
The Value-Equivalence Principle
for Model-Based Reinforcement Learning

Supplementary Material

Christopher Grimm
Computer Science & Engineering

University of Michigan
crgrimm@umich.edu

André Barreto, Satinder Singh, David Silver
DeepMind

{andrebarreto,baveja,davidsilver}@google.com

In this supplement we give details of our theoretical results and experiments that had to be left out
of the main paper due to space constraints. We prove our theoretical results and provide a detailed
description of our experimental procedure. Importantly, we present an illustrative example showing
how value equivalence (VE) may lead to a better solution for a Markov decision process (MDP) than
maximum-likelihood estimate (MLE). We show this to be true both in the exact case, when there exist
a value-equivalent model in the model class considered, and in the approximate case, when such a
model does not exist in the model class. Our appendix is organized as follows:

• Section A.1.1 contains derivations of the properties and propositions presented in the main
text.

• Section A.1.2 contains a sequence of examples using a toy MDP that illustrate points made
in the discussion surrounding Propositions 3 and 4. Moreover, we include an additional
result which illustrates a situation in which approximate VE models can outperform the
MLE model.

• Section A.2 provides a detailed outline of the pipeline used across our experiments in the
main text. We also report several additional results that had to be left out of the main paper
due to space constraints.

The numbering of equations, figures and citations resume from what is used in the main paper.

A Appendix

A.1 Proofs of theoretical results and illustrative examples

A.1.1 Proofs

Property 1. GivenM′ ⊆M, we have thatM′(Π,V) ⊆M(Π,V).

Proof. This result directly follows from Definitions 1 and 2.

Property 2. M(�,V) either contains m∗ or is the empty set.

Proof. M(�,V) ⊆ M(�,V) = {m∗} (Property 1).

Property 3. Given Π′ ⊆ Π and V ′ ⊆ V , we have thatM(Π,V) ⊆M(Π′,V ′).

Proof. We will show the result by contradiction. Suppose there is a model m̃ ∈M(Π,V) such that
m̃ /∈ M(Π′,V ′). This means that there exists a π ∈ Π′ and a v ∈ V ′ for which T̃πv 6= Tπv. But
since Π′ ⊆ Π and V ′ ⊆ V , it must be the case that π ∈ Π and v ∈ V , which contradicts the claim
that m̃ ∈M(Π,V).

Property 4. If m∗ ∈M, then m∗ ∈M(Π,V) for all Π and all V .

Proof. m∗ ∈M(�,V) ⊆M(Π,V) (Property 3).

13

Proposition 1. For discrete Π and V , we have thatM(Π,V) =M(p-span(Π) ∩ �, span(V)).

Proof. Let π ∈ p-span(Π) ∩ �. Based on (3), we know that there exists an αs ∈ R|Π| such that
π(·|s) =

∑
i αsiπi(·|s), where πi ∈ Π. Thus, for m̃ ∈M(Π,V), we can write

T̃π[v](s) = EA∼π(·|s),S′∼p̃(·|s,A) [r̃(s,A) + γv(S′)]
=
∫
π(a|s)ES′∼p̃(·|s,a) [r̃(s, a) + γv(S′)] da

=
∫ ∑

i αsiπi(a|s)ES′∼p̃(·|s,a) [r̃(s, a) + γv(S′)] da
=
∑
i αsi

∫
πi(a|s)ES′∼p̃(·|s,a) [r̃(s, a) + γv(S′)] da

=
∑
i αsiEA∼πi(·|s),S′∼p̃(·|s,a) [r̃(s, a) + γv(S′)]

=
∑
i αsiT πi [v](s).

Let v ∈ span(V). We know there is a β ∈ R|V| such that v =
∑
i βivi, with vi ∈ V .

T̃π[v](s) = EA∼π(·|s),S′∼p̃(·|s,A) [r̃(s,A) + γ
∑
i βivi(S

′)]
=
∑
i βiEA∼π(·|s),S′∼p̃(·|s,A) [r̃(s,A) + γvi(S

′)]

=
∑
i βiT̃π[vi](s).

In order to prove Proposition 2 we will need four lemmas which we state and prove below.
Lemma 1. For arbitrary matrices A ∈ Rk×n,C ∈ Rm×`, we can construct a vector-space
B = {B ∈ Rn×m : ABC = 0} where 0 denotes a k × ` matrix of zeros. It follows that

H-dim[B] = nm− rank(A) · rank(C). (8)

Proof. We begin by converting the conditionABC = 0 into a matrix-vector product. Let ai and cj
denote the i’th row of A and j’th column of C respectively. Observe that (ABC)ij = aiBcj =∑
x,y a

i
xc
j
yBxy , which implies that

ABC = 0 ⇐⇒
∑
x,y

aixc
j
yBxy = 0 ∀i ∈ [k], j ∈ [`] (9)

where [k] denotes {1, . . . , k}.
For each (i, j) pair, the above expression is suggestive of a dot-product between two n × m
vectors: a combination of ai and cj , and a “flattened” version of B. Define the former com-
bination of vectors as dij = [ai1c

j
1,a

i
1c
j
2, · · · ,aincjm]> ∈ Rnm×1, and stack them as rows as:

D = [d11,d12, · · · ,dnm]> ∈ Rk`×nm. To flattenB, simply define b = [B11,B12, · · · ,Bnm]> ∈
Rnm×1.

We now have that ABC = 0 ⇐⇒ Db = 0. Moreover, unravelling the matrices in B does not
change the dimension of the space, thus:

H-dim[B] = H-dim[{b ∈ Rnm×1 : Db = 0}] = nm− rank(D) (10)

where the last equality comes from a application of the rank-nullity theorem.

Finally notice that the construction of dij can be thought of as vertically stacking n copies of cj

each scaled by a different entry in ai. We can also find scaled copies of ai by cjk in dij by selecting
indices from the combined vector at regular intervals of m: dijk+(`−1)m = cjk · ai` for ` ∈ {1, . . . n}.

This means that scaled copies of both ai and cj can be found by selecting specific groups of
indices in dij . It follows that if a1, . . . ,an are linearly independent then so are d1j , . . . ,dnj for
any j. And similarly, if c1, . . . , cm are linearly independent then so are di1, . . . ,dim for any i.
Hence if a1, . . .an and c1, . . . , cm are both linearly independent sets, then so is d11,d12, . . . ,dnm.
Since these ai and cj vectors form the rows and columns of rank n and m matrices: A and C,
their corresponding sets of row and column vectors are linearly independent. Thus we have that
rank(D) = rank(A) · rank(C), completing the proof.

Lemma 2. For any c and Y + c = {y + c : y ∈ Y} it follows that dim[Y + c] = dim[Y].

14

Proof.

dim[Y + c] = min
(V,c′):Y+(c+c′)⊆W

H-dim[W] = min
(W,c′):Y+c′⊆W

H-dim[W] = dim[Y]

Lemma 3. If Y is a vector-space thenH-dim[Y] = dim[Y].

Proof. Recall the definition of dim[Y]:

dim[Y] = min
(W,c):Y+c⊆W

H-dim[W]

whereW is a vector-space. By choosingW = Y and c = 0 we see that dim[Y] ≤ H-dim[Y].

Suppose then that dim[Y] < H-dim[Y]. This implies that there is a vector spaceW and offset c
with d = H-dim[W] < H-dim[Y] and Y + c ⊆ W . This means that for every y ∈ Y: y + c =∑d

i=1 α
y
i wi for some αy1:d wherew1:d are a basis ofW . Since Y is a vector space it must contain the

0 vector, hence c =
∑d
i=1 α

0
iwi. Accordingly any y ∈ Y can be written as y =

∑d
i=1(αy

i −α0
i)wi.

However, this is a contradiction sinceH-dim[W] < H-dim[Y]. Hence dim[Y] = H-dim[Y].

Lemma 4. If X ⊆ Y then dim[X] ≤ dim[Y].

Proof. If X ⊆ Y then for any c, X + c ⊆ Y + c. Because of the above, for any vector-spaceW:
W ⊇ Y + c =⇒ W ⊇ X + c, hence: {(W, c) : X + c ⊂ W} ⊇ {(W, c) : Y + c ⊂ W}. Notice
that this last set-relation corresponds the set of vector-spaces that dim[·] is minimizing over for X
and Y respectively. Hence dim[X] ≤ dim[Y].

Proposition 2. Let Π be a set of m pointwise linearly independent policies πi ∈ R|S||A| and let V
be a set of k linearly independent vectors vi ∈ R|S|. Then,

dim [P(Π,V)] ≤ |S| (|S||A| −mk) .

Proof. First note that if πi /∈ p-span(Π \ {πi}) then πi /∈ span(Π \ {πi}). Hence, pointwise linear
independence implies linear independence.

Since |S| and |A| are finite, we can assume that A = {1, . . . , |A||} and S = {1, . . . , |S|}.
For any transition probability kernel p̃(s′|s, a) we can construct matrix P̃ ∈ R|S||A|×|S| with
P̃ (a−1)|S|+s,s′ = p̃(s′|s, a). Denote the constructed matrix corresponding to the true dynamics
as P . For any πi we can construct a matrix Πi ∈ R|S|×|S||A| with (Πi)s,(a−1)|S|+s = πi(a|s).
Vertically stack these m Πi matrices to construct Π ∈ Rm|S|×|S||A|. Additionally we construct
V ∈ R|S|×k with V j,` = (v`)j . Note that P(Π,V) = {P̃ ∈ P : Π(P̃ − P)V = 0}. Define the
sets X = {X ∈ R|S||A|×|S| : PXV = 0} and Y = {P̃ ∈ R|S||A|×|S| : Π(P̃ − P)V = 0}.
Note the following three facts:

1. dim[X] = dim[Y] since our notion of dimension is translation-invariant (Lemma 2).

2. dim[X] = H-dim[X] since X is a vector-space (Lemma 3).

3. P(Π,V) ⊆ Y which implies that dim[P(Π,V)] ≤ dim[Y] (Lemma 4).

Taken together this gives us that

dim[P(Π,V)] ≤ dim[Y] = H-dim[X].

We can now apply Lemma 1 to obtain dim[X] = |S|2|A| − k · rank(Π). Notice that rank(Π) =
min{|S||A|,m|S|}. Thus dim[P(Π,V)] ≤ |S|(|S||A| −mk) as needed.

Proposition 3. The maximum-likelihood estimate of p∗ in P may not belong to a P(Π,V) 6= ∅.

15

Proof. Suppose we are trying to estimate a transition matrix P ∈ Rn×n and choose to use one
parameter θi ∈ R per row. Specifically, we parametrize the distribution on the i-th row as

p̃ii = θi and p̃ij = (1− θi)/(n− 1), for i 6= j, with θi ∈ [0, 1],

where pij = p(sj |si). We can then write the expected likelihood function for θ ∈ Rn as

m(θ) =
∑
i

[
pii ln θi +

∑
j 6=i pij ln(1− θi)−

∑
j 6=i pij ln(n− 1)

]
=
∑
i [pii ln θi + (1− pii) ln(1− θi)− (1− pii) ln(n− 1)] ,

which leads to the likelihood equation

0 =
∂m(θ)

θi
=
pii
θi

+
1− pii
θi − 1

=
pii(θi − 1) + (1− pii)θi

θi(θi − 1)
=

θi − pii
θi(θi − 1)

.

The MLE solution is thus to have θi = pii for i = 1, 2, ..., n. This means that the solution provided
by MLE will not be exact if and only if

pij 6= pik for any (i, j, k) such that i 6= j 6= k. (11)

Now, suppose we have V = {v} with vi = 1 for some i and vj = 0 for j 6= i. In this case it is
possible to get an exact value-equivalent solution—that is, Pv = P̃ v— by making θi = pii and
θj = 1− (n− 1)pii for j 6= i, regardless of whether (11) is true or not.

Proposition 4. Suppose v ∈ V ′ =⇒ Tπv ∈ V ′ for all π ∈ �. Let p-span(Π) ⊇ � and
span(V) = V ′. Then, starting from any v′ ∈ V ′, any m̃ ∈M(Π,V) yields the same solution as m∗.

Proof. Denote the Bellman operator under a policy that always selects action a as Ta, the greedy
Bellman operator as T v = maxa Tav and the Bellman operator under a policy π as Tπ, as before.
Let T (n)v represent n successive applications of operator T on value v.

Note that for any v ∈ V we can construct a πv(s) = argmaxa(Tav)(s) such that T v = maxa Tav =
Tπvv. This implies that the greedy Bellman operator is included in the assumption of our proposition:

v ∈ V ′ =⇒ T v ∈ V ′. (12)

We now begin by showing that:

T (n)v = T̃ (n)v ∈ V ′ =⇒ T (n+1)v = T̃ (n+1)v ∈ V ′ (13)

for any v ∈ V and any n > 0. Assume that T (n)v = T̃ (n)v ∈ V ′. Since T (n)v ∈ V ′ and
V ′ = span(V), we can use use value equivalence to obtain:

TaT (n)v = T̃aT (n)v.

for any a ∈ A. Next, since T (n)v = T̃ (n)v we can write:

TaT (n)v = T̃aT̃ (n)v. (14)

Since (14) holds for any a ∈ A, we can write:

T (n+1)v = max
a
TaT (n)v = max

a
T̃aT̃ (n)v = T̃ (n+1)v.

We know from (12) that the fact that T (n)v ∈ V ′ implies that T (n+1)v ∈ V ′. Thus we have shown
that (13) is true.

Finally, by choosing v ∈ V ′ and using analogous reasoning as as above, we can show that Tav = T̃av
and T v = maxa Tav = maxa T̃av = T̃ v, and since v ∈ V ′, T̃ v = T v ∈ V ′. Thus T (n)v = T (n)v
for all n ∈ N. This is sufficient to conclude that

ṽ∗ = lim
n→∞

T̃ (n)v′ = lim
n→∞

T (n)v′ = v∗,

as needed.

A.1.2 Examples with a simple MDP

16

Figure 5

Consider the 3 state MDP with states s1, s2, s3 and actions
A = {a1, a2}. Transitioning to state s1 always incurs a
reward of 1, taking any action in states s2 and s3 always
results in transitioning to s1 and taking action a ∈ A
from s1 transitions among the other states according to
action-dependent distribution (pa11, p

a
12, p

a
13). This MDP

is depicted in Figure 5. We now use this MDP to illustrate
several points made in the main text.

Closure under Bellman updates We now address the
discussion surrounding Proposition 4 in the main text.
Consider a the following two-dimensional subspace of value functionsR = {[x, y, y]> : x, y ∈ R}.
We now show that, for the MDP described above,R exhibits closure under arbitrary Bellman updates.

For an arbitrary policy π : S 7→ P(A) the Bellman update for a value function v ∈ R3 is given by
T πv = Rπ + γP πv where

Rπ =

[∑
a∈A π(a|s1)pa11

1
1

]
, P π =

[∑
a∈A π(a|s1)pa11

∑
a∈A π(a|s2)pa12

∑
a∈A π(a|s3)pa13

1 0 0
1 0 0

]

Suppose v ∈ R, then v = [a, b, b]> for some a, b ∈ R. Notice that for such a value function the
following holds:

T πv =

[
Rπ

1 + γ[aP π
11 + b(1− P π

11)]
1 + γa
1 + γa

]
∈ R,

thus we have illustrated that the two-dimensional subspace R is closed under arbitrary Bellman
updates in our 3 state MDP. This means that, once a sequence v1,v2 = Tπv1,v3 = Tπ′v2... reaches
a vi ∈ R, it stays in R. We can then exploit this property finding value-equivalent models with
respect toR, as we show next.

A model class for which exact VE outperforms MLE We now provide an example of the scenario
discussed around Proposition 3 in the main text by examining the setting where a model, from a
restricted class, must be learned to approximate the dynamics of our MDP. We restrict our model class
by requiring that for each action a ∈ A we represent (pa11, p

a
12, p

a
13) as ((1− θa)/2, θa, (1− θa)/2).

Before continuing we note a few properties of value functions of our MDP. Notice that for any vπ we
can write:

vπ1 =
∑
a∈A

π(a|s1)[pa11(1 + γvπ1) + (1− pa11)(γ2vπ1)],

vπ2 = 1 + γvπ1 ,

vπ3 = 1 + γvπ1 ,

which illustrates that vπ exclusively depends on the value of P π
11 ≡

∑
a∈A π(a|s1)pa11.

First we consider the MLE solution to this problem: it can be easily shown (see the proof of
Proposition 3) that, for the model class defined above, θa = pa12 for all a ∈ A maximizes the
likelihood. However notice that this implies that our approximation of pa11 equals (1− pa12)/2 which
is clearly not true in general. Thus, there are settings of (pa11, p

a
12, p

a
13) and policies for which the

value function produced by MLE, ṽπ , is not equivalent to the true value function vπ .

Next we consider learning a value-equivalent model with the same restricted model class. Suppose
we wish our model to be value equivalent to value v = [1, 0, 0]> and all policies.

Note that any VE model with respect to V = {v}: {P̃ a}a∈A, must satisfy P̃
a
v = P av. By requiring

value equivalence with just v we have:

P̃
a
v =

[
p̃a11
p̃a21
p̃a31

]
=

[
pa11
1
1

]
= P av

which implies that p̃a11 = p11, p̃a21 = p̃a31 = 1 and p̃a22 = p̃a23 = p̃a32 = p̃a33 = 0 for all a ∈ A.

17

Taking these constraints together restricts the class of VE models to those of the form:

P̃ =

[
pa11 p̃a12 p̃a13
1 0 0
1 0 0

]
where p̃a1i are “free variables” for all i = 2, 3 and a ∈ A.

Notice that when pa11 ≤ 0.5 for all a ∈ A, we can find a value equivalent model by setting:
(1 − θa)/2 = pa11. This means that the values produced by these value equivalent models exactly
match those of the environment: ṽπ = vπ for all π (and thus the solution of this model also coincides
with the optimal value function, ṽ∗ = v∗).

A model class for which approximate VE outperforms MLE In the previous example we showed
that it is possible to have an MDP and a restricted model class such that VE models are able to
perfectly estimate v∗ while MLE models fail to do so. Notice that in this example a value equivalent
model actually existed, which is not guaranteed in general. We now show a related example where, in
spite of an exactly value equivalent model not existing, an agent trained using an approximate value
equivalent model will outperform its MLE counterpart.

We use our example MDP from before, shown in Figure 5, and denote its actions A = {a, b} for
later notational convenience. We set our environment’s transition dynamics accordingly: pa ≡
(pa11, p

a
12, p

a
13) = (0.6, 0.4, 0.0) and pb ≡ (pb11, p

b
12, p

b
13) = (0.4, 0.2, 0.4). We also use the same

model class as above: (p̃i11, p̃
i
12, p̃

i
13) = (0.5(1− θi), θi, 0.5(1− θi)) for each i ∈ A, being mindful

of the boundary conditions θi ∈ [0, 1].

As we saw in the previous example, the MLE estimator for this problem will produce the following
approximations: paMLE = (0.3, 0.4, 0.3), pbMLE = (0.4, 0.2, 0.4).

We now consider what an approximate VE model will produce using the same value as before:
v = [1, 0, 0]> and all policies. Recall that we’re optimizing the following loss:

∑
j∈{a,b}

3∑
i=1

((P̃
j
v)i − (P jv)i))

2 =
∑

j∈{a,b}

(p̃j11 − p
j
11)2 + ((p̃j12 + p̃j13)− (pj12 + pj13))2

=
∑

j∈{a,b}

(p̃j11 − p
j
11)2 + ((1− p̃j11)− (1− pj11))2

=
∑

j∈{a,b}

2(p̃j11 − p
j
11)2

= 2(p̃a11 − pa11)2 + 2(p̃b11 − pb11)2.

The form of this loss indicates that VE will attempt to minimize the MSE of p̃a11 and p̃b11 separately.
Notice that for action a, we cannot perfectly estimate p11 due to the boundary conditions on θa.
However, VE will still find the closest possible p̃11 that respects the boundary condition, giving:
p̃aVE = (0.5, 0.0, 0.5), p̃bVE = (0.4, 0.2, 0.4).

We now display these models together in the following table:

p̃a11 p̃a12 p̃a13 p̃b11 p̃b12 p̃b13

MDP 0.6 0.4 0.0 0.4 0.2 0.4
MLE 0.3 0.4 0.3 0.4 0.2 0.4
VE 0.5 0.0 0.5 0.4 0.2 0.4

Notice that when optimally planning on this MDP, an agent can obtain the most reward by transitioning
from s1 to s1 as often as possible. The agent can do this taking the action among {a, b} that is mostly
likely to induce a self-transition each time it is at s1. In the true environment and the VE model this
action is a. However, notice that the MLE model would instead prefer the sub-optimal action b, since
(p̃bMLE)11 > (p̃aMLE)11.

This is a concrete example where VE outperforms MLE even though there is no value-equivalent
models in the model class considered (that is, VE can be enforced only approximately).

18

A.2 Experimental details

(a) Catch (b) Four Rooms (c) Cart-pole

Figure 6: (a) Catch: the agent has three actions corresponding to moving a paddle (orange) left, right
and staying in place. Upon initialization, a ball (blue) is placed at a random square at the top of the
environment and at each step it descends by one unit. Upon reaching the bottom of the environment
the ball is returned to a random square at the top. The agent receives a reward of 1.0 if it moves its
paddle and intercepts the ball. (b) Four Rooms: the agent (orange) has four actions corresponding to
up, down, left and right movement. When the agent takes an action, it moves in its intended direction
with 90% of the time and in an random other direction otherwise. There is a rewarding square in
the right top corner (green). If the agent transitions into this square it receives a reward of 1.0. (c)
Cart-pole: In Cart-pole, the agent may choose between three actions: pushing the cart to the left,
right or not pushing the cart. There is a pole balanced on top of the cart that is at risk of tipping over.
The agent is incentivized to keep the pole up-right through a reward of cos(θ) at each step where θ is
the angle of the pole (θ = 0 implies the pole is perfectly up-right). If the pole’s height drops below a
threshold, the episode terminates and the agent receives a reward of 0.0. The cart itself is resting on a
table; if it falls off the table, the episode similarly terminates with a reward of 0.0.

A.2.1 Environment description

The environments used in our experiments are described in depth in Figure 6. In both Catch and Four
Rooms a tabular representation is employed in which each of the environment’s finitely many states
(250 and 68, respectively) is represented by an index. In Cart-pole we have a continuous state space
S ⊂ R5 (so |S| =∞). Each state s ∈ R5 consists of the cart position, cart velocity, sine / cosine of
pole angle, and pole’s angular velocity.

A.2.2 Experimental pipeline

As mentioned in the main text, a common experimental pipeline is used across all of our results, with
slight variations depending upon the experiment type and environment. This pipeline is described at
a high-level below:

(i) Data collection: Data is collected using a policy which selects actions uniformly at random.

(ii) Model training: The collected data is used to train a model.

(iii) Policy construction: The model is used to produce a policy.

(iv) Policy evaluation: The policy is evaluated to assess the quality of the model.

We now discuss steps (ii), (iii) and (iv) in detail.

(ii) Model training All of our experiments involve restricting the capacity of the class of models
that the agent can represent:M. In general we restrict the rank of the models inM, but, depending
upon the nature of the model, this restriction is carried in different ways.

1. Tabular models: On domains with |S| <∞, we employ tabular models. In what follows,
n×m matrices referred to as “row-stochastic” are ensured to be as such by the following
parameterization:

(a) A matrix F ∈ Rn×m is sampled with entries F ij ∼ Uniform([−1, 1]).

19

(b) A new matrix P F is produced by applying row-wise softmax operations with tempera-
ture τ = 1 to F :

(P F)ij =
exp(F ij)∑
k exp(F ik)

.

Here, F can be thought of as the parameters of P F , which often will suppress as P̃
for clarity.

That is, a model is represented by |A| |S| × |S| row-stochastic matrices: P̃
1
, . . . , P̃

|A|
. We

ensure that each of these matrices has rank k by factoring it as follows: P̃
a

= DaKa where
Da ∈ R|S|×k,Ka ∈ Rk×|S| and both are row-stochastic as well.

2. Neural network models: On domains with |S| = ∞ we instead use a neural network
parameterized by θ: fθ : (S,A) 7→ (S,R). fθ takes a state and action as input and outputs
an approximation of the expected next state and next reward. As an analogue to the rank
restriction applied in the tabular case, we restrict the rank of weight matrices in all fully-
connected layers in fθ. Denote a fully-connected layer in fθ as L(x) = σ(Wx+ b) where
σ(·) is an activation function, W is a weight matrix and b is a bias term. We restrict fθ by
replacing each L(x) with Lk(x) = σ((DK)x+ b) where D,K ∈ R|S|×k,Rk×|S|.

The models with the restrictions above are trained based on data collected by a policy that selects
actions uniformly at random. With a small abuse of notation, denote the collected data as D =
(si, ai, ri, s

′
i)
N
i=1. We will now describe how this data is used to train models in different contexts.

1. Tabular models: When training a tabular model with capacity restricted to rank k, we use
the following expressions:
(a) Reward: In our experiments rewards are represented in the same way for both VE and

MLE models:

R̃s,a =

∑N
i=1 ri1{si = s, ai = a}∑N
i=1 1{si = s, ai = a}

,

where 1{·} is the indicator function.
(b) Transition dynamics (MLE): To learn the transition dynamics we first parameterize

P̃
a

= DaKa for all a ∈ A, where Da and Ka are row-stochastic matrices (see
item 1 in the section “Restricting Model Capacity” above). Because we are assuming S
to be finite, we can identify each state s ∈ S by an index. Let δ(s) ∈ {1, ..., |S|} be an
index that uniquely identifies state s. We then compute P̃

a
= DaKa by minimizing

the following loss with respect toDa andKa:

˜̀
p,D(P a, P̃

a
) ≡ −

N∑
i=1

1{ai = a} log
[
(DaKa)δ(si)δ(s′i)

]
,

where (DaKa)ij is the element in the i-th row and j-th column of matrixDaKa. Note
that the expression above is the empirical version of expression (5) in the paper [15].

(c) Transition dynamics (VE): In the VE setting we have a set of value functions and
policies: V and Π. We have one transition matrix P̃

π
associated with each policy

π ∈ Π. As discussed in Section 5, in our experiments we used Π = {πa}a∈A, where
πa(a|s) = 1 for all s ∈ S. Thus, we end up with the same parameterized probability
matrices as above: P̃

a
= DaKa. Let Dia ⊆ D be the sample transitions starting in

state i where action a was taken, that is, (sj , aj , rj , s
′
j) ∈ Dia if and only if δ(sj) = i

and aj = a. We computed P̃
a

= DaKa by minimizing the following loss with
respect toDa andKa:

`πa,V,D(P a, P̃
a
) ≡

∑
i,a

∑
v∈V

 1

|Dia|
∑

(s,a,r,s′)∈Dia

vδ(s′) −
∑
j

(DaKa)ijvj

2

.

Note that the expression above corresponds to equation (7) when learning transition
matrices associated with policies {πa}a∈A in an environment with finite state space S
(where states s can be associated with an index i) and p = 2.

20

2. Neural network models: When training a neural network model with capacity restrictions
construct a network fθ : (S,A) 7→ (S,R). The network is fully connected and takes the
concatenation of S with the one-hot representation of A as input. For a given (s, a) pair we
denote it’s output as s̃′s,a, r̃

′
s,a = fθ(s, a). In all cases we train the neural network model

by sampling mini-batches uniformly from D. It is important to note that we only use these
neural network models on deterministic domains (e.g., Cart-pole) meaning that the output
of the model, s̃′ represents a single state rather than an expectation over states.
(a) Reward: For both VE and MLE models we train our neural network models to

accurately predict the reward associated with each state action transition:

`r,D(θ) =

N∑
i=1

(r̃si,ai − ri)2.

(b) Transition dynamics (MSE): We learn models by encouraging fθ to accurately predict
the next state:

`s′,D(θ) =

N∑
i=1

(s̃′si,ai − s
′
i)

2.

(c) Transition dynamics (VE): For VE models use (7), disregarding reward terms to give:

`V,D(θ) =

n∑
i=1

∑
v∈V

(v(s̃si,ai)− v(s′i))
2.

(iii) Policy construction In each experiment we present, after a model is constructed, we subse-
quently use it to construct a policy. The manner in which we do this varies based upon the type of the
experiment and the nature of the environment. There are three mechanisms for constructing policies
from models:

1. Value iteration: For experiments with V = V (which are performed only with tabular
models), we use the learned model m̃ = (r̃, p̃) to perform value iteration until convergence,
yielding ṽ∗ [30]. Here ṽ∗ represents the optimal value function of the model m̃. We then
produce a policy according to π(s) = argmaxa(r̃(s, a) + γ

∑
s′ p̃(s

′|s, a)ṽ∗(s′)).
2. Approximate policy iteration with least squares temporal-difference learning (LSTD):

For experiments on environments with finite S and V = Ṽ we used policy iteration combined
with least square policy evaluation using basis {φi}di=1. Specifically, each iteration of policy
iteration involved the following steps:
(a) Collect experience tuples using the previous policy, π, leading to D =

(si, ai, ri, s
′
i)
n
i=1.

(b) Replace the reward and next-states with those predicted by the model: r̃i, s̃
′
i =

fθ(si, ai), leading to D′ = (si, ai, r̃i, s̃
′
i)
n
i=1.

(c) Learn vw(s) =
∑d
i=1 wiφi(s) ≈ vπ using LSTD with D′.

(d) Construct a new policy π(s) = argmaxa(r̃s,a+γvw(s̃′s,a)) where r̃s,a, s̃′s,a are sampled
from the trained model conditioned on state s and action a.

This procedure is repeated for a fixed number of iterations.

3. Deep Q-networks (DQN): For experiments with V = Ṽ and infinite S we use Double Q-
Learning to produce policies. We incorporate our learned model, fθ, by replacing elements
in the replay buffer (s, a, r, s′) with (s, a, r̃s,a, s̃

′
s,a) where r̃s,a, s̃′s,a = fθ(s, a).

(iv) Policy evaluation There are two methods to evaluate the policies resulting from the policy
construction stage described above:

1. For policies produced using value iteration or policy iteration plus LSTD the ensuing policy,
π, is exactly evaluated on the true environment, yielding vπ(s). Then the average value of
vπ(s) over all states is reported.

2. For policies produced using DQN, the average return over the last 100 episodes of training
is reported.

21

A.2.3 Classes of experiments

In addition to varying the capacity ofM, there are two primary classes of experiments that were run
in our paper that assess different choices of V . We distinguish between these two classes below:

span(V) ≈ V̈, Ṽ = V,Π = �: In these experiments we consider that there is no limitation
on the agent’s ability to represent value functions, and focus on achieving value equivalence with
respect to the polytope of value functions V̈ induced by the environment. We enable the agent to
represent arbitrary functions in V by restricting ourselves to tabular environments and using dynamic
programming to perform exact value iteration in our Policy Construction step. We approximate the
value polytope by randomly sampling deterministic policies: {π1, . . . , πn} and evaluating them (again
using dynamic programming) to produce {vπ1

, . . . , vπn}. We then choose V = {vπ1
, . . . , vπn}. In

this setting we vary the number of policies generated.

Corresponding experiments: the experiments in this class vary two dimensions: (1) the rank of the
model and (2) the number of policies generated. In Figures 3(a) and 3(b) we depict plots for the Four
Rooms environment that fix the number of policies while varying the rank of the model and plots that
fix the rank of the model while varying the number of policies, respectively. Figures 3(c) and 3(d) are
analogous plots for the Catch environment.

span(V) ≈ Ṽ , Π = �: In these experiments we explore the setting described in Remark 2. We
assume that the agent has variable ability to represent value functions, Ṽ , and attempt to learn a model
inM(Ṽ,�). From Proposition 1 we only need to find V such that span(V) ⊇ Ṽ . Experiments in
this class can further be broken down into two settings based upon the nature of Ṽ:

(a) Linear function approximation: In certain experiments our agent uses a class of linear
function approximators to represent value functions: Ṽ = {ṽ : ṽ(s) =

∑d
i=1 φi(s)wi}

where φi(s) : S 7→ R and w ∈ Rd. In this setting achieving span(V) ⊇ Ṽ can be satisfied
by choosing V = {φi}di=1. For experiments using linear function approximation, we
select our features {φi}di=1 to correspond to state aggregations. This entails the following
procedure:

(i) Collect data using a policy that selects actions uniformly at random.
(ii) For tabular domains (e.g., Catch, Four Rooms), convert tabular state representations

into coordinate-based representations. For Catch we convert each tabular state into the
positions of both the paddle and the ball: (xpaddle, ypaddle, xball, yball). For Four Rooms
we use the position of the agent: (xagent, yagent). Denote the function that performs
this conversion as: f : S 7→ Rn where n = 2 and n = 4 for Four Rooms and Catch
respectively.

(iii) Perform k-means clustering on these converted states to produce d centers c1:d.
(iv) Define φi(s) = 1{argminj ‖f(s) − cj‖2 = i}, which corresponds to aggregating

states according to their proximity to the previously calculated centers.
Corresponding experiments: the experiments in this class vary two dimensions: (1) the
rank of the model and (2) the number of basis functions in {φi}di=1. In Figures 4(a) and 4(b)
we depict plots of “slices” of this two-dimensional set of results on the Catch domain: 4(a)
depicts fixing the number of basis functions while varying model-rank and 4(b) depicts
fixing the model-rank while varying the number of basis functions.

(b) Neural network function approximation: When Neural Networks are used to approximate
the agent’s value functions we have Ṽ = {ṽ : ṽ(s) = gθ(s)} where gθ represents a neural
network with a particular architecture parameterized by θ. In our experiments we choose
the architecture of gθ to be a 2 layer neural network with a tanh activation for its hidden
layer. Unlike the linear function approximation setting, it is less obvious how to choose V
such that span(V) ⊇ Ṽ . One option is to use randomly initialized neural networks in Ṽ as
our basis. To randomly initialize a given layer in some network gθ, we select weights from
a truncated normal distribution where µ = 0 and σ = 1/

√
layer-input-size and initialize

biases to 0.
However, we found in practice that a large number of these randomly initialized networks
were required to achieve reasonable performance. Instead of maintaining a large set of

22

initializations in V , we allow the elements of V themselves to be stochastic. Every time
we apply an update of gradient descent we sample a new set of randomly initialized neural
networks to function as V . This is equivalent to minimizing EV [`Π,V,D′(m

∗, m̃)] where
`Π,V,D′ is defined in 7. We find that having more random elements in V decreases the
variance in the performance of VE models; |V| = 5 in our experiments.

Corresponding experiments: the experiments in this class vary two dimensions: (1) the
rank of the model and (2) the width of the neural networks in Ṽ . In Figures 4(c) and 4(d)
we depict plots of “slices” of this two-dimensional set of results on the Catch domain:
4(c) depicts fixing the network width while varying model-rank and 4(d) depicts fixing the
model-rank while the network width varies.

A.2.4 Additional results

In the experimental section of the main text we showed that our theoretical claims about the value
equivalence principle hold in practice through a series of bivariate experiments (e.g., varying model-
rank and number of bases, varying model-rank and number of policies, varying model-rank and
network width). We displayed our results as “slices” of these bivariate experiments, where one
variable would be held fixed and the other would be allowed to vary. To keep the paper concise, we
only displayed a subset of these slices where the “fixed” variable was selected as the median value
over full set we experimented with. In what follows, we present the complete set of the experimental
results we acquired. We indicate that a plot was included in the main text by printing its caption in
bold font.

0 50 100 150 200 250
rank(m)

4
5
6
7
8
9

10

Av
er

ag
e

St
at

e
Va

lu
e

size() (# clusters) = 20

MLE
VE

(a) Catch (fixed V)

0 50 100 150 200 250
rank(m)

4
5
6
7
8
9

10

Av
er

ag
e

St
at

e
Va

lu
e

size() (# clusters) = 30

(b) Catch (fixed V)

0 50 100 150 200 250
rank(m)

4
5
6
7
8
9

10

Av
er

ag
e

St
at

e
Va

lu
e

size() (# clusters) = 40

(c) Catch (fixed V)

0 50 100 150 200 250
rank(m)

4
5
6
7
8
9

10

Av
er

ag
e

St
at

e
Va

lu
e

size() (# clusters) = 50

(d) Catch (fixed V)

0 50 100 150 200 250
rank(m)

4
5
6
7
8
9

10

Av
er

ag
e

St
at

e
Va

lu
e

size() (# clusters) = 100

(e) Catch (fixed V)

0 50 100 150 200 250
rank(m)

4
5
6
7
8
9

10

Av
er

ag
e

St
at

e
Va

lu
e

size() (# clusters) = 150

(f) Catch (fixed V)

0 50 100 150 200 250
rank(m)

4
5
6
7
8
9

10

Av
er

ag
e

St
at

e
Va

lu
e

size() (# clusters) = 200

(g) Catch (fixed V)

0 50 100 150 200 250
rank(m)

4
5
6
7
8
9

10

Av
er

ag
e

St
at

e
Va

lu
e

size() (# clusters) = 250

(h) Catch (fixed V)

Figure 7: All Catch results with fixed V and span(V) ≈ Ṽ .

23

50 100 150 200 250
size() (# clusters)

4
5
6
7
8
9

10

Av
er

ag
e

St
at

e
Va

lu
e

rank(m) = 20

(a) Catch (fixed m̃)

50 100 150 200 250
size() (# clusters)

4
5
6
7
8
9

10

Av
er

ag
e

St
at

e
Va

lu
e

rank(m) = 30

(b) Catch (fixed m̃)

50 100 150 200 250
size() (# clusters)

4
5
6
7
8
9

10

Av
er

ag
e

St
at

e
Va

lu
e

rank(m) = 40

(c) Catch (fixed m̃)

50 100 150 200 250
size() (# clusters)

4
5
6
7
8
9

10

Av
er

ag
e

St
at

e
Va

lu
e

rank(m) = 50

(d) Catch (fixed m̃)

50 100 150 200 250
size() (# clusters)

4
5
6
7
8
9

10

Av
er

ag
e

St
at

e
Va

lu
e

rank(m) = 100

(e) Catch (fixed m̃)

50 100 150 200 250
size() (# clusters)

4
5
6
7
8
9

10

Av
er

ag
e

St
at

e
Va

lu
e

rank(m) = 150

(f) Catch (fixed m̃)

50 100 150 200 250
size() (# clusters)

4
5
6
7
8
9

10

Av
er

ag
e

St
at

e
Va

lu
e

rank(m) = 200

(g) Catch (fixed m̃)

50 100 150 200 250
size() (# clusters)

4
5
6
7
8
9

10

Av
er

ag
e

St
at

e
Va

lu
e

rank(m) = 250

(h) Catch (fixed m̃)

Figure 8: All Catch results with fixed m̃ and span(V) ≈ Ṽ .

0 50 100 150 200 250
rank(m)

4

5

6

7

8

9

10

Av
er

ag
e

St
at

e
Va

lu
e

size() (# policies) = 3

MLE
VE

(a) Catch (fixed V)

0 50 100 150 200 250
rank(m)

4

5

6

7

8

9

10

Av
er

ag
e

St
at

e
Va

lu
e

size() (# policies) = 5

(b) Catch (fixed V)

0 50 100 150 200 250
rank(m)

4

5

6

7

8

9

10

Av
er

ag
e

St
at

e
Va

lu
e

size() (# policies) = 7

(c) Catch (fixed V)

0 50 100 150 200 250
rank(m)

4

5

6

7

8

9

10

Av
er

ag
e

St
at

e
Va

lu
e

size() (# policies) = 10

(d) Catch (fixed V)

0 50 100 150 200 250
rank(m)

4

5

6

7

8

9

10

Av
er

ag
e

St
at

e
Va

lu
e

size() (# policies) = 15

(e) Catch (fixed V)

0 50 100 150 200 250
rank(m)

4

5

6

7

8

9

10

Av
er

ag
e

St
at

e
Va

lu
e

size() (# policies) = 20

(f) Catch (fixed V)

0 50 100 150 200 250
rank(m)

4

5

6

7

8

9

10

Av
er

ag
e

St
at

e
Va

lu
e

size() (# policies) = 30

(g) Catch (fixed V)

0 50 100 150 200 250
rank(m)

4

5

6

7

8

9

10

Av
er

ag
e

St
at

e
Va

lu
e

size() (# policies) = 40

(h) Catch (fixed V)

Figure 9: All Catch results with fixed V and V = {vπ1
, . . . , vπn}.

24

0 5 10 15 20 25 30 35 40
size() (# policies)

4
5
6
7
8
9

10

Av
er

ag
e

St
at

e
Va

lu
e

rank(m) = 20

MLE
VE

(a) Catch (fixed m̃)

0 5 10 15 20 25 30 35 40
size() (# policies)

4
5
6
7
8
9

10

Av
er

ag
e

St
at

e
Va

lu
e

rank(m) = 30

(b) Catch (fixed m̃)

0 5 10 15 20 25 30 35 40
size() (# policies)

4
5
6
7
8
9

10

Av
er

ag
e

St
at

e
Va

lu
e

rank(m) = 40

(c) Catch (fixed m̃)

0 5 10 15 20 25 30 35 40
size() (# policies)

4
5
6
7
8
9

10

Av
er

ag
e

St
at

e
Va

lu
e

rank(m) = 50

(d) Catch (fixed m̃)

0 5 10 15 20 25 30 35 40
size() (# policies)

4
5
6
7
8
9

10

Av
er

ag
e

St
at

e
Va

lu
e

rank(m) = 100

(e) Catch (fixed m̃)

0 5 10 15 20 25 30 35 40
size() (# policies)

4
5
6
7
8
9

10

Av
er

ag
e

St
at

e
Va

lu
e

rank(m) = 150

(f) Catch (fixed m̃)

0 5 10 15 20 25 30 35 40
size() (# policies)

4
5
6
7
8
9

10

Av
er

ag
e

St
at

e
Va

lu
e

rank(m) = 200

(g) Catch (fixed m̃)

0 5 10 15 20 25 30 35 40
size() (# policies)

4
5
6
7
8
9

10

Av
er

ag
e

St
at

e
Va

lu
e

rank(m) = 250

(h) Catch (fixed m̃)

Figure 10: All Catch results with fixed m̃ and V = {vπ1 , . . . , vπn}.

20 30 40 50 60 70
rank(m)

0

20

40

60

80

100

Av
er

ag
e

St
at

e
Va

lu
e

size() (# clusters) = 10

MLE
VE

(a) Four Rooms (fixed V)

20 30 40 50 60 70
rank(m)

0

20

40

60

80

100

Av
er

ag
e

St
at

e
Va

lu
e

size() (# clusters) = 20

(b) Four Rooms (fixed V)

20 30 40 50 60 70
rank(m)

0

20

40

60

80

100

Av
er

ag
e

St
at

e
Va

lu
e

size() (# clusters) = 30

(c) Four Rooms (fixed V)

20 30 40 50 60 70
rank(m)

0

20

40

60

80

100

Av
er

ag
e

St
at

e
Va

lu
e

size() (# clusters) = 40

(d) Four Rooms (fixed V)

20 30 40 50 60 70
rank(m)

0

20

40

60

80

100

Av
er

ag
e

St
at

e
Va

lu
e

size() (# clusters) = 50

(e) Four Rooms (fixed V)

20 30 40 50 60 70
rank(m)

0

20

40

60

80

100

Av
er

ag
e

St
at

e
Va

lu
e

size() (# clusters) = 60

(f) Four Rooms (fixed V)

Figure 11: All Four Rooms results with fixed V and V = Ṽ .

25

10 20 30 40 50 60
size() (# clusters)

0

20

40

60

80

100

Av
er

ag
e

St
at

e
Va

lu
e

rank(m) = 18

MLE
VE

(a) Four Rooms (fixed m̃)

10 20 30 40 50 60
size() (# clusters)

0

20

40

60

80

100

Av
er

ag
e

St
at

e
Va

lu
e

rank(m) = 28

(b) Four Rooms (fixed m̃)

10 20 30 40 50 60
size() (# clusters)

0

20

40

60

80

100

Av
er

ag
e

St
at

e
Va

lu
e

rank(m) = 38

(c) Four Rooms (fixed m̃)

10 20 30 40 50 60
size() (# clusters)

0

20

40

60

80

100

Av
er

ag
e

St
at

e
Va

lu
e

rank(m) = 48

(d) Four Rooms (fixed m̃)

10 20 30 40 50 60
size() (# clusters)

0

20

40

60

80

100

Av
er

ag
e

St
at

e
Va

lu
e

rank(m) = 58

(e) Four Rooms (fixed m̃)

10 20 30 40 50 60
size() (# clusters)

0

20

40

60

80

100

Av
er

ag
e

St
at

e
Va

lu
e

rank(m) = 68

(f) Four Rooms (fixed m̃)

Figure 12: All Four Rooms results with fixed m̃ and V = Ṽ .

20 30 40 50 60 70
rank(m)

0

20

40

60

80

100

Av
er

ag
e

St
at

e
Va

lu
e

size() (# policies) = 3

MLE
VE

(a) Four Rooms (fixed V)

20 30 40 50 60 70
rank(m)

0

20

40

60

80

100

Av
er

ag
e

St
at

e
Va

lu
e

size() (# policies) = 5

(b) Four Rooms (fixed V)

20 30 40 50 60 70
rank(m)

0

20

40

60

80

100

Av
er

ag
e

St
at

e
Va

lu
e

size() (# policies) = 7

(c) Four Rooms (fixed V)

20 30 40 50 60 70
rank(m)

0

20

40

60

80

100

Av
er

ag
e

St
at

e
Va

lu
e

size() (# policies) = 10

(d) Four Rooms (fixed
V)

20 30 40 50 60 70
rank(m)

0

20

40

60

80

100

Av
er

ag
e

St
at

e
Va

lu
e

size() (# policies) = 15

(e) Four Rooms (fixed V)

20 30 40 50 60 70
rank(m)

0

20

40

60

80

100

Av
er

ag
e

St
at

e
Va

lu
e

size() (# policies) = 20

(f) Four Rooms (fixed V)

20 30 40 50 60 70
rank(m)

0

20

40

60

80

100

Av
er

ag
e

St
at

e
Va

lu
e

size() (# policies) = 30

(g) Four Rooms (fixed V)

20 30 40 50 60 70
rank(m)

0

20

40

60

80

100

Av
er

ag
e

St
at

e
Va

lu
e

size() (# policies) = 40

(h) Four Rooms (fixed V)

Figure 13: All Four Rooms results with fixed V and V = {vπ1
, . . . , vπn}.

26

0 5 10 15 20 25 30 35 40
size() (# policies)

0

20

40

60

80

100

Av
er

ag
e

St
at

e
Va

lu
e

rank(m) = 23

MLE
VE

(a) Four Rooms (fixed m̃)

0 5 10 15 20 25 30 35 40
size() (# policies)

0

20

40

60

80

100

Av
er

ag
e

St
at

e
Va

lu
e

rank(m) = 28

(b) Four Rooms (fixed m̃)

0 5 10 15 20 25 30 35 40
size() (# policies)

0

20

40

60

80

100

Av
er

ag
e

St
at

e
Va

lu
e

rank(m) = 38

(c) Four Rooms (fixed
m̃)

0 5 10 15 20 25 30 35 40
size() (# policies)

0

20

40

60

80

100

Av
er

ag
e

St
at

e
Va

lu
e

rank(m) = 48

(d) Four Rooms (fixed m̃)

0 5 10 15 20 25 30 35 40
size() (# policies)

0

20

40

60

80

100

Av
er

ag
e

St
at

e
Va

lu
e

rank(m) = 58

(e) Four Rooms (fixed m̃)

0 5 10 15 20 25 30 35 40
size() (# policies)

0

20

40

60

80

100

Av
er

ag
e

St
at

e
Va

lu
e

rank(m) = 68

(f) Four Rooms (fixed m̃)

Figure 14: All Four Rooms results with fixed m̃ and V = {vπ1
, . . . , vπn}.

5 10 15 20
rank(m)

0

200

400

600

800

1000

Av
er

ag
e

Ep
iso

de
 R

et
ur

n

size() (width) = 32

(a) Cart-pole (fixed V)

5 10 15 20
rank(m)

0

200

400

600

800

1000

Av
er

ag
e

Ep
iso

de
 R

et
ur

n

size() (width) = 64

(b) Cart-pole (fixed V)

5 10 15 20
rank(m)

0

200

400

600

800

1000
Av

er
ag

e
Ep

iso
de

 R
et

ur
n

size() (width) = 128

(c) Cart-pole (fixed V)

5 10 15 20
rank(m)

0

200

400

600

800

1000

Av
er

ag
e

Ep
iso

de
 R

et
ur

n

size() (width) = 256

(d) Cart-pole (fixed V)

5 10 15 20
rank(m)

0

200

400

600

800

1000

Av
er

ag
e

Ep
iso

de
 R

et
ur

n

size() (width) = 512

(e) Cart-pole (fixed V)

5 10 15 20
rank(m)

0

200

400

600

800

1000

Av
er

ag
e

Ep
iso

de
 R

et
ur

n

size() (width) = 1024

(f) Cart-pole (fixed V)

Figure 15: All Cart-pole results results with fixed V and span(V) ≈ Ṽ .

A.2.5 Hyperparameters

Table 1 provides a list detailing the different hyperparameters used throughout our pipeline.

27

0 500 1000
size() (width)

0

200

400

600

800

1000

Av
er

ag
e

Ep
iso

de
 R

et
ur

n

rank(m) = 2

(a) Cart-pole (fixed m̃)

0 500 1000
size() (width)

0

200

400

600

800

1000

Av
er

ag
e

Ep
iso

de
 R

et
ur

n

rank(m) = 4

(b) Cart-pole (fixed m̃)

0 500 1000
size() (width)

0

200

400

600

800

1000

Av
er

ag
e

Ep
iso

de
 R

et
ur

n

rank(m) = 6

(c) Cart-pole (fixed m̃)

0 500 1000
size() (width)

0

200

400

600

800

1000

Av
er

ag
e

Ep
iso

de
 R

et
ur

n

rank(m) = 8

(d) Cart-pole (fixed m̃)

0 500 1000
size() (width)

0

200

400

600

800

1000

Av
er

ag
e

Ep
iso

de
 R

et
ur

n

rank(m) = 10

(e) Cart-pole (fixed m̃)

0 500 1000
size() (width)

0

200

400

600

800

1000
Av

er
ag

e
Ep

iso
de

 R
et

ur
n

rank(m) = 12

(f) Cart-pole (fixed m̃)

0 500 1000
size() (width)

0

200

400

600

800

1000

Av
er

ag
e

Ep
iso

de
 R

et
ur

n

rank(m) = 14

(g) Cart-pole (fixed m̃)

0 500 1000
size() (width)

0

200

400

600

800

1000

Av
er

ag
e

Ep
iso

de
 R

et
ur

n

rank(m) = 16

(h) Cart-pole (fixed m̃)

Figure 16: All Cart-pole results results with fixed m̃ and span(V) ≈ Ṽ .

Hyperparameter Value Description
minibatch size 32 Number of samples passed at a time during a training

step of any learning method.
model learning rate 5e-5 Learning rate used to train all models.
model samples 1,000,000 Number of transitions sampled by a random policy in

the Data Collection phase.
model depth 2 Number of hidden layers in the model architecture.
model width 256 Number of units per hidden layer.
model activation tanh Activation function following a hidden layer.
model learning max steps 1,000,000 Maximum number of training iterations.
γ 0.99 Discount factor used across environments.
LSTD samples / policy 10,000 Number of samples collected for each phase of policy

evaluation using LSTD.
policy iteration steps 40 Number of steps of policy iteration in the policy con-

struction phase, when applicable.
DQN learning rate 5e-4 Learning rate for DQN.
DQN # environment steps 2,500,000 Number of environment steps that DQN learns over.
DQN learning frequency 4 A learning update is applied after this many environ-

ment steps.
DQN depth 1 Number of hidden layers in the DQN.
DQN activation tanh Activation function following a hidden layer.
DQN target update 2000 Number of environment steps before the target network

in the DQN is updated.
Tabular # eval episodes 20 Number of episodes to average performance over to

assess a policy in the tabular setting.
DQN # eval episodes 100 Number of episodes to average DQN policy perfor-

mance over at the end of training.
DQN ε 0.05 Chance of picking a random action during training.
Optimizer Adam Optimizer used for all learning operations. Default

Adam parameters were used.

Table 1: List of hyperparameters used in the experiments.

28

	Appendix
	Proofs of theoretical results and illustrative examples
	Proofs
	Examples with a simple MDP

	Experimental details
	Environment description
	Experimental pipeline
	Classes of experiments
	Additional results
	Hyperparameters

