution is decomposed into a 2×2 sum pooling followed
by a 2×2 convolution. And for 1×1 convolutions, where N = 1, we use n = 1 which is the only
possiblility for n since 1 ≤ n ≤ N . We do not use Structured Convolutions in the initial two
convolution layers and last convolution layer.

For Struct-PSPNet, similar to Struct-HRNet-A, we apply use structured convolutions in all the
convolution layers except the first and last layer. For 3×3 convolutions, the structured convolution
uses c = C and n = 2. For 1×1 convolutions, the structured convolution uses c = round(2×C/3)
and n = 1.

A.5 Sensitivity of Structural Regularization w.r.t λ

In Sec. 5.1, we introduced the Structural Regularization (SR) loss and proposed to train the network
using this regularization with a weight λ. In this section, we investigate the variation in the final
performance of the model (after decomposition) when trained with different values of λ.

We trained Struct-Res18-A and Struct-Res18-B with different values of λ. Note that when training
both "A" and "B" versions, we start with the original architecture for ResNet18 and train it from
scratch with the SR loss. After this first step, we then decompose the weights using αl = A+Wl

to get the decomposed architecture. Tables 3 and 4 show the accuracy of Struct-Res18-A and
Struct-Res18-B both pre-decomposition and post-decomposition.

Table 3: ImageNet performance of Struct-Res18-
A trained with different λ

λ
Acc. (before

decomposition)
Top-1 Acc. (after
decomposition)

1.0 69.08% 69.11%
0.5 69.21% 69.09%
0.1 69.17% 69.13%
0.05 69.16% 69.05%
0.01 69.20% 69.09%
0.001 69.23% 68.57%

Table 4: ImageNet performance of Struct-Res18-
B trained with different λ

λ
Acc. (before

decomposition)
Top-1 Acc. (after
decomposition)

1.0 66.04% 66.19%
0.5 66.11% 66.01%
0.1 66.01% 65.89%
0.05 65.97% 65.65%
0.01 65.99% 64.47%
0.001 65.91% 58.19%

Table 5: ImageNet performance before and after decomposition for other architectures

Architecture
Acc. (before

decomposition)
Top-1 Acc. (after
decomposition)

Struct-50-A 75.68% 75.65%
Struct-50-B 73.52% 73.41%

Struct-V2-A 71.33% 71.29%
Struct-V2-B 65.01% 64.93%

Struct-EffNet 76.59% 76.40%

From Table 3, we can see that the accuracy after decomposition isn’t affected much by the choice of
λ. When λ varies from 0.01 to 1.0, the post-decomposition accuracy only changed by 0.08%. Similar
trends are observed in Table 4 when we are compressing more aggressively. But the sensitivity of the
performance w.r.t. λ is slightly higher in the "B" version. Also, we can see that when λ = 0.001, the
difference between pre-decomposition and post-decomposition accuracy is significant. Since λ is
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very small in this case, the Structural Regularization loss does not impose the desired structure on the
convolution kernels effectively. As a result, after decomposition, it leads to a loss in accuracy.

In Table 5, we show the ImageNet performance of other architectures (from Tables 1, 2, 3, 4 of main
paper) before and after the decomposition is applied.

A.6 Expressive power of the Sum-Pooling component

To show that the sum-pooling layers indeed capture meaningful features, we perform a toy experiment
where we swap all 3× 3 depthwise convolution kernels in MobileNetV2 with 2× 2 kernels and train
the architecture. We observed that this leads to a severe performance degradation of 4.5% compared
to the Struct-V2-A counterpart. This, we believe, is due to the loss of receptive field that was being
captured by the sum-pooling part of structured convolutions.

A.7 Inference Latency

In Sec. 6.1 of the paper, we pointed out that the actual inference time of our method depends on
how the software optimizations and scheduling are implemented. Additions are much faster and
power efficient than multiplications on low-level hardware [1, 2]. However, this is not exploited on
conventional platforms like GPUs which use FMA (Fused Multiply-Add) instructions. Consider-
ing hardware accelerator implementations [4] for sum-pooling, the theoretical gains of structured
convolutions can be realized. We provide estimates for the latencies based on measurements on a
Intel Xeon CPU W-2123 platform assuming that the software optimizations and scheduling for the
sum-pooling operation are implemented. Please refer the table below.

ResNet18 0.039s MobilenetV2 0.088s EfficientNet-B1 0.114s

Struct-18-A 0.030s Struct-MV2-A 0.078s Struct-EffNet 0.101s
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Table 6: Layerwise {c, n} configuration for
Struct-MV2-A architecture

Idx
Dimension

Cout × C ×N ×N c n

1 32× 3× 3× 3 3 3
2 32× 1× 3× 3 1 3
3 16× 32× 1× 1 32 1
4 96× 16× 1× 1 16 1
5 96× 1× 3× 3 1 3
6 24× 96× 1× 1 96 1
7 144× 24× 1× 1 24 1
8 144× 1× 3× 3 1 3
9 24× 144× 1× 1 144 1

10 144× 24× 1× 1 24 1
11 144× 1× 3× 3 1 3
12 32× 144× 1× 1 144 1
13 192× 32× 1× 1 32 1
14 192× 1× 3× 3 1 3
15 32× 192× 1× 1 192 1
16 192× 32× 1× 1 32 1
17 192× 1× 3× 3 1 3
18 32× 192× 1× 1 192 1
19 192× 32× 1× 1 32 1
20 192× 1× 3× 3 1 3
21 64× 192× 1× 1 192 1
22 384× 64× 1× 1 64 1
23 384× 1× 3× 3 1 3
24 64× 384× 1× 1 384 1
25 384× 64× 1× 1 64 1
26 384× 1× 3× 3 1 3
27 64× 384× 1× 1 384 1
28 384× 64× 1× 1 64 1
29 384× 1× 3× 3 1 3
30 64× 384× 1× 1 384 1
31 384× 64× 1× 1 64 1
32 384× 1× 3× 3 1 3
33 96× 384× 1× 1 384 1
34 576× 96× 1× 1 96 1
35 576× 1× 3× 3 1 3
36 96× 576× 1× 1 576 1
37 576× 96× 1× 1 96 1
38 576× 1× 3× 3 1 3
39 96× 576× 1× 1 576 1
40 576× 96× 1× 1 96 1
41 576× 1× 3× 3 1 3
42 160× 576× 1× 1 576 1
43 960× 160× 1× 1 160 1
44 960× 1× 3× 3 1 3
45 160× 960× 1× 1 960 1
46 960× 160× 1× 1 160 1
47 960× 1× 3× 3 1 3
48 160× 960× 1× 1 960 1
49 960× 160× 1× 1 160 1
50 960× 1× 3× 3 1 3
51 320× 960× 1× 1 840 1
52 1280× 320× 1× 1 160 1

classifier 1000× 1280× 1× 1 640 1

Table 7: Layerwise {c, n} configuration for
Struct-MV2-B architecture

Idx
Dimension

Cout × C ×N ×N c n

1 32× 3× 3× 3 3 3
2 32× 1× 3× 3 1 3
3 16× 32× 1× 1 32 1
4 96× 16× 1× 1 16 1
5 96× 1× 3× 3 1 3
6 24× 96× 1× 1 48 1
7 144× 24× 1× 1 12 1
8 144× 1× 3× 3 1 3
9 24× 144× 1× 1 72 1

10 144× 24× 1× 1 12 1
11 144× 1× 3× 3 1 3
12 32× 144× 1× 1 72 1
13 192× 32× 1× 1 16 1
14 192× 1× 3× 3 1 3
15 32× 192× 1× 1 96 1
16 192× 32× 1× 1 16 1
17 192× 1× 3× 3 1 2
18 32× 192× 1× 1 96 1
19 192× 32× 1× 1 16 1
20 192× 1× 3× 3 1 2
21 64× 192× 1× 1 96 1
22 384× 64× 1× 1 32 1
23 384× 1× 3× 3 1 2
24 64× 384× 1× 1 192 1
25 384× 64× 1× 1 32 1
26 384× 1× 3× 3 1 2
27 64× 384× 1× 1 192 1
28 384× 64× 1× 1 32 1
29 384× 1× 3× 3 1 2
30 64× 384× 1× 1 192 1
31 384× 64× 1× 1 32 1
32 384× 1× 3× 3 1 2
33 96× 384× 1× 1 192 1
34 576× 96× 1× 1 48 1
35 576× 1× 3× 3 1 2
36 96× 576× 1× 1 288 1
37 576× 96× 1× 1 48 1
38 576× 1× 3× 3 1 2
39 96× 576× 1× 1 288 1
40 576× 96× 1× 1 48 1
41 576× 1× 3× 3 1 2
42 160× 576× 1× 1 288 1
43 960× 160× 1× 1 80 1
44 960× 1× 3× 3 1 2
45 160× 960× 1× 1 480 1
46 960× 160× 1× 1 80 1
47 960× 1× 3× 3 1 2
48 160× 960× 1× 1 480 1
49 960× 160× 1× 1 80 1
50 960× 1× 3× 3 1 3
51 320× 960× 1× 1 480 1
52 1280× 320× 1× 1 160 1

classifier 1000× 1280× 1× 1 560 1
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Table 8: Layerwise {c, n} configuration for Struct-EffNet architecture

Idx
Dimension

Cout × C × N × N c n

1 32 × 3 × 3 × 3 3 3
2 32 × 1 × 3 × 3 1 3
3 16 × 32 × 1 × 1 32 1
4 16 × 1 × 3 × 3 1 3
5 16 × 16 × 1 × 1 16 1
6 96 × 16 × 1 × 1 16 1
7 96 × 1 × 3 × 3 1 3
8 24 × 96 × 1 × 1 96 1
9 144 × 24 × 1 × 1 24 1

10 144 × 1 × 3 × 3 1 3
11 24 × 144 × 1 × 1 144 1
12 144 × 24 × 1 × 1 24 1
13 144 × 1 × 3 × 3 1 3
14 24 × 144 × 1 × 1 144 1
15 144 × 24 × 1 × 1 24 1
16 144 × 1 × 5 × 5 1 5
17 40 × 144 × 1 × 1 144 1
18 240 × 40 × 1 × 1 40 1
19 240 × 1 × 5 × 5 1 5
20 40 × 240 × 1 × 1 240 1
21 240 × 40 × 1 × 1 40 1
22 240 × 1 × 5 × 5 1 5
23 40 × 240 × 1 × 1 240 1
24 240 × 40 × 1 × 1 40 1
25 240 × 1 × 3 × 3 1 3
26 80 × 240 × 1 × 1 240 1
27 480 × 80 × 1 × 1 64 1
28 480 × 1 × 3 × 3 1 3
29 80 × 480 × 1 × 1 360 1
30 480 × 80 × 1 × 1 64 1
31 480 × 1 × 3 × 3 1 3
32 80 × 480 × 1 × 1 360 1
33 480 × 80 × 1 × 1 64 1
34 480 × 1 × 3 × 3 1 3
35 80 × 480 × 1 × 1 360 1
36 480 × 80 × 1 × 1 64 1
37 480 × 1 × 5 × 5 1 5
38 112 × 480 × 1 × 1 360 1
39 672 × 112 × 1 × 1 80 1
40 672 × 1 × 5 × 5 1 5
41 112 × 672 × 1 × 1 560 1
42 672 × 112 × 1 × 1 96 1
43 672 × 1 × 5 × 5 1 5
44 112 × 672 × 1 × 1 560 1
45 672 × 112 × 1 × 1 96 1
46 672 × 1 × 5 × 5 1 5
47 112 × 672 × 1 × 1 560 1
48 672 × 112 × 1 × 1 96 1
49 672 × 1 × 5 × 5 1 5
50 192 × 672 × 1 × 1 560 1
51 1152 × 192 × 1 × 1 100 1
52 1152 × 1 × 5 × 5 1 5
53 192 × 1152 × 1 × 1 640 1
54 1152 × 192 × 1 × 1 100 1
55 1152 × 1 × 5 × 5 1 5
56 192 × 1152 × 1 × 1 640 1
57 1152 × 192 × 1 × 1 100 1
58 1152 × 1 × 5 × 5 1 5
59 192 × 1152 × 1 × 1 640 1
60 1152 × 192 × 1 × 1 100 1
61 1152 × 1 × 5 × 5 1 5
62 192 × 1152 × 1 × 1 576 1
63 1152 × 192 × 1 × 1 160 1
64 1152 × 1 × 3 × 3 1 3
65 320 × 1152 × 1 × 1 576 1
66 1920 × 320 × 1 × 1 160 1
67 1920 × 1 × 3 × 3 1 3
68 320 × 1920 × 1 × 1 960 1
69 1280 × 320 × 1 × 1 160 1

classifier 1000 × 1280 × 1 × 1 480 1
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