
A Detailed comparisons with related work
Here, we describe comparisons of our results to those in the literature and give detailed comments
on the specific rates we achieve. In Table 1, we compare our agnostic learning results. We note the
guarantees for the population risk in the fourth column, the marginal distributions over x for which
the bounds hold in the fifth column, and the sample complexity required to reach the specified level
of risk plus some ε > 0 in the final column. Our results in this setting come from Theorem 3.3. The
Big-O notation hides constants that may depend on the parameters of the distribution or activation
function, but does not hide explicit dependence on the dimension d. However, the parameters of
the distribution itself may have implicit dependence on the dimension. In particular, for bounded
distributions that satisfy ‖x‖2 ≤ BX , the O() hides multiplicative factors that depend on BX . This
means that if BX depends on d, so will our bounds. For ReLU, the O() hides polynomial factors
in BX . For non-ReLU, the worst-case activation functions under consideration in Assumption 3.1
(e.g. the sigmoid) can have γ ∼ exp(−BX), making the runtime and sample complexity depend on
γ−1 ∼ exp(BX), in which case it is preferable for BX to be a constant independent of the dimension.
We note that the sample complexity for Diakonikolas et al. [8] for the (1 + δ)OPT guarantee is
O(ε−2[dδ−3ν−2]δ

−3

) whenDx is ν sub-Gaussian for some ν = O(1), and thus the exact dependence
on the dimension depends on the sub-Gaussian norm and error threshold desired.

In Table 2, we provide comparisons of our noisy teacher network setting, where y = σ(v>x) + ξ
for some zero mean noise ξ. Our results in this setting come from Theorem 4.1. The complexity
column here denotes the sample complexity required to reach population risk OPT+ ε. The subspace
eigenvalue assumption given by Mukherjee and Muthukumar [26] is that E[xx>1(v>x ≥ 0)] � 0;
a similar assumption was used by Du et al. [10] in the realizable setting. We note that the result of
Mukherjee and Muthukumar holds for any bounded noise distribution and thus is in the more general
adversarial noise (but not agnostic3) setting.

Finally, in Table 3, we provide comparisons with results in the realizable setting (ξ ≡ 0). (Our results
in this setting are given in Theorem E.1 in Appendix E.) For G.D. and S.G.D., the complexity column
denotes the sample complexity required to reach population risk ε. For G.D. or gradient flow on
the population risk, it refers to the runtime complexity only as there are no samples in this setting.
For Du et al. [10], the subspace eigenvalue assumption is that for any w and for the target neuron v, it
holds that E[xx>1(w>x ≥ 0, v>x ≥)] � 0. This is a nondegeneracy assumption that is related to
the marginal spread condition given in Assumption 3.2, in the sense that it allows for one to show that
H is an upper bound for G. Finally, we note that any result in the agnostic or noisy teacher network
settings applies in the realizable setting as well.

B Proof of Lemma 3.5
To prove Lemma 3.5, we use the following result of Yehudai and Shamir [35].

Lemma B.1 (Lemma B.1, [35]). Under Assumption 3.2, for any two vectors a, b ∈ R2 satisfying
θ(a, b) ≤ π − δ for δ ∈ (0, π], it holds that

inf
u∈R2: ‖u‖=1

∫
(u>y)21(a>y ≥ 0, b>y ≥ 0, ‖y‖ ≤ α)dy ≥ α4

8
√

2
sin3(δ/4).

Proof of Lemma 3.5. We first consider the case when σ satisfies Assumption 3.1. By assumption,

H(w) = (1/2)E
[(
σ(w>t x)− σ(v>x)

)2
σ′(w>t x)

]
≤ ε.

3Agnostic learning results typically require i.i.d. samples, and adversarial noise may depend on other samples
in malicious ways. Even in the i.i.d. case, trouble arises if one wishes to use parameter recovery to show
that a given algorithm competes with the population risk minimizer. Consider the ReLU with labels given by
y = σ(v>x) + ξ where ξ = −σ(v>x). The zero vector minimizes the population risk, and so any algorithm
that returns the target neuron σ(v>x) has large population risk. A similar phenomenon occurs for ξ = σ(v>x).

4Although their result is stated for the ReLU and isotropic log-concave distributions, their results also apply
for L-Lipschitz activations satisfying infz σ

′(z) ≥ γ > 0 for isotropic distributions that satisfy our Assumption
3.2. In this setting, one can show that the Chow parameters satisfy ‖χ(σu)− χ(σw)‖2 ≥ γL−1E[(σ(u>x)−
σ(v>x))2], from which the result follows easily.
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Table 1: Comparison of results in the agnostic setting

Algorithm Activations Pop. risk Dx Sample
Complexity

Halfspace
reduction [14]

ReLU O(OPT2/3) standard
Gaussian

O(poly(d, ε−1))

Convex
surrogate G.D. [8]4

ReLU O(OPT) isotropic
+log-concave

O(dε−2)

Convex
surrogate G.D.
+ Domain Partition [8]

ReLU (1 + δ)OPT sub-Gaussian O(dcε−2)

Gradient Descent
(This paper)

strictly
increasing
+ Lipschitz

O(OPT) bounded O(ε−2)

Gradient Descent
(This paper)

ReLU O(OPT1/2) bounded
+ marginal
spread

O(ε−4)

Table 2: Comparison of results in the noisy teacher network setting

Paper Algorithm Activations Dx Sample
Complexity

K. et al. [20] GLMTron increasing
+ Lipschitz

bounded O(ε−2)

M. & M. [26] Modified
S.G.D.

ReLU bounded
+ subspace eigenvalue

O(log(1/ε))

F. et al. [11] Meta-algo. strictly
increasing
+ Lipschitz
+ σ′ Lipschitz

bounded O(ε−2 ∧ dε−1)

M. et al. [25] G.D. strictly
increasing
+ diff’ble
+ Lipschitz
+ σ′ Lipschitz
+ σ′′ Lipschitz

centered
+ sub-Gaussian
+ E[xx>] � 0

O(dε−1)

This paper G.D. strictly
increasing
+ Lipschitz

bounded O(ε−2)

This paper G.D. ReLU bounded
+ marginal spread

O(ε−2)

Since the term in the expectation is nonnegative, restricting the integral to a smaller set only decreases
its value, so that

(1/2)E
[(
σ(w>t x)− σ(v>x)

)2
σ′(w>t x)1(|w>t x| ≤ ρ)

]
≤ ε. (B.1)

For ρ = BW , since ‖w‖2 ≤ W , the inclusion {‖x‖2 ≤ ρ/W} = {‖x‖2 ≤ B} ⊂ {|w>t x| ≤ ρ}
holds. This means we can lower bound (B.1) by substituting the indicator 1(|w>t x| ≤ ρ) with
1(‖x‖2 ≤ B), which is identically one by assumption. Since H(w) ≤ ε, this implies
γ

2
E
[(
σ(w>t x)− σ(v>x)

)2] ≤ (1/2)E
[(
σ(w>t x)− σ(v>x)

)2
σ′(w>t x)1(‖x‖2 ≤ B)

]
≤ ε.
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Table 3: Comparison of results in the realizable setting

Paper Algorithm Activations Dx Sample
Complexity

D. et al. [10] S.G.D. ReLU bounded
+ subspace eigenvalue

O(log(1/ε))

S. [30] Projected
Regularized
G.D.

ReLU standard
Gaussian

O(log(1/ε))

Y. & S. [35] Pop. G.D. leaky ReLU bounded
+ E[xx>] � 0

O(log(1/ε))

Y. & S. Pop. G.D. inf0<z<α σ
′(z) > 0

+ Lipschitz
bounded
+ marginal spread

O(log(1/ε))

Y. & S. Population
Gradient
Flow

ReLU marginal spread
+ spherical symmetry

O(log(1/ε))

Y. & S. S.G.D. inf0<z<α σ
′(z) > 0

+ Lipschitz
bounded
+ marginal spread

Õ(ε−2)

This paper Pop. G.D.
+ S.G.D.

strictly
increasing
+ Lipschitz

bounded O(ε−1)

This paper Pop. G.D.
+ S.G.D.

ReLU bounded
+ marginal spread

O(ε−1)

Dividing both sides by γ completes this part of the proof.

For ReLU, let us assume that H(w) ≤ ε, and denote the event

Kw,v := {w>x ≥ 0, v>x ≥ 0},

and define ζ := βα4/8
√

2. Since H(w) = E[(σ(w>x) − σ(v>x))21(w>x ≥ 0)] ≤ ζε, it holds
that

E
[(
σ(w>x)− σ(v>x)

)2
1(Kw,v)

]
≤ ζε. (B.2)

Denote ŵ and v̂ as the projections of w and v respectively onto the two dimensional subspace
span(w, v). Using a proof similar to that of Yehudai and Shamir [35], we have

Ex∼D
[(
w>x− v>x

)2
1(Kw,v)

]
= ‖w − v‖22 Ex∼D

(( w − v
‖w − v‖2

)>
x

)2

1(Kw,v)


≥ ‖w − v‖22 inf

u∈span(w,v), ‖u‖=1
Ex
[
1(u>x)21(Kw,v)

]
= ‖w − v‖22 inf

u∈R2, ‖u‖=1
Ey∼Dw,v

[
(u>y)21(ŵ>y ≥ 0, v̂>y ≥ 0)

]
≥ ‖w − v‖22 inf

u∈R2, ‖u‖=1

∫
(u>y)21(ŵ>y ≥ 0, v̂>y ≥ 0, ‖y‖2 ≤ α)pw,v(y)dy

≥ β ‖w − v‖22 inf
u∈R2, ‖u‖=1

∫
(u>y)21(ŵ>y ≥ 0, v̂>y ≥ 0, ‖y‖2 ≤ α)dy. (B.3)

By assumption, ‖w − v‖2 ≤ 1. Since

1 ≥ ‖w − v‖22 = ‖w‖2 (‖w‖2 − 2 cos θ(w, v)) + 1,

we must have either w = 0 or θ(w, v) ∈ [0, π/2]. To see that w = 0 is impossible, suppose for the
contradiction that w = 0 and so H(w) = H(0) ≤ ζε. Let z be any vector orthogonal to v, so that
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θ(v, z) = π/2. Then,

ζε ≥ H(0)

= Ex∼D
[
(v>x)21(v>x ≥ 0)

]
= Ey∼D0,v

[
(v̂>y)21(v̂>y ≥ 0

]
≥ inf
u: ‖u‖=1

∫
(u>x)21(v>x ≥ 0, z>x ≥ 0, ‖y‖2 ≤ α)p0,v(y)dy

≥ β inf
u: ‖u‖=1

∫
(u>x)21(v>x ≥ 0, z>x ≥ 0, ‖y‖2 ≤ α)dy

≥ βα4

8
√

2
. (B.4)

The last line follows by using Lemma B.1. For ε < 1, this is impossible by the definition of ζ. This
shows that θ(w, v) ≤ π/2. We can therefore apply Lemma B.1 to (B.3) to get

ζε ≥ β ‖w − v‖22 inf
u∈R2, ‖u‖=1

∫
(u>y)21(ŵ>y ≥ 0, v̂>y ≥ 0, ‖y‖2 ≤ α)dy

≥ βα4

8
√

2
‖w − v‖22

= ζB2 ‖w − v‖22 .

This shows that ‖w − v‖22 ≤ B−2ε. Since σ is 1-Lipschitz, Hölder’s inequality and E ‖x‖22 ≤ B2

imply that G(w) ≤ ε.

C Proofs for ReLU activation in agnostic setting
In this section we prove Lemma 3.10, which we reproduce below for the reader’s convenience.

Lemma C.1. Suppose that ‖x‖2 ≤ BX a.s. underDx. Suppose σ is non-decreasing and L-Lipschitz.
Assume F̂ (v) ∈ (0, 1). Gradient descent with fixed step size η ≤ (1/4)L−2B−2X initialized at
w0 = 0 finds weights wt satisfying Ĥ(wt) ≤ 2L2BX F̂ (v)1/2 within T = dη−1L−1B−1X F̂ (v)−1/2e
iterations, with ‖wt − v‖2 ≤ 1 for each t = 0, . . . , T − 1.

As mentioned in the main section, the proof of Lemma 3.6 heavily relied upon Fact 3.7, which is
only satisfied if the activation is strictly increasing. When σ is only non-decreasing, we can get a
similar lower bound as we did in (3.8) if we use the following fact.

Fact C.2. If σ is non-decreasing and L-Lipschitz, then for any z1, z2 in the domain of σ, it holds
that (σ(z1)− σ(z2))(z1 − z2) ≥ L−1(σ(z1)− σ(z2))2.

With this fact we can present the analogue to Lemma 3.6 that holds for a general non-decreasing and
Lipschitz activation and hence includes the ReLU.

Proof. Just as in the proof of Lemma 3.6, the lemma is proved if we can show that for every
t ∈ N, either (a) Ĥ(wτ ) ≤ 2L2BX F̂ (v)1/2 for some τ < t, or (b) ‖wt − v‖22 ≤ ‖wt−1 − v‖

2
2 −

ηLBX F̂ (v)1/2 holds. To this end we assume the induction hypothesis holds for some t ∈ N, and
since we are done if (a) holds, we assume (a) does not hold and thus for every τ ≤ t, we have
Ĥ(wτ ) > 2L2BX F̂ (v)1/2. Since (a) does not hold, ‖wτ − v‖22 ≤ ‖wτ−1 − v‖

2
2 − ηLBX F̂ (v)1/2

holds for each τ = 1, . . . , t and hence the identity

‖wτ − v‖2 ≤ 1 ∀τ ≤ t, (C.1)

holds. We now proceed with showing the analogues of (3.8) and (3.9). We begin with the lower
bound, 〈

∇F̂ (wt), wt − v
〉

= (1/n)

n∑
i=1

(
σ(w>t xi)− σ(v>xi)

)
σ′(w>t xi)(w

>
t xi − v>xi)
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+
〈
(1/n)

n∑
i=1

(
σ(v>xi)− yi

)
σ′(w>t xi)xi, wt − v

〉
(C.2)

≥ (1/Ln)

n∑
i=1

(
σ(w>t xi)− σ(v>xi)

)2
σ′(w>t xi)

− ‖wt − v‖2

∥∥∥∥(1/n)

n∑
i=1

(
σ(v>xi)− yi

)
σ′(w>t xi)xi

∥∥∥∥
2

≥ 2L−1Ĥ(wt)− LBX F̂ (v)1/2. (C.3)

In the first inequality, we have used Fact C.2 and that σ′(z) ≥ 0 for the first term. For the second
term, we use Cauchy–Schwarz. The last inequality is a consequence of (C.1), Cauchy–Schwarz, and
that σ′(z) ≤ L and ‖x‖2 ≤ BX . As for the gradient upper bound at wt, the bound (3.9) still holds
since it only uses that σ is L-Lipschitz. The choice of η ≤ (1/4)L−2B−2X then ensures

‖wt − v‖22 − ‖wt+1 − v‖22 ≥ 2η
(

2L−1Ĥ(wt)− LBX F̂ (v)1/2
)

− η2
(

4B2
XLĤ(wt) + 4L2B2

X F̂ (v)
)

≥ η
(

3L−1Ĥ(wt)− 3LBX

(
F̂ (v) ∨ F̂ (v)1/2

))
≥ ηLBX F̂ (v)1/2, (C.4)

where the last line comes from the induction hypothesis that Ĥ(wt) ≥ 2L2BX F̂ (v)1/2 and since
F̂ (v) ∈ (0, 1). This completes the proof.

With the above lemma, we can prove the ReLU case of Theorem 3.3.

Proof of Theorem 3.3 for ReLU. We highlight here the main technical differences with the proof
for the strictly increasing case. Although Lemma 3.9 applies to the loss function `(w;x) =

(1/2)
(
σ(w>x)− σ(v>x)

)2
, the same results hold for the loss function ˜̀(w;x) = `(w;x)σ′(w>x)

for ReLU, since∇σ′(w>x) ≡ 0 a.e. Thus ˜̀ is still BX -Lipschitz, and we have

ES∼DnRS

(
˜̀◦ σ ◦ G

)
≤ 2B2

X√
n
. (C.5)

With this in hand, the proof is essentially identical: By Lemmas 3.10 and 3.8, with probability at least
1− δ/2 gradient descent finds a point with

Ĥ(wt) ≤ 2BX F̂ (v)1/2 ≤ 2BX

(
OPT1/2 +

√
3a log1/4(4/δ)

n1/4

)
. (C.6)

We can then use (C.5) to get that with probability at least 1− δ,

H(wt) ≤ 2BX

(
OPT1/2 +

√
3a log1/4(4/δ)

n1/4

)
+

2B2
X√
n

+ 2B2
X

√
2 log(8/δ)

n
. (C.7)

Since Dx satisfies Assumption 3.2 and ‖wt − v‖2 ≤ 1, Lemma 3.5 yields G(wt) ≤
8
√

2α−4β−1H(wt). Then applying Claim 3.4 completes the proof.

D Noisy teacher network proofs

As in the agnostic case, we have a key lemma that shows Ĥ is small when we run gradient descent
for a sufficiently large time. Note that one difference with the proof in the agnostic case is that we do
not need to consider different auxiliary errors for the strictly increasing and ReLU cases; H alone
suffices.
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Lemma D.1. Suppose that ‖x‖2 ≤ BX a.s. under Dx. Let σ be non-decreasing and L-Lipschitz.
Suppose that the bound

‖(1/n)
∑n
i=1

(
σ(v>xi)− yi

)
αixi‖2 ≤ K ≤ 1. (D.1)

holds for scalars satisfying αi ∈ [0, L]. Then gradient descent run with fixed step size η ≤
(1/4)L−2B−2X from initialization w0 = 0 finds weights wt satisfying Ĥ(wt) ≤ 4LK within
T = dη−1K−1e iterations, with ‖wt − v‖2 ≤ 1 for each t = 0, . . . , T − 1.

Proof. Just as in the proof of Lemma 3.6, the theorem can be shown by proving the following
induction statement. We claim that for every t ∈ N, either (a) Ĥ(wτ ) ≤ 4LK for some τ < t, or
(b) ‖wt − v‖22 ≤ ‖wt−1 − v‖

2
2 − ηK. If the induction hypothesis holds, then until gradient descent

finds a point where Ĥ(wt) ≤ 4LK, the squared distance ‖wt − v‖22 decreases by ηK at every
iteration. Since ‖w0 − v‖22 = 1, this means there can be at most η−1K−1 iterations until we reach
Ĥ(wt) ≤ 4LK. This shows the induction statement implies the theorem.

We begin with the proof by supposing the induction hypothesis holds for t, and considering the
case t + 1. If (a) holds, then we are done. So now consider the case that for every τ ≤ t, we
have Ĥ(wτ ) > 4LK. Since (a) does not hold, ‖wτ − v‖22 ≤ ‖wτ−1 − v‖

2
2 − ηK holds for each

τ = 1, . . . , t. Since ‖w0 − v‖2 = 1, this implies

‖wτ − v‖2 ≤ 1 ∀τ ≤ t. (D.2)

We can therefore bound〈
∇F̂ (wt), wt − v

〉
=

〈
1

n

n∑
1=1

(
σ(w>t xi)− yi

)
σ′(w>t xi)xi, wt − v

〉

=
1

n

n∑
i=1

(
σ(w>t xi)− σ(v>xi)

)
σ′(w>t xi)(w

>
t xi − v>xi)

+

〈
1

n

n∑
i=1

(
σ(v>xi)− yi

)
σ′(w>t xi)xi, wt − v

〉

≥ L−1

n

n∑
i=1

(
σ(w>t xi)− σ(v>xi)

)2
σ′(w>t xi)−K ‖wt − v‖2

≥ 2L−1Ĥ(wt)−K. (D.3)

In the first inequality, we have used Fact C.2 for the first term. For the second term, we use (D.1) and
that αi := σ′(w>t xi) ∈ [0, L]. The last inequality uses (D.2).

For the gradient upper bound, we have∥∥∥∇F̂ (wt)
∥∥∥2
2

=

∥∥∥∥∥ 1

n

n∑
i=1

(
σ(w>t xi)− σ(v>xi)

)
σ′(w>t xi)xi +

1

n

n∑
i=1

(
σ(v>xi)− yi

)
σ′(w>t xi)xi

∥∥∥∥∥
2

2

≤ 2

∥∥∥∥∥ 1

n

n∑
i=1

(
σ(w>t xi)− σ(v>xi)

)
σ′(w>t xi)xi

∥∥∥∥∥
2

2

+ 2

∥∥∥∥∥ 1

n

n∑
i=1

(
σ(v>xi)− yi

)
σ′(w>t xi)xi

∥∥∥∥∥
2

2

≤ 2LB2
X

n

n∑
i=1

(
σ(w>xi)− σ(v>xi)

)2
σ′(w>t xi) + 2K2

= 4LB2
XĤ(wt) + 2K2. (D.4)

The first inequality uses Young’s inequality. The second uses that σ′(z) ≤ L and that ‖x‖2 ≤ BX
a.s. and (D.1).
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Putting (D.3) and (D.4) together, the choice of η ≤ (1/4)L−2B−2X gives us

‖wt − v‖22 − ‖wt+1 − v‖22 = 2η
〈
∇F̂ (wt), wt − v

〉
− η2

∥∥∥∇F̂ (wt)
∥∥∥2
2

≥ 2η(L−1Ĥ(wt)−K)− η2
(

4LB2
XĤ(wt) + 2K2

)
≥ ηL−1Ĥ(wt)− 3ηK.

In particular, this implies

‖wt+1 − v‖22 ≤ ‖wt − v‖
2
2 + 3ηK − ηL−1Ĥ(wt) (D.5)

Since Ĥ(wt) > 4KL, this completes the induction. The base case follows easily since ‖w0 − v‖2 =

1 allows for us to deduce the desired bound on ‖w1 − v‖22 using (D.5).

To prove a concrete bound on the K term of Lemma D.1, we will need the following definition of
norm sub-Gaussian random vectors.
Definition D.2. A random vector z ∈ Rd is said to be norm sub-Gaussian with parameter s > 0 if

P(‖z − Ez‖ ≥ t) ≤ 2 exp(−t2/2s2).

A Hoeffding-type inequality for norm sub-Gaussian vectors was recently shown by Jin et al. [19].
Lemma D.3 (Lemma 6, [19]). Suppose z1, . . . , zn ∈ Rd are random vectors with filtration Ft :=
σ(z1, . . . , zt) such that zi|Fi−1 is a zero-mean norm sub-Gaussian vector with parameter si ∈ R for
each i. Then, there exists an absolute constant c > 0 such that for any δ > 0, with probability at least
1− δ, ∥∥∥∥∥

n∑
i=1

zi

∥∥∥∥∥ ≤ c
√√√√log(2d/δ)

n∑
i=1

s2i .

Using this, we can show that if ξi := σ(v>xi)− yi is s sub-Gaussian, then we can get a bound on K
at rate n−1/2. We note that if we make the stronger assumption that ξi is bounded a.s., we can get
rid of the log(d) dependence by using concentration of bounded random variables in a Hilbert space
(e.g. Pinelis and Sakhanenko [27], Corollary 2).
Lemma D.4. Suppose that ‖x‖2 ≤ BX a.s. underDx, and let σ be any continuous function. Assume
ξi := σ(v>xi) − yi is s sub-Gaussian and satisfies E[ξi|xi] = 0. Then there exists an absolute
constant c0 > 0 such that for constants αi ∈ [0, L], with probability at least 1− δ, we have

‖(1/n)
∑n
i=1

(
σ(v>xi)− yi

)
αixi‖ ≤ c0LBXs

√
n−1 log(2d/δ).

Proof of Lemma D.4. Define zi :=
(
σ(v>xi)− yi

)
αixi. Using iterated expectations, we see that

E[zi] = 0. Since σ(v>xi)−yi is s-sub-Gaussian and ‖αixi‖2 ≤ LBX , it follows from the definition
that zi is norm sub-Gaussian with parameter LBXs for each i. By Lemma D.3, we have with
probability at least 1− δ, ∥∥∥∥∥

n∑
i=1

zi

∥∥∥∥∥ ≤ c√log(2d/δ)L2B2
Xns

2.

Dividing each side by n proves the lemma.

Proof of Theorem 4.1. By Lemmas D.1 and D.4, there exists some wt, t < T and ‖wt − v‖2 ≤ 1,
such that

Ĥ(wt) ≤ 4LK ≤ 4c0L
2BXs

√
log(2d/δ)

n
.

Consider σ satisfying Assumption 3.1 first, with γ corresponding to ρ = 2BX . Since ‖wt‖2 ≤ 2, we
can use Lemma 3.5 to transform the above bound for Ĥ into one for Ĝ,

Ĝ(wt) ≤ 4c0γ
−1L2BXs

√
log(2d/δ)

n
.
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Since ‖w − v‖2 ≤ 1 implies G(w) ≤ L2B2
X/2, standard results from Rademacher complexity imply

(e.g. Theorem 26.5 of [28]) that with probability at least 1− δ,

G(wt) ≤ Ĝ(wt) + ES∼DnRS(` ◦ σ ◦ G) + 2L2B2
X

√
2 log(4/δ)

n
,

where `(w;x) = (1/2)(σ(w>x)−σ(v>x))2 and G are from Lemma 3.9. For the second term above,
Lemma 3.9 and rescaling δ yields that

G(wt) ≤
2L3B2

X√
n

+
2L2B2

X

√
2 log(8/δ)√
n

+
4c0γ

−1L2BXs
√

log(4d/δ)√
n

.

Then Claim 3.4 completes the proof for strictly increasing σ.

When σ is ReLU, the proof follows the same argument given in the proof of Theorem 3.3. Denoting
the loss function ˜̀(w;x) = (1/2)(σ(w>x)− σ(v>x))2σ′(w>x), we have

ES∼DnRS

(
˜̀◦ σ ◦ G

)
≤ 2B2

X√
n
. (D.6)

By Lemmas D.1 and D.4, there exists some wt, t < T and ‖wt − v‖2 ≤ 1, such that

Ĥ(wt) ≤ 4LK ≤ 4c0L
2BXs

√
log(2d/δ)

n
. (D.7)

Using standard results from Rademacher complexity,

H(wt) ≤ Ĥ(wt) + ES∼DnRS(˜̀◦ σ ◦ G) + 2B2
X

√
2 log(4/δ)

n
.

By (D.6), this means

H(wt) ≤
4c0BXs

√
log(4d/δ)√
n

+
2B2

X√
n

+
2B2

X

√
2 log(8/δ)√
n

.

Since D satisfies Assumption 3.2 and ‖wt − v‖2 ≤ 1, Lemma 3.5 shows that G(wt) ≤
8
√

2α−4β−1H(wt). Then Claim 3.4 translates the bound for G(wt) into one for F (wt).

E Realizable setting

In this section we assume y = σ(v>x) a.s. for some ‖v‖2 ≤ 1. As in the agnostic and noisy teacher
network setting, we use the auxiliary loss

H(w) := (1/2)Ex∼D[(σ(w>x)− σ(v>x))2σ′(w>x)].

Note that in the realizable setting, the previous auxiliary loss G defined in (3.4) coincides with the
true objective F , i.e. we have

F (w) := (1/2)Ex∼D[(σ(w>x)− σ(v>x))2].

For purpose of comparison with Yehudai and Shamir [35], we provide analyses for two settings in
the realizable case: in the first setting, we consider gradient descent on the population loss,

wt+1 = wt − η∇F (wt), (E.1)

and return wt∗ := argmin0≤t<TF (wt). The second setting is online SGD with samples xt ∼
D. Here we compute unbiased estimates (conditional on wt) of the population risk Ft(wt) :=
(1/2)(σ(w>t xt)− σ(v>xt))

2 and update the weights by

wt+1 = wt − η∇Ft(wt) (E.2)

For SGD, we output wt∗ = argmin0≤t<TFt(wt).

We summarize our results in the realizable case in Theorem E.1.

20



Theorem E.1. Suppose ‖x‖2 ≤ B a.s. and σ is non-decreasing and L-Lipschitz. Let η ≤ L−2B−2
be the step size.

(a) Let σ satisfy Assumption 3.1, and let γ be the constant corresponding to ρ = 4B. For any
initialization satisfying ‖w0‖2 ≤ 2, if we run gradient descent on the population risk T =

d2ε−1Lη−1γ−1 ‖w0 − v‖22e iterations, then there exists t < T such that F (wt) ≤ ε. For
stochastic gradient descent, for any δ > 0, running SGD for T̃ = 6T log(1/δ) guarantees there
exists wt, t < T , such that w.p. at least 1− δ, F (wt) ≤ ε.

(b) Let σ be ReLU and further assume that D satisfies Assumption 3.2 for constants α, β > 0
and that w0 = 0. Let ν = α4β/8

√
2. If we run gradient descent on the population risk

T = d2ε−1Lη−1ν−1 ‖w0 − v‖22e iterations, then there exists t < T such that F (wt) ≤ ε. For
stochastic gradient descent, for any δ > 0, running SGD for T̃ = 6T log(1/δ) guarantees there
exists wt, t < T , such that w.p. at least 1− δ, F (wt) ≤ ε.

A few remarks on the above theorem: first, in comparison with our noisy neuron result in Theorem
4.1, we are able to achieve OPT+ε = ε population risk with sample complexity and runtime of order
ε−1 rather than ε−2 using the same assumptions by invoking a martingale Bernstein inequality rather
than Hoeffding. Second, although Theorem E.1 requires the distribution to be bounded almost surely,
we show in Section E.1 below that for GD on the population loss, we can accomodate essentially any
distribution with finite expected squared norm.

Yehudai and Shamir [35] used the marginal spread assumption to show that with probability 1/2, a
single neuron in the realizable setting can be learned using gradient-based optimization with random
initialization for Lipschitz activation functions satisfying inf0<z<α σ

′(z) > 0, where α is the same
constant in Assumption 3.2, and thus includes essentially all neural network activation functions
like softplus, sigmoid, tanh, and ReLU. Under the additional assumption of spherical symmetry,
they showed that this can be improved to a high probability guarantee for the ReLU activation. For
gradient descent on the population risk, they proved linear convergence, i.e. a runtime of order
O(log(1/ε)), while for SGD their runtime and sample complexity is of order O(ε−2 log(1/ε)). In
comparison, our result for the non-ReLU activations requires only boundedness of the distributions
and holds with high probability over random initializations, with runtime and sample complexity of
order O(ε−1) for both gradient descent on the population risk and SGD. Our results for ReLU use the
same marginal spread assumption as Yehudai and Shamir, but our proof technique differs in that we
do not require the angle θ(wt, v) between the weights in the GD trajectory and the target neuron be
decreasing. As they pointed out, angle monotonicity fails to hold for the trajectory of gradient descent
even when the distribution is a non-centered Gaussian, so that proofs based on angle monotonicity
will not translate to more general distributions. Indeed, our proofs in the agnostic and noisy teacher
network setting use essentially the same proof technique as the realizable case without relying on
angle monotonicity. Instead, we show a type of inductive bias of gradient descent in the sense that if
initialized at the origin, the angle between the target vector and the population risk minimizer cannot
become larger than π/2, even in the agnostic setting.

E.1 Gradient descent on population loss

The key lemma for the proof is as follows.

Lemma E.2. Consider gradient descent on the population risk given in (E.1). Let w0 be the initial
point of gradient descent and assume ‖w0‖2 ≤ 2. Suppose that D satisfies Ex[‖x‖22] ≤ B2. Let σ be
non-decreasing and L-Lipschitz. Assume the step size satisfies η ≤ L−2B−2. Then for any T ∈ N,
we have for all t = 0, . . . , T − 1, ‖wt − v‖2 ≤ ‖w0 − v‖2, and

‖w0 − v‖22 − ‖wT − v‖
2
2 ≥ ηL

−1
T−1∑
t=0

H(wt).

Proof. We begin with the identity, for t < T ,

‖wt − v‖22 − ‖wt+1 − v‖22 = 2η 〈∇F (wt), wt − v〉 − η2 ‖∇F (wt)‖22 . (E.3)

First, we have
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‖∇F (wt)‖2 ≤ Ex
∥∥(σ(w>t x)− σ(v>x))σ′(w>t x)x

∥∥
2

≤
√
Ex
[
σ′(w>t x)(σ(w>t x)− σ(v>x))2

]√
Exσ′(w>t x) ‖x‖22

≤ B
√
L
√
Ex
[
σ′(w>t x)(σ(w>t x)− σ(v>x))2

]
.

The first inequality is by Jensen. The second inequality uses that σ′(z) ≥ 0 and Hölder, and the third
inequality uses that σ is L-Lipschitz and that E[‖x‖22] ≤ B2. We therefore have the gradient upper
bound

‖∇F (wt)‖22 ≤ 2B2LH(wt). (E.4)

For the inner product term of (E.3), since σ′(z) ≥ 0, we can use Fact C.2 to get

〈∇F (wt), wt − v〉 ≥ L−1Ex
[(
σ(w>t x)− σ(v>x)

)2
σ′(w>t x)

]
= 2L−1H(wt). (E.5)

Putting (E.5) and (E.4) into (E.3), we get

‖wt − v‖22 − ‖wt+1 − v‖22 ≥ 4ηL−1H(wt)− 2η2B2LH(wt) ≥ 2ηL−1H(wt),

where we have used η ≤ L−2B−2. Telescoping the above over t < T gives

‖w0 − v‖22 − ‖wT − v‖
2
2 ≥ 2ηL−1

T−1∑
t=0

H(wt).

Dividing each side by ηT shows the desired bound.

We will show that if σ satisfies Assumption 3.1, then Lemma E.2 allows for a population risk bound
for essentially any distribution with E[‖x‖22] ≤ B2. In particular, we consider distributions with finite
expected norm squared and the possible types of tail bounds for the norm.
Assumption E.3. (a) Bounded distributions: there exists B > 0 such that ‖x‖2 ≤ B a.s.

(b) Exponential tails: there exist a0, Ce > 0 such that P(‖x‖22 ≥ a) ≤ Ce exp(−a) holds for all
a ≥ a0.

(c) Polynomial tails: there exist a0, Cp > 0 and β > 1 such that P(‖x‖22 ≥ b) ≤ Cpa−β holds for
all a ≥ a0.

If either (a), (b), or (c) holds, there exists B > 0 such that E ‖x‖22 ≤ B2. One can verify that for
(b), taking B2 = 2(a0 ∨ Ce) suffices, and for (c), B2 = 2(a0 ∨ C1/β

p /(1− β)) suffices. In fact, any
distribution that satisfies E ‖x‖22 <∞ cannot have a tail bound of the form P(‖x‖22 ≥ a) = Ω(a−1),
since in this case we would have

E ‖x‖22 =

∫ ∞
0

P(‖x‖22 > t)dt ≥ C
∫ ∞
a0

t−1dt =∞.

So the polynomial tail assumption (c) is tight up to logarithmic factors for distributions with finite
E ‖x‖22.

Theorem E.4. Let E[‖x‖22] ≤ B2 and assume D satisfies one of the conditions in Assumption E.3.
Let σ satisfy Assumption 3.1.

(a) Under Assumption E.3a, let γ be the constant corresponding to ρ = 4B in Assumption 3.1.
Running gradient descent for T = d2ε−1Lη−1γ−1 ‖w0 − v‖22e guarantees there exists t ∈
[T − 1] such that F (wt) ≤ ε.

(b) Under Assumption E.3b, let γ be the constant corresponding to ρ = 4
√

log(18Ce/ε). Running
gradient descent for T = d2ε−1Lη−1γ−1 ‖w0 − v‖22e guarantees there exists t ∈ [T − 1] such
that F (wt) ≤ ε.
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(c) Under Assumption E.3c, let γ be the constant corresponding to ρ = 4(18Cp/ε(β − 1))(1−β)/2.
Running gradient descent for T = d2ε−1Lη−1γ−1 ‖w0 − v‖22e guarantees there exists t ∈
[T − 1] such that F (wt) ≤ ε.

Proof. First, note that the conditions of Lemma E.2 hold, so that we have for all t = 0, . . . , T − 1,
‖wt‖2 ≤ 4 and

η

T−1∑
t=0

H(wt) ≤ L ‖w0 − v‖22 − L ‖wT − v‖
2
2 . (E.6)

By taking T = ζ−1Lε−1η−1 ‖w0 − v‖22 for arbitrary ζ > 0, (E.6) implies that there exists t ∈ [T−1]
such that

H(wt) = E
[(
σ(w>t x)− σ(v>x)

)2
σ′(w>t x)

]
≤
L ‖w0 − v‖22

ηT
≤ ζε. (E.7)

It therefore suffices to bound F (wt) in terms of the left hand side of (E.7). We will do so by using
the distributional assumptions given in Assumption E.3 and by choosing ζ appropriately.

We begin by noting that (E.7) implies, for any ρ > 0,

E
[(
σ(w>t x)− σ(v>x)

)2
σ′(w>t x)1(|w>t x| ≤ ρ)

]
≤ ζε. (E.8)

For any ρ > 0, since ‖wt‖2 ≤ 4, the inclusion{
‖x‖2 ≤ ρ/4

}
⊂
{
|w>t x| ≤ ρ

}
, (E.9)

holds. Under Assumption E.3a, by taking ρ = 4B and letting γ be the corresponding constant from
Assumption 3.1, eqs. (E.8) and (E.9) imply

γE
[(
σ(w>t x)− σ(v>x)

)2] ≤ E
[(
σ(w>t x)− σ(v>x)

)2
σ′(w>t x)1(‖x‖2 ≤ ρ/4)

]
≤ ζε.

By taking ζ = γ/2, this implies F (wt) ≤ ε.
Under Assumption E.3b, by taking ρ = 4

√
a0, we get

E
[
‖x‖22 1(‖x‖22 > ρ2/42)

]
=

∫ ∞
a0

P(‖x‖22 > t)dt

≤ Ce exp(−a0). (E.10)

Note that Assumption E.3b holds if we take a0 larger. We can therefore let a0 be large enough so that
a0 ≥ log(18Ce/ε), so that then

E
[
‖x‖22 1(‖x‖22 > ρ2/42)

]
≤ ε/18. (E.11)

Similarly, under Assumption E.3c, we can let γ be the constant corresponding to ρ = 4
√
a0 and take

a0 ≥ (ε(β − 1)/18Cp)
1/(1−β) so that

E
[
‖x‖22 1(‖x‖22 > ρ2/42)

]
=

∫ ∞
a0

P(‖x‖22 > t)dt

≤ Cp
a1−β0

β − 1

≤ ε/18.

and so (E.11) holds as well under Assumption E.3c. We can therefore bound

E
[(
σ(w>t x)− σ(v>x)

)2
1(‖x‖22 > ρ2/42)

]
≤ E

[
‖wt − v‖22 ‖x‖

2
2 1(‖x‖22 > ρ2/42)

]
≤ ‖w0 − v‖22 E

[
‖x‖22 1(‖x‖22 > ρ2/42)

]
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≤ ‖w0 − v‖22 ε/18

≤ ε/2. (E.12)

The first inequality uses that σ is 1-Lipschitz and Cauchy–Schwarz. The second inequality uses (E.6).
The third inequality uses (E.11). The final inequality uses that ‖w0 − v‖2 ≤ ‖w0‖2 + ‖v‖2 ≤ 3.

We can then guarantee

2γF (wt) = γE
[(
σ(w>t x)− σ(v>x)

)2]
= E

[(
σ(w>t x)− σ(v>x)

)2
γ1(|w>t x| ≤ ρ)

]
+ γE

[(
σ(w>t x)− σ(v>x)

)2
1(|w>t x| > ρ)

]
≤ E

[(
σ(w>t x)− σ(v>x)

)2
σ′(w>t x)1(|w>t x| ≤ ρ)

]
+ γE

[(
σ(w>t x)− σ(v>x)

)2
1(‖x‖22 > ρ2/42)

]
≤ ζε+ γε/2

≤ γε.

The first inequality follows since Assumption 3.1 implies σ′(z)1(|z| ≤ ρ) ≥ γ1(|z| ≤ ρ) and by
(E.9). The second inequality uses (E.8) and (E.12). The final inequality takes ζ = γ/2.

Remark E.5. The precise runtime guarantee in Theorem E.1 will depend upon the activation function
and tail distribution. The worst-case activation functions (like the sigmoid) can have γ ∼ exp(−ρ),
and so if one only has polynomial tails, the runtime can be exponential in ε−1 in this case. If the
distribution of ‖x‖22 has exponential tails, as is the case if the components of x are sub-Gaussian,
runtime will be polynomial in ε−1. On the other hand, if the γ in Assumption 3.1 is a fixed constant
independent of ρ (as it is for the leaky ReLU), any of the tail bounds under consideration will have
runtime of order ε−1.

E.2 Stochastic gradient descent proofs

We consider the online version of stochastic gradient descent, where we sample independent samples
xt ∼ D at each step and compute stochastic gradient updates gt, such that

gt =
(
σ(w>t xt)− σ(v>xt)

)
σ′(w>t xt)xt, wt+1 = wt − ηgt.

As in the gradient descent case, we have a key lemma that relates the distance of the weights at
iteration t from the optimal v with the distance from initialization and the cumulative loss.
Lemma E.6. Assume that σ is non-decreasing and L-Lipschitz, and that D satisfies ‖x‖2 ≤ B a.s.
Assume the initialization satisfies ‖w0‖2 ≤ 2. Let T ∈ N and run stochastic gradient descent for
T − 1 iterations at a fixed learning rate η satisfying η ≤ L−2B−2. Then with probability one over D,
we have ‖wt+1 − v‖2 ≤ ‖wt − v‖2 for all t < T , and

‖w0 − v‖22 − ‖wT − v‖
2
2 ≥ 2ηL−1

T−1∑
t=0

Ht,

where Ht := 1
2

(
σ(w>t xt)− σ(v>xt)

)2
σ′(w>t xt).

Proof. We begin with the decomposition

‖wt − v‖22 − ‖wt+1 − v‖22 = 2η 〈gt, wt − v〉 − η2 ‖gt‖22 . (E.13)

By Assumption 3.1, since ‖x‖2 ≤ B a.s. it holds with probability one that

‖gt‖22 =
∥∥(σ(w>t xt)− σ(v>xt)

)
σ′(w>t xt)xt

∥∥2
2
≤ 2LB2Ht. (E.14)

By Fact C.2, since σ′(z) ≥ 0, we have with probability one,

〈gt, wt − v〉 =
(
σ(w>t xt)− σ(v>xt)

)
σ′(w>t xt)(w

>
t xt − v>xt)
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≥ L−1
(
σ(w>t xt)− σ(v>xt)

)2
σ′(w>t xt)

= 2L−1Ht. (E.15)

Putting (E.14) and (E.15) into (E.13), we get

‖wt − v‖22 − ‖wt+1 − v‖22 ≥ 4ηL−1Ht − 2η2LB2Ht

≥ 2ηL−1Ht,

by taking η ≤ L−2B−2. Telescoping over t < T gives the desired bound.

We now want to translate the bound on the empirical error to that of the true error. For this we use a
martingale Bernstein inequality of Beygelzimer et al. [5]. A similar analysis of SGD was used by Ji
and Telgarsky [18] for a one-hidden-layer ReLU network.

Lemma E.7 (Beygelzimer et al. [5], Theorem 1). Let {Yt} be a martingale adapted to the filtration
Ft, and let Y0 = 0. Let {Dt} be the corresponding martingale difference sequence. Define the
sequence of conditional variance

Vt :=

t∑
k=1

E[D2
k|Fk−1],

and assume that Dt ≤ R almost surely. Then for any δ ∈ (0, 1), with probability greater than 1− δ,

Yt ≤ R log(1/δ) + (e− 2)Vt/R.

Lemma E.8. Suppose that ‖x‖2 ≤ B a.s., and let σ be non-decreasing and L-Lipschitz. Assume that
the trajectory of SGD satisfies ‖wt − v‖2 ≤ ‖w0 − v‖2 for all t a.s. We then have with probability
at least 1− δ,

1

T

T−1∑
t=0

H(wt) ≤
4

T

T−1∑
t=0

Ht +
2

T
B2L3 ‖w0 − v‖22 log(1/δ).

Proof. Let Ft = σ(x0, . . . , xt) be the σ-algebra generated by the first t+ 1 draws from D. Then the
random variable Gt :=

∑t
τ=0(H(wτ )−Hτ ) is a martingale with respect to the filtration Ft with

martingale difference sequence Dt := H(wt)−Ht. We need bounds on Dt and on E[D2
t |Ft−1] in

order to apply Lemma E.7.

Since σ is L-Lipschitz and ‖x‖2 ≤ B a.s., with probability one we have

Dt ≤ H(wt) ≤
1

2
L3B2 ‖wt − v‖22 ≤

1

2
L3B2 ‖w0 − v‖22 . (E.16)

The last inequality uses the assumption that ‖wt − v‖2 ≤ ‖w0 − v‖2 a.s. Similarly,

E[H2
t |Ft−1] =

1

4
E
[(
σ(w>t xt)− σ(v>xt)

)4
σ′(w>t xt)

2|Ft−1
]

≤ 1

4
L3B2 ‖wt − v‖22 Ex

[(
σ(wtxt)− σ(v>xt)

)2
σ′(w>t xt)|Ft−1

]
≤ 1

2
L3B2 ‖w0 − v‖22H(wt). (E.17)

In the first inequality, we have used ‖x‖22 ≤ B2 a.s. and L-Lipschitzness of σ. For the second, we
use the assumption that ‖wt − v‖2 ≤ ‖w0 − v‖2 together with the fact that Ex[Ht|Ft−1] = H(wt).
We then can use (E.17) to bound the squared increments,

E[D2
t |Ft−1] = H(wt)

2 − 2H(wt)E[Ht|Ft−1] + E[H2
t |Ft−1]

= −H(wt)
2 + E[H2

t |Ft−1]

≤ 1

2
L3B2 ‖w0 − v‖22H(wt). (E.18)
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This allows for us to bound

VT :=

T−1∑
t=0

E[D2
t |Ft−1] ≤ 1

2
B2L3 ‖w0 − v‖22

T−1∑
t=0

H(wt).

SinceDt ≤ H(wt) ≤ (1/2)L3B2 ‖w0 − v‖22 a.s. by (E.16), Lemma E.7 implies that with probability
at least 1− δ, we have

T−1∑
t=0

(H(wt)−Ht) ≤ (exp(1)− 2)

T−1∑
t=0

H(wt) +
1

2
L3B2 ‖w0 − v‖22 log(1/δ),

and using that (1− exp(1) + 2)−1 ≤ 4, we divide each side by T and get

1

T

T−1∑
t=0

H(wt) ≤
4

T

T−1∑
t=0

Ht +
2

T
L3B2 ‖w0 − v‖22 log(1/δ). (E.19)

With the above in hand, we can prove Theorem E.1 in the SGD setting.

Proof of Theorem E.1, SGD. By the assumptions in the theorem, Lemma E.6 holds, so that we have
for any t = 0, . . . , T − 1, ‖wt‖2 ≤ 4 and

‖wt − v‖22 + 2ηL−1
t−1∑
τ=0

Hτ ≤ ‖w0 − v‖22 . (E.20)

This shows that ‖wt − v‖2 ≤ ‖w0 − v‖2 holds for all t = 0, . . . , T − 1 a.s., allowing for the
application of Lemma E.8 to get

1

T

T−1∑
t=0

H(wt) ≤
4

T

T∑
t=1

Ht +
2

T
L3B2 ‖w0 − v‖22 log(1/δ). (E.21)

Dividing both sides of (E.20) by ηTL−1 yields

min
t<T

H(wt) ≤
1

T

T−1∑
t=0

H(wt) ≤
L ‖w0 − v‖22

ηT
+

2

T
L3B2 ‖w0 − v‖22 log(1/δ).

For arbitrary ζ > 0, taking T = d2ε−1ζ−1η−1L3B2 ‖w0 − v‖22 log(1/δ)e shows there exists T
such that H(wt) ≤ ζε. When σ satisfies Assumption 3.1, since ‖wt‖2 ≤ 4 for all t, it holds that
H(wt) ≥ γF (wt), so that ζ = γ furnishes the desired bound.

When σ is ReLU and D satisfies Assumption 3.2, we note that Lemma E.6 implies ‖wt − v‖2 ≤
‖w0 − v‖2 a.s. Thus taking ζ = α4β/8

√
2 and using Lemma 3.5 completes the proof.

F Remaining Proofs

Proof of Lemma 3.8. Since σ is non-decreasing, |σ(v>x)− y| ≤ |σ(BX)|+BY . In particular, each
summand defining F̂ (v) is a random variable with absolute value at most a = (|σ(BX)|+BY )2. As
E[F̂ (v)] = F (v) = OPT, Hoeffding’s inequality implies the lemma.

Proof of Lemma 3.9. The bound RS(G) ≤ 2 maxi ‖xi‖2 /
√
n follows since ‖w‖2 ≤ 2 holds on G

with standard results Rademacher complexity theory (e.g. Sec. 26.2 of [28]); this shows R(G) ≤
2BX/

√
n. Using the contraction property of the Rademacher complexity, this implies R(σ ◦ G) ≤

2BXL/
√
n. Finally, note that if ‖w − v‖2 ≤ 1 and ‖x‖2 ≤ BX , we have

‖∇`(w;x)‖ =
∥∥(σ(w>x)− σ(v>x)

)
σ′(w>x)x

∥∥ ≤ L2 ‖w − v‖ ‖x‖ ≤ L2BX . (F.1)

In particular, ` is L2BX Lipschitz. The result follows.
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