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Abstract

We present a novel analysis of the expected risk of weighted majority vote in
multiclass classification. The analysis takes correlation of predictions by ensemble
members into account and provides a bound that is amenable to efficient minimiza-
tion, which yields improved weighting for the majority vote. We also provide a
specialized version of our bound for binary classification, which allows to exploit
additional unlabeled data for tighter risk estimation. In experiments, we apply the
bound to improve weighting of trees in random forests and show that, in contrast
to the commonly used first order bound, minimization of the new bound typically
does not lead to degradation of the test error of the ensemble.

1 Introduction

Weighted majority vote is a fundamental technique for combining predictions of multiple classifiers.
In machine learning, it was proposed for neural networks by Hansen and Salomon [1990] and became
popular with the works of Breiman [1996, 2001] on bagging and random forests and the work of
Freund and Schapire [1996] on boosting. Zhu [2015] surveys the subsequent development of the field.
Weighted majority vote is now part of the winning strategies in many machine learning competitions
[e.g., Chen and Guestrin, 2016, Hoch, 2015, Puurula et al., 2014, Stallkamp et al., 2012]. Its power
lies in the cancellation of errors effect [Eckhardt and Lee, 1985]: when individual classifiers perform
better than a random guess and make independent errors, the errors average out and the majority vote
tends to outperform the individual classifiers.

A central question in the design of a weighted majority vote is the assignment of weights to individual
classifiers. This question was resolved by Berend and Kontorovich [2016] under the assumptions
that the expected error rates of the classifiers are known and their errors are independent. However,
neither of the two assumptions is typically satisfied in practice.

When the expected error rates are estimated based on a sample, the common way of bounding the
expected error of a weighted majority vote is by twice the error of the corresponding randomized
classifier [Langford and Shawe-Taylor, 2002]. A randomized classifier, a.k.a. Gibbs classifier,
associated with a distribution (weights) ρ over classifiers draws a single classifier at random at each
prediction round according to ρ and applies it to make the prediction. The error rate of the randomized
classifier is bounded using PAC-Bayesian analysis [McAllester, 1998, Seeger, 2002, Langford and
Shawe-Taylor, 2002]. We call this a first order bound. The factor 2 bound on the gap between the
error of the weighted majority vote and the corresponding randomized classifier follows from the
observation that an error by the weighted majority vote implies an error by at least a weighted half of
the base classifiers. The bound is derived using Markov’s inequality. While the PAC-Bayesian bounds
for the randomized classifier are remarkably tight [Germain et al., 2009, Thiemann et al., 2017], the
factor 2 gap is only tight in the worst-case, but loose in most real-life situations, where the weighted
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majority vote typically performs better than the randomized classifier rather than twice worse. The
reason for looseness is that the approach does not take the correlation of errors into account.

In order to address the weakness of the first order bound, Lacasse et al. [2007] have proposed PAC-
Bayesian C-bounds, which are based on Chebyshev-Cantelli inequality (a.k.a. one-sided Chebyshev’s
inequality) and take correlations into account. The idea was further developed by Laviolette et al.
[2011], Germain et al. [2015], and Laviolette et al. [2017]. However, the C-bounds have two severe
limitations: (1) They are defined in terms of classification margin and the second moment of the
margin is in the denominator of the bound. The second moment is difficult to estimate from data
and significantly weakens the tightness of the bounds [Lorenzen et al., 2019]. (2) The C-bounds
are difficult to optimize. Germain et al. [2015] were only able to minimize the bounds in a highly
restrictive case of self-complemented sets of voters and aligned priors and posteriors. In binary
classification a set of voters is self-complemented if for any hypothesis h ∈ H the mirror hypothesis
−h, which always predicts the opposite label to the one predicted by h, is also in H. A posterior
ρ is aligned on a prior π if ρ(h) + ρ(−h) = π(h) + π(−h) for all h ∈ H. Obviously, not every
hypothesis space is self-complemented and such sets can only be defined in binary, but not in
multiclass classification. Furthermore, the alignment requirement only allows to shift the posterior
mass within the mirror pairs (h,−h), but not across pairs. If both h and −h are poor classifiers and
their joint prior mass is high, there is no way to remedy this in the posterior.

Lorenzen et al. [2019] have shown that for standard random forests applied to several UCI datasets
the first order bound is typically tighter than the various forms of C-bounds proposed by Germain
et al. [2015]. However, the first order approach has its own limitations. While it is possible to
minimize the bound [Thiemann et al., 2017], it ignores the correlation of errors and minimization of
the bound concentrates the weight on a few top classifiers and reduces the power of the ensemble.
Our experiments show that minimization of the first order bound typically leads to deterioration of
the test error.

We propose a novel analysis of the risk of weighted majority vote in multiclass classification, which
addresses the weaknesses of previous methods. The new analysis is based on a second order Markov’s
inequality, P(Z ≥ ε) ≤ E

[
Z2
]
/ε2, which can be seen as a relaxation of the Chebyshev-Cantelli

inequality. We use the inequality to bound the expected loss of weighted majority vote by four times
the expected tandem loss of the corresponding randomized classifier: The tandem loss measures the
probability that two hypotheses drawn independently by the randomized classifier simultaneously err
on a sample. Hence, it takes correlation of errors into account. We then use PAC-Bayesian analysis
to bound the expected tandem loss in terms of its empirical counterpart and provide a procedure for
minimizing the bound and optimizing the weighting. We show that the bound is reasonably tight and
that, in contrast to the first order bound, minimization of the bound typically does not deteriorate the
performance of the majority vote on new data.

We also present a specialized version of the bound for binary classification, which takes advantage
of unlabeled data. It expresses the expected tandem loss in terms of a difference between the
expected loss and half the expected disagreement between pairs of hypotheses. In the binary case the
disagreements do not depend on the labels and can be estimated from unlabeled data, whereas the
loss of a randomized classifier is a first order quantity, which is easier to estimate than the tandem
loss. We note, however, that the specialized version only gives advantage over the general one when
the amount of unlabeled data is considerably larger than the amount of labeled data.

2 General problem setup

Multiclass classification Let S = {(X1, Y1), . . . , (Xn, Yn)} be an independent identically dis-
tributed sample from X × Y , drawn according to an unknown distribution D, where Y is finite and
X is arbitrary. A hypothesis is a function h : X → Y , and H denotes a space of hypotheses. We
evaluate the quality of a hypothesis h by the 0-1 loss `(h(X), Y ) = 1(h(X) 6= Y ), where 1(·) is
the indicator function. The expected loss of h is denoted by L(h) = E(X,Y )∼D[`(h(X), Y )] and the
empirical loss of h on a sample S of size n is denoted by L̂(h, S) = 1

n

∑n
i=1 `(h(Xi), Yi).

Randomized classifiers A randomized classifier (a.k.a. Gibbs classifier) associated with a distri-
bution ρ on H, for each input X randomly draws a hypothesis h ∈ H according to ρ and predicts
h(X). The expected loss of a randomized classifier is given by Eh∼ρ[L(h)] and the empirical loss by

2



Eh∼ρ[L̂(h, S)]. To simplify the notation we use ED[·] as a shorthand for E(X,Y )∼D[·] and Eρ[·] as a
shorthand for Eh∼ρ[·].
Ensemble classifiers and majority vote Ensemble classifiers predict by taking a weighted ag-
gregation of predictions by hypotheses from H. The ρ-weighted majority vote MVρ predicts
MVρ(X) = argmaxy∈Y Eρ[1(h(X) = y)], where ties can be resolved arbitrarily.

If majority vote makes an error, we know that at least a ρ-weighted half of the classifiers have made
an error and, therefore, `(MVρ(X), Y ) ≤ 1(Eρ[1(h(X) 6= Y )] ≥ 0.5). This observation leads to
the well-known first order oracle bound for the loss of weighted majority vote.
Theorem 1 (First Order Oracle Bound).

L(MVρ) ≤ 2Eρ[L(h)].

Proof. We have L(MVρ) = ED[`(MVρ(X), Y )] ≤ P(Eρ[1(h(X) 6= Y )] ≥ 0.5). By applying
Markov’s inequality to random variable Z = Eρ[1(h(X) 6= Y )] we have:

L(MVρ) ≤ P(Eρ[1(h(X) 6= Y )] ≥ 0.5) ≤ 2ED[Eρ[1(h(X) 6= Y )]] = 2Eρ[L(h)].

PAC-Bayesian analysis can be used to bound Eρ[L(h)] in Theorem 1 in terms of Eρ[L̂(h, S)], thus
turning the oracle bound into an empirical one. The disadvantage of the first order approach is that
Eρ[L(h)] ignores correlations of predictions, which is the main power of the majority vote.

3 New second order oracle bounds for the majority vote

The key novelty of our approach is using a second order Markov’s inequality: for a non-negative
random variable Z and ε > 0, we have P(Z ≥ ε) = P

(
Z2 ≥ ε2

)
≤ ε−2E

[
Z2
]
. We de-

fine the tandem loss of two hypotheses h and h′ on a sample (X,Y ) by `(h(X), h′(X), Y ) =
1(h(X) 6= Y ∧ h′(X) 6= Y ). (Lacasse et al. [2007] and Germain et al. [2015] use the term joint
error for this quantity.) The tandem loss counts an error on a sample (X,Y ) only if both h and h′ err
on it. The expected tandem loss is defined by

L(h, h′) = ED[1(h(X) 6= Y ∧ h′(X) 6= Y )].

The following lemma, given as equation (7) by Lacasse et al. [2007] without a proof, relates the
expectation of the second moment of the standard loss to the expected tandem loss. We use ρ2
as a shorthand for the product distribution ρ × ρ over H × H and the shorthand Eρ2 [L(h, h′)] =
Eh∼ρ,h′∼ρ[L(h, h′)].
Lemma 2. In multiclass classification

ED[Eρ[1(h(X) 6= Y )]2] = Eρ2 [L(h, h′)].

A proof is provided in Appendix A. A combination of second order Markov’s inequality with
Lemma 2 leads to the following result.
Theorem 3 (Second Order Oracle Bound). In multiclass classification

L(MVρ) ≤ 4Eρ2 [L(h, h′)]. (1)

Proof. By second order Markov’s inequality applied to Z = Eρ[1(h(X) 6= Y )] and Lemma 2:

L(MVρ) ≤ P(Eρ[1(h(X) 6= Y )] ≥ 0.5) ≤ 4ED[Eρ[1(h(X) 6= Y )]2] = 4Eρ2 [L(h, h′)].

3.1 A specialized bound for binary classification

We provide an alternative form of Theorem 3, which can be used to exploit unlabeled data in binary
classification. We denote the expected disagreement between hypotheses h and h′ by D(h, h′) =
ED[1(h(X) 6= h′(X))] and express the tandem loss in terms of standard loss and disagreement. (The
lemma is given as equation (8) by Lacasse et al. [2007] without a proof.)
Lemma 4. In binary classification

Eρ2 [L(h, h′)] = Eρ[L(h)]−
1

2
Eρ2 [D(h, h′)].
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A proof of the lemma is provided in Appendix A. The lemma leads to the following result.
Theorem 5 (Second Order Oracle Bound for Binary Classification). In binary classification

L(MVρ) ≤ 4Eρ[L(h)]− 2Eρ2 [D(h, h′)]. (2)

Proof. The theorem follows by plugging the result of Lemma 4 into Theorem 3.

The advantage of the alternative way of writing the bound is the possibility of using unlabeled data
for estimation of D(h, h′) in binary prediction (see also Germain et al., 2015). We note, however,
that estimation of Eρ2 [D(h, h′)] has a slow convergence rate, as opposed to Eρ2 [L(h, h′)], which has
a fast convergence rate. We discuss this point in Section 4.4.

3.2 Comparison with the first order oracle bound

From Theorems 1 and 5 we see that in binary classification the second order bound is tighter when
Eρ2 [D(h, h′)] > Eρ[L(h)]. Below we provide a more detailed comparison of Theorems 1 and 3 in
the worst, the best, and the independent cases. The comparison only concerns the oracle bounds,
whereas estimation of the oracle quantities, Eρ[L(h)] and Eρ2 [L(h, h′)], is discussed in Section 4.4.

The worst case Since Eρ2 [L(h, h′)] ≤ Eρ[L(h)] the second order bound is at most twice worse
than the first order bound. The worst case happens, for example, if all hypotheses inH give identical
predictions. Then Eρ2 [L(h, h′)] = Eρ[L(h)] = L(MVρ) for all ρ.

The best case Imagine that H consists of M ≥ 3 hypotheses, such that each hypothesis errs on
1/M of the sample space (according to the distribution D) and that the error regions are disjoint.
Then L(h) = 1/M for all h and L(h, h′) = 0 for all h 6= h′ and L(h, h) = 1/M . For a uniform
distribution ρ on H the first order bound is 2Eρ[L(h)] = 2/M and the second order bound is
4Eρ2 [L(h, h′)] = 4/M2 and L(MVρ) = 0. In this case the second order bound is an order of
magnitude tighter than the first order.

The independent case Assume that all hypotheses in H make independent errors and
have the same error rate, L(h) = L(h′) for all h and h′. Then for h 6= h′ we
have L(h, h′) = ED[1(h(X) 6= Y ∧ h′(X) 6= Y )] = ED[1(h(X) 6= Y )1(h′(X) 6= Y )] =
ED[1(h(X) 6= Y )]ED[1(h′(X) 6= Y )] = L(h)2 and L(h, h) = L(h). For a uniform distribu-
tion ρ the second order bound is 4Eρ2 [L(h, h′)] = 4(L(h)2 + 1

ML(h)(1−L(h))) and the first order
bound is 2Eρ[L(h)] = 2L(h). Assuming that M is large, so that we can ignore the second term in
the second order bound, we obtain that it is tighter for L(h) < 1/2 and looser otherwise. The former
is the interesting regime, especially in binary classification.

In Appendix B we give additional intuition about Theorems 1 and 3 by providing an alternative
derivation.

3.3 Comparison with the oracle C-bound

The oracle C-bound is an alternative second order bound based on Chebyshev-Cantelli inequality
(Theorem C.13 in the appendix). It was first derived for binary classification by Lacasse et al. [2007,
Theorem 2] and several alternative forms were proposed by Germain et al. [2015, Theorem 11].
Laviolette et al. [2017, Corollary 1] extended the result to multiclass classification. To facilitate the
comparison with our results we write the bound in terms of the tandem loss. In Appendix D we
provide a direct derivation of Theorem 6 from Chebyshev-Cantelli inequality and in Appendix E we
show that it is equivalent to prior forms of the oracle C-bound.
Theorem 6 (C-tandem Oracle Bound). If Eρ[L(h)] < 1/2, then

L(MVρ) ≤
Eρ2 [L(h, h′)]− Eρ[L(h)]2

Eρ2 [L(h, h′)]− Eρ[L(h)] + 1
4

.

The theorem is essentially identical to the first form of oracle C-bound by Lacasse et al. [2007,
Theorem 2] and, as we show, it holds for multiclass classification. In Appendix C we show that the
second order Markov’s inequality behind Theorem 3 is a relaxation of Chebyshev-Cantelli inequality.
Therefore, the oracle C-bound is always at least as tight as the second order oracle bound in Theorem 3.
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In particular, Germain et al. show that if the classifiers make independent errors and their error rates
are identical and below 1/2, the oracle C-bound converges to zero with the growth of the number of
classifiers, whereas, as we have shown above, the bound in Theorem 3 only converges to 4L(h)2.
However, the oracle C-bound has Eρ2 [L(h, h′)] and Eρ[L(h)] in the denominator, which comes as a
significant disadvantage in its estimation from data and minimization [Lorenzen et al., 2019], as we
also show in our empirical evaluation.

4 Second order PAC-Bayesian bounds for the weighted majority vote

We apply PAC-Bayesian analysis to transform oracle bounds from the previous section into empirical
bounds. The results are based on the following two theorems, where we use KL(ρ‖π) to denote
the Kullback-Leibler divergence between distributions ρ and π and kl(p‖q) to denote the Kullback-
Leibler divergence between two Bernoulli distributions with biases p and q.
Theorem 7 (PAC-Bayes-kl Inequality, Seeger, 2002). For any probability distribution π onH that is
independent of S and any δ ∈ (0, 1), with probability at least 1− δ over a random draw of a sample
S, for all distributions ρ onH simultaneously:

kl
(
Eρ[L̂(h, S)]

∥∥∥Eρ [L(h)]) ≤ KL(ρ‖π) + ln(2
√
n/δ)

n
. (3)

The next theorem provides a relaxation of the PAC-Bayes-kl inequality, which is more convenient for
optimization. The upper bound is due to Thiemann et al. [2017] and the lower bound follows by an
almost identical derivation, see Appendix F. Both results are based on the refined Pinsker’s lower
bound for the kl-divergence. Since both the upper and the lower bound are deterministic relaxations of
PAC-Bayes-kl, they hold simultaneously with no need to take a union bound over the two statements.
Theorem 8 (PAC-Bayes-λ Inequality, Thiemann et al., 2017). For any probability distribution π on
H that is independent of S and any δ ∈ (0, 1), with probability at least 1− δ over a random draw of
a sample S, for all distributions ρ onH and all λ ∈ (0, 2) and γ > 0 simultaneously:

Eρ [L(h)] ≤
Eρ[L̂(h, S)]

1− λ
2

+
KL(ρ‖π) + ln(2

√
n/δ)

λ
(
1− λ

2

)
n

, (4)

Eρ [L(h)] ≥
(
1− γ

2

)
Eρ[L̂(h, S)]−

KL(ρ‖π) + ln(2
√
n/δ)

γn
. (5)

4.1 A general bound for multiclass classification

We define the empirical tandem loss

L̂(h, h′, S) =
1

n

n∑
i=1

1(h(Xi) 6= Yi ∧ h′(Xi) 6= Yi)

and provide a bound on the expected loss of ρ-weighted majority vote in terms of the empirical
tandem losses.
Theorem 9. For any probability distribution π on H that is independent of S and any δ ∈ (0, 1),
with probability at least 1−δ over a random draw of S, for all distributions ρ onH and all λ ∈ (0, 2)
simultaneously:

L(MVρ) ≤ 4

(
Eρ2 [L̂(h, h′, S)]

1− λ/2 +
2KL(ρ‖π) + ln(2

√
n/δ)

λ(1− λ/2)n

)
.

Proof. The theorem follows by using the bound in equation (4) to bound Eρ2 [L(h, h′)] in Theorem 3.
We note that KL(ρ2‖π2) = 2KL(ρ‖π) [Germain et al., 2015, Page 814].

It is also possible to use PAC-Bayes-kl to bound Eρ2 [L(h, h′)] in Theorem 3, which actually gives
a tighter bound, but the bound in Theorem 9 is more convenient for minimization. Tolstikhin and
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Seldin [2013] have shown that for a fixed ρ the expression in Theorem 9 is convex in λ and has a
closed-form minimizer. In Appendix G we show that for fixed λ and S the bound is convex in ρ.
Although in our applications S is not fixed and the bound is not necessarily convex in ρ, a local
minimum can still be efficiently achieved by gradient descent. A bound minimization procedure is
provided in Appendix H.

4.2 A specialized bound for binary classification

We define the empirical disagreement

D̂(h, h′, S′) =
1

m

m∑
i=1

1(h(Xi) 6= h′(Xi)),

where S′ = {X1, . . . , Xm}. The set S′ may have an overlap with the inputs X of the labeled set
S, however, S′ may include additional unlabeled data. The following theorem bounds the loss of
weighted majority vote in terms of empirical disagreements. Due to possibility of using unlabeled
data for estimation of disagreements in the binary case, the theorem has the potential of yielding a
tighter bound when a considerable amount of unlabeled data is available.

Theorem 10. In binary classification, for any probability distribution π onH that is independent of
S and S′ and any δ ∈ (0, 1), with probability at least 1− δ over a random draw of S and S′, for all
distributions ρ onH and all λ ∈ (0, 2) and γ > 0 simultaneously:

L(MVρ) ≤ 4

(
Eρ[L̂(h, S)]
1− λ/2 +

KL(ρ‖π) + ln(4
√
n/δ)

λ(1− λ/2)n

)

− 2

(
(1− γ/2)Eρ2 [D̂(h, h′, S′)]−

2KL(ρ‖π) + ln(4
√
m/δ)

γm

)
.

Proof. The theorem follows by using the upper bound in equation (4) to bound Eρ[L(h)] and the
lower bound in equation (5) to bound Eρ2 [D(h, h′)] in Theorem 5. We replace δ by δ/2 in the upper
and lower bound and take a union bound over them.

Using PAC-Bayes-kl to bound Eρ[L(h)] and Eρ2 [D(h, h′)] in Theorem 5 gives a tighter bound, but
the bound in Theorem 10 is more convenient for minimisation. The minimization procedure is
provided in Appendix H.

4.3 Ensemble construction

Thiemann et al. [2017] have proposed an elegant way of constructing finite data-dependent hypothesis
spaces that work well with PAC-Bayesian bounds. The idea is to generate multiple splits of a data
set S into pairs of subsets S = Th ∪ Sh, such that Th ∩ Sh = ∅. A hypothesis h is then trained
on Th and L̂(h, Sh) provides an unbiased estimate of its loss. The splits cannot depend on the data.
Two examples of such splits are splits generated by cross-validation [Thiemann et al., 2017] and
splits generated by bagging in random forests, where out-of-bag (OOB) samples provide unbiased
estimates of expected losses of individual trees [Lorenzen et al., 2019]. It is possible to train multiple
hypotheses with different parameters on each split, as it happens in cross-validation. The resulting set
of hypotheses produces an ensemble, and PAC-Bayesian bounds provide generalization bounds for a
weighted majority vote of the ensemble and allow optimization of the weighting. There are two minor
modifications required: the weighted empirical losses Eρ[L̂(h, S)] in the bounds are replaced by
weighted validation losses Eρ[L̂(h, Sh)], and the sample size n is replaced by the minimal validation
set size nmin = minh |Sh|. It is possible to use any data-independent prior, with uniform prior
π(h) = 1/|H| being a natural choice in many cases [Thiemann et al., 2017].

For pairs of hypotheses (h, h′) we use the overlaps of their validation sets Sh ∩ Sh′ to calculate an
unbiased estimate of their tandem loss, L̂(h, h′, Sh ∩ Sh′), which replaces L̂(h, h′, S) in the bounds.
The sample size n is then replaced by nmin = minh,h′(Sh ∩ Sh′).

6



4.4 Comparison of the empirical bounds

We provide a high-level comparison of the empirical first order bound (FO), the new empirical second
order bound based on the tandem loss (TND, Theorem 9), and the new empirical second order bound
based on disagreements (DIS, Theorem 10). The two key quantities in the comparison are the sample
size n in the denominator of the bounds and fast and slow convergence rates for the standard (first
order) loss, the tandem loss, and the disagreements. Tolstikhin and Seldin [2013] have shown that if
we optimize λ for a given ρ, the PAC-Bayes-λ bound in equation (4) can be written as

Eρ[L(h)] ≤ Eρ[L̂(h, S)]+

√
2Eρ[L̂(h, S)] (KL(ρ‖π) + ln(2

√
n/δ))

n
+
2 (KL(ρ‖π) + ln(2

√
n/δ))

n
.

This form of the bound, introduced by McAllester [2003], is convenient for explanation of fast
and slow rates. If Eρ[L̂(h, S)] is large, then the middle term on the right hand side dominates
the complexity and the bound decreases at the rate of 1/

√
n, which is known as a slow rate. If

Eρ[L̂(h, S)] is small, then the last term dominates and the bound decreases at the rate of 1/n, which
is known as a fast rate.

FO vs. TND The advantage of the FO bound is that the validation sets Sh available for estimation
of the first order losses L̂(h, Sh) are larger than the validation sets Sh∩Sh′ available for estimation of
the tandem losses. Therefore, the denominator nmin = minh |Sh| in the FO bound is larger than the
denominator nmin = minh,h′ |Sh ∩ Sh′ | in the TND bound. The TND disadvantage can be reduced
by using data splits with large validation sets Sh and small training sets Th, as long as small training
sets do not overly impact the quality of base classifiers h. Another advantage of the FO bound is
that its complexity term has KL(ρ‖π), whereas the TND bound has 2KL(ρ‖π). The advantage of
the TND bound is that Eρ2 [L(h, h′)] ≤ Eρ[L(h)] and, therefore, the convergence rate of the tandem
loss is typically faster than the convergence rate of the first order loss. The interplay of the estimation
advantages and disadvantages, combined with the advantages and disadvantages of the underlying
oracle bounds discussed in Section 3.2, depends on the data and the hypothesis space.

TND vs. DIS The advantage of the DIS bound relative to the TND bound is that in presence of a
large amount of unlabeled data the disagreements D(h, h′) can be tightly estimated (the denominator
m is large) and the estimation complexity is governed by the first order term, Eρ[L(h)], which is
"easy" to estimate, as discussed above. However, the DIS bound has two disadvantages. A minor
one is its reliance on estimation of two quantities, Eρ[L(h)] and Eρ2 [D(h, h′)], which requires a
union bound, e.g., replacement of δ by δ/2. A more substantial one is that the disagreement term is
desired to be large, and thus has a slow convergence rate. Since slow convergence rate relates to fast
convergence rate as 1/

√
n to 1/n, as a rule of thumb the DIS bound is expected to outperform TND

only when the amount of unlabeled data is at least quadratic in the amount of labeled data, m > n2.

5 Empirical evaluation

We studied the empirical performance of the bounds using standard random forests [Breiman, 2001]
on a subset of data sets from the UCI and LibSVM repositories [Dua and Graff, 2019, Chang and
Lin, 2011]. An overview of the data sets is given in Table I.1 in the appendix. The number of points
varied from 3000 to 70000 with dimensions d < 1000. For each data set we set aside 20% of the
data for a test set Stest and used the remaining data, which we call S, for ensemble construction
and computation of the bounds. Forests with 100 trees were trained until leaves were pure, using
the Gini criterion for splitting and considering

√
d features in each split. We made 50 repetitions of

each experiment and report the mean and standard deviation. In all our experiments π was uniform
and δ = 0.05. We present two experiments: (1) a comparison of tightness of the bounds applied
to uniform weighting, and (2) a comparison of weighting optimization the bounds. Additional
experiments, where we explored the effect of using splits with increased validation and decreased
training subsets, as suggested in Section 4.4, and where we compared the TND and DIS bounds in
presence of unlabeled data, are described in Appendix I.

The python source code for replicating the experiments is available at Github2.

2https://github.com/StephanLorenzen/MajorityVoteBounds
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Figure 1: Test risk (black) and the bounds for a uniformly weighted random forest on a subset of
binary (left) and multiclass (right) datasets. Plots for the remaining datasets are provided in Figures I.4
and I.5 in the appendix.
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Figure 2: (a) The median, 25%, and 75% quantiles of the ratio L̂(MVρ∗ ,Stest)/L̂(MVu,Stest) of
the test loss of majority vote with optimized weighting ρ∗ generated by FO and TND. The plot is on
a logarithmic scale. Values above 1 represent degradation in performance on new data and values
below 1 represent an improvement. (b) The optimized weights ρ∗ generated by FO and TND.

Uniform weighting In Figure 1 we compare tightness of FO, C1 and C2 (the two forms of C-
bound by Germain et al., 2015, see Appendix E for the oracle forms), the C-tandem bound (CTD,
Theorem 6), and TND applied to uniformly weighted random forests on a subset of data sets. The
right three plots are multiclass datasets, where C1 and C2 are inapplicable. The outcomes for the
remaining datasets are reported in Figures I.4 and I.5 in the appendix. Since no optimization was
involved, we used the PAC-Bayes-kl to bound Eρ[L(h)], Eρ2 [L(h, h′)], and Eρ2 [D(h, h′)] in the first
and second order bounds, which is tighter than using PAC-Bayes-λ. The TND bound was the tightest
for 5 out of 16 data sets, and provided better guarantees than the C-bounds for 4 out of 7 binary data
sets. In most cases, the FO-bound was the tightest.

Optimization of the weighting We compared the loss on the test set Stest and tightness after using
the bounds for optimizing the weighting ρ. As already discussed, the C-bounds are not suitable for
optimization (see also Lorenzen et al., 2019) and, therefore, excluded from the comparison. We used
the PAC-Bayes-λ form of the bounds for Eρ[L(h)], Eρ2 [L(h, h′)], and Eρ2 [D(h, h′)] for optimization
of ρ and then used the PAC-Bayes-kl form of the bounds for computing the final bound with the
optimized ρ. Optimization details are provided in Appendix H.

Figure 2a compares the ratio of the loss of majority vote with optimized weighting to the loss of
majority vote with uniform weighting on Stest for ρ∗ found by minimization of FO and TND. The
numerical values are given in Table I.6 in the appendix. While both bounds tighten with optimization,
we observed that optimization of FO considerably weakens the performance on Stest for all datasets,
whereas optimization of TND did not have this effect and in some cases even improved the outcome.
Figure 2b shows optimized distributions for two sample data sets. It is clearly seen that FO placed
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all the weight on a few top trees, while TND hedged the bets on multiple trees. The two figures
demonstrate that the new bound correctly handled interactions between voters, as opposed to FO.

6 Discussion

We have presented a new analysis of the weighted majority vote, which provides a reasonably tight
generalization guarantee and can be used to guide optimization of the weights. The analysis has been
applied to random forests, where the bound can be computed using out-of-bag samples with no need
for a dedicated hold-out validation set, thus making highly efficient use of the data. We have shown
that in contrary to the commonly used first order bound, minimization of the new bound does not
lead to deterioration of the test error, confirming that the analysis captures the cancellation of errors,
which is the core of the majority vote.
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Broader impact

Ensemble classifiers, in particular random forests, are among the most important tools in machine
learning [Fernández-Delgado et al., 2014, Zhu, 2015], which are very frequently applied in practice
[e.g., Chen and Guestrin, 2016, Hoch, 2015, Puurula et al., 2014, Stallkamp et al., 2012]. Our
study provides generalization guarantees for random forests and a method for tuning the weights
of individual trees within a forest, which can lead to even higher accuracies. The result is of high
practical relevance.

Given that machine learning models are increasingly used to make decisions that have a strong impact
on society, industry, and individuals, it is important that we have a good theoretical understanding
of the employed methods and are able to provide rigorous guarantees for their performance. And
here lies the strongest contribution of the line of research followed in our study, in which we derive
rigorous bounds on the generalization error of random forests and other ensemble methods for
multiclass classification.
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A Proof of Lemmas 2 and 4

Proof of Lemma 2.

ED[Eρ[1(h(X) 6= Y )]2] = ED[Eρ[1(h(X) 6= Y )]Eρ[1(h(X) 6= Y )]] (A.6)

= ED[Eρ2 [1(h(X) 6= Y )1(h′(X) 6= Y )]]

= ED[Eρ2 [1(h(X) 6= Y ∧ h′(X) 6= Y )]]

= Eρ2 [ED[1(h(X) 6= Y ∧ h′(X) 6= Y )]]

= Eρ2 [L(h, h′)].

Proof of Lemma 4. Picking from (A.6), we have

Eρ[1(h(X) 6= Y )]Eρ[1(h(X) 6= Y )] = Eρ[1(h(X) 6= Y )](1− Eρ[(1− 1(h(X) 6= Y ))]

= Eρ[1(h(X) 6= Y )]− Eρ[1(h(X) 6= Y )]Eρ[1(h(X) = Y )]

= Eρ[1(h(X) 6= Y )]− Eρ2 [1(h(X) 6= Y ∧ h′(X) = Y )]

= Eρ[1(h(X) 6= Y )]− 1

2
Eρ2 [1(h(X) 6= h′(X))].

By taking expectation with respect to D on both sides and applying Lemma 2 to the left hand side,
we obtain:

Eρ2 [L(h, h′)] = ED[Eρ[1(h(X) 6= Y )]− 1

2
Eρ2 [1(h(X) 6= h′(X))]] = Eρ[L(h)]−

1

2
Eρ2 [D(h, h′)].

B An alternative derivation of Theorems 1 and 3 using relaxations of the
indicator function

Figure B.3: Relaxations of the indicator function.

In this section, we provide an alternative derivation of Theorems 1 and 3 using relaxations of the
indicator function. The alternative derivation may provide additional intuition about the method and
this is how we initially have arrived to the results.

As explained in Section 2, if majority vote makes an error, then at least a ρ-weighted half of the
classifiers have made an error. Therefore, we have `(MVρ(X), Y ) ≤ 1(Eρ[1(h(X) 6= Y )] ≥ 0.5).
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The first order bound can be derived from a first order relaxation of the indicator function. For any
w ∈ [0, 1] we have 1(w ≥ 0.5) ≤ 2w, see Figure B.3. Taking w = Eρ[1(h(X) 6= Y )] we have

L(MVρ) ≤ ED[1(Eρ[1(h(X) 6= Y )] ≥ 0.5)]

≤ 2ED[Eρ[1(h(X) 6= Y )]] = 2Eρ[ED[1(h(X) 6= Y )]] = 2Eρ[L(h)],

which gives the result in Theorem 1.

The second order bound can be derived from a second order relaxation of the indicator function. We
use the inequality 1(w ≥ 0.5) ≤ 4w2, which holds for all w ∈ [0, 1], see Figure B.3. As before, we
take w = Eρ[1(h(X) 6= Y )]. Then, we have

L(MVρ) ≤ ED[1(Eρ[1(h(X) 6= Y )] ≥ 0.5)] ≤ 4ED[Eρ[1(h(X) 6= Y )]2] = 4Eρ2 [L(h, h′)],

where the last equality is by Lemma 2.

C Relation between second order Markov’s and Chebyshev-Cantelli
inequalities

In this section we show that second order Markov’s inequality is a relaxation of Chebyshev-Cantelli
inequality. In order to emphasize the relation between the proofs of Theorems 1 and 3 in the body
and in the previous section, we provide a direct derivation of Markov’s and second order Markov’s
inequalities using relaxations of the indicator function. For any non-negative random variable X and
ε > 0 we have:

1(X ≥ ε) ≤ 1

ε
X,

1(X ≥ ε) ≤ 1

ε2
X2.

We use these inequalities to recover the well-known Markov’s inequality and prove the second order
Markov’s inequality.
Theorem C.11 (Markov’s Inequality). For a non-negative random variable X and ε > 0

P(X ≥ ε) ≤ E [X]

ε
.

Proof.

P(X ≥ ε) = E [1(X ≥ ε)] ≤ E [X]

ε
.

Theorem C.12 (Second order Markov’s inequality). For a non-negative random variable X and
ε > 0

P(X ≥ ε) ≤ E
[
X2
]

ε2
. (C.7)

Proof.

P(X ≥ ε) = E [1(X ≥ ε)] ≤ E
[
X2
]

ε2
.

We also cite Chebyshev-Cantelli inequality without a proof. For a proof see, for example, Devroye
et al. [1996].
Theorem C.13 (Chebyshev-Cantelli inequality). For a real-valued random variable X and ε > 0

P(X − E [X] ≥ ε) ≤ V[X]

ε2 + V[X]
, (C.8)

where V[X] = E
[
X2
]
− E [X]

2 is the variance of X .
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Finally, we show that second order Markov’s inequality is a relaxation of Chebyshev-Cantelli
inequality.

Lemma C.14. The second-order Markov’s inequality (C.7) is a relaxation of Chebyshev-Cantelli
inequality (C.8).

Proof. We show that inequality (C.8) is always at least as tight as inequality (C.7). The inequality
(C.7) is only non-trivial when E [X] < ε, so for the comparison we can assume that E [X] < ε. By
(C.8) we then have:

P(X ≥ ε) = P(X − E [X] ≥ ε− E [X]) ≤ V[X]

(ε− E [X])2 + V[X]
=

E
[
X2
]
− E [X]

2

ε2 − 2εE [X] + E [X2]

Thus, we need to compare

E
[
X2
]
− E [X]

2

ε2 − 2εE [X] + E [X2]
vs.

E
[
X2
]

ε2
.

This is equivalent to the following row of comparisons:

(E
[
X2
]
− E [X]

2
)ε2 vs. E

[
X2
]
(ε2 − 2εE [X] + E

[
X2
]
)

−E [X]
2
ε2 vs. E

[
X2
]
(−2εE [X] + E

[
X2
]
)

0 vs. E [X]
2
ε2 − 2εE [X]E

[
X2
]
+ E

[
X2
]2

0 ≤ (E [X] ε− E
[
X2
]
)2,

which completes the proof.

D A proof of Theorem 6

We provide a direct proof of Theorem 6 using Chebyshev-Cantelli inequality.

Proof. We apply Chebyshev-Cantelli inequality to Eρ[1(h(X) 6= Y )]:

L(MVρ) ≤ P
(
Eρ[1(h(X) 6= Y )] ≥ 1

2

)
= P

(
Eρ[1(h(X) 6= Y )]− Eρ[L(h)] ≥

1

2
− Eρ[L(h)]

)
≤ Eρ2 [L(h, h′)]− Eρ[L(h)]2(

1
2 − Eρ[L(h)]

)2
+ Eρ2 [L(h, h′)]− Eρ[L(h)]2

=
Eρ2 [L(h, h′)]− Eρ[L(h)]2

Eρ2 [L(h, h′)]− Eρ[L(h)] + 1
4

.

E Equivalence of Theorem 6 to prior forms of the oracle C-bound

In this section we show that the C-tandem oracle bound in Theorem 6 is equivalent to prior forms of
the oracle C-bound.

E.1 Equivalence to Corollary 1 of Laviolette et al. [2017]

Laviolette et al. write their oracle C-bound in terms of an ω-margin, denoted by Mρ,ω(X,Y), which
is defined as Mρ,ω(X,Y ) = Eρ[1(h(X) = Y )] − ω, or, equivalently, Mρ,ω(X,Y ) = (1 − ω) −
Eρ[1(h(X) 6= Y )]. By simple algebraic manipulations we have the following identities, which show
the equivalence to Theorem 6:
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Eρ2 [L(h, h′)]− Eρ[L(h)]2

Eρ2 [L(h, h′)]− Eρ[L(h)] + 1
4︸ ︷︷ ︸

C-tandem oracle

= 1−
1
4 − Eρ[L(h)] + Eρ[L(h)]2

1
4 − Eρ[L(h)] + Eρ2 [L(h, h′)]

= 1−
(
ED[Mρ, 12

(X,Y )]
)2

ED[(Mρ, 12
(X,Y ))2]︸ ︷︷ ︸

Oracle C-bound of Laviolette et al.

.

E.2 Equivalence to Theorem 11 of Germain et al. [2015] in binary classification

In binary classification we can apply Lemma 4 and simple algebraic manipulations to obtain the
following identities, which demonstrate equivalence of Theorem 6 and Theorem 11 of Germain et al.:

Eρ2 [L(h, h′)]− Eρ[L(h)]2

Eρ2 [L(h, h′)]− Eρ[L(h)] + 1
4︸ ︷︷ ︸

C-tandem oracle

=
4Eρ[L(h)]− 4(Eρ[L(h)])2 − 2Eρ2 [D(h, h′)]

1− 2Eρ2 [D(h, h′)]

= 1− (1− 2Eρ[L(h)])2

1− 2Eρ2 [D(h, h′)]︸ ︷︷ ︸
C1 oracle

= 1−
(
1− (2Eρ2 [L(h, h′)] + Eρ2 [D(h, h′)])

)2
1− 2Eρ2 [D(h, h′)]︸ ︷︷ ︸

C2 oracle

.

The second line is the oracle form of C1 bound of Germain et al. and the last line is the oracle form
of their C2 bound.

We note that while all forms of the oracle C-bound are equivalent, their translation into empirical
bounds might have different tightness due to varying difficulty of estimation of the oracle quantities
Eρ[L(h)], Eρ2 [L(h, h′)], and Eρ2 [D(h, h′)], as discussed in Section 4.4.

F A proof of Theorem 8

We provide a proof of the lower bound (5) in Theorem 8. The upper bound (4) has been shown by
Thiemann et al. [2017]. The proof of the lower bound follows the same steps as the proof of the upper
bound.

Proof. We use the following version of refined Pinsker’s inequality [Marton, 1996, 1997, Samson,
2000, Boucheron et al., 2013, Lemma 8.4]: for p > q

kl(p‖q) ≥ (p− q)2/(2p). (F.9)

By application of inequality (F.9), inequality (3) can be relaxed to

Eρ
[
L̂(h, S)

]
− Eρ [L(h)] ≤

√
2Eρ

[
L̂(h, S)

] KL(ρ‖π) + ln 2
√
n
δ

n
. (F.10)

By using the inequality
√
xy ≤ 1

2

(
γx+ y

γ

)
for all γ > 0, we have that with probability at least

1− δ for all ρ and γ > 0

Eρ
[
L̂(h, S)

]
− Eρ [L(h)] ≤

γ

2
Eρ
[
L̂(h, S)

]
+

KL(ρ‖π) + ln 2
√
n
δ

γn
. (F.11)

By changing sides

Eρ [L(h)] ≥
(
1− γ

2

)
Eρ
[
L̂(h, S)

]
− KL(ρ‖π) + ln 2

√
n
δ

γn
.
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G Positive semi-definiteness of the matrix of empirical tandem losses

In Lemma G.15 below we show that if the empirical tandem losses are evaluated on the same set
S, then the matrix of empirical tandem losses L̂tnd with entries (L̂tnd)h,h′ = L̂(h, h′, S) is positive
semi-definite. This implies that for a fixed λ the bound in Theorem 9 is convex in ρ, because in
this case E2

ρ[L̂(h, h
′, S)] = ρT L̂tndρ is convex in ρ and KL(ρ‖π) is always convex in ρ. (We note,

however, that the bound is not necessarily jointly convex in ρ and λ and, therefore, alternating
minimization of the bound may still converge to a local minimum. While Thiemann et al. [2017]
derive conditions under which the PAC-Bayes-λ bound for the first order loss is quasiconvex, such
analysis of the bound for the second order loss would be more complicated.) In Section G.1 we then
provide an example showing that if the tandem losses are evaluated on different sets, as it happens
in our case, where the entries are (L̂tnd)h,h′ = L̂(h, h′, Sh ∩ Sh′), then the matrix of tandem losses
is not necessarily positive semi-definite. Therefore, in our case minimization of the bound is only
expected to converge to a local minimum.
Lemma G.15. Given M hypotheses and data S = {(X1, Y1), . . . , (Xn, Yn)}, the M ×M matrix
of empirical tandem losses L̂tnd with entries (L̂tnd)h,h′ = L̂(h, h′, S) is positive semi-definite.

Proof. Define a vector of empirical losses by hypotheses inH on a sample (Xi, Yi) by

ˆ̀
i =

 1(h1(Xi) 6= Yi)
...

1(hM (Xi) 6= Yi)

 .

Then the (h, h′) entry of the matrix ˆ̀
i
ˆ̀T
i is (ˆ̀i ˆ̀Ti )h,h′ = 1(h(Xi) 6= Yi)1(h

′(Xi) 6= Yi). Thus, the
matrix of empirical tandem losses can be written as a mean of outer products

L̂tnd =
1

n

n∑
i=1

ˆ̀
i
ˆ̀T
i

and is, therefore, positive semi-definite.

G.1 Non positive semi-definite example

If the empirical tandem losses are estimated on different subsets of the data rather than a common set
S, as in the case of out-of-bag samples, where we take L̂(h, h′, Sh ∩ Sh′), the resulting matrix of
empirical tandem losses is not necessarily positive semi-definite. Consider the following example
with 2 points, 3 hypotheses, and the following losses:

X1 X2

h1 1 0
h2 0 1
h3 0 1

If we compute the tandem loss for h1 and h2 on the first point and the tandem loss for h1 and h3 and
for h2 and h3 on the second point, and the tandem losses of hypotheses with themselves on all the
points, then we have

L̂(h, h′) =

(
0.5 0 0
0 0.5 1
0 1 0.5

)
.

This matrix is not positive semi-definite, it has eigenvalues −0.5, 0.5, and 1.5.

H Gradient-based minimization of the bounds

This section gives details on the optimization of the bounds in Theorems 9 and 10. First, we consider
the bound in Theorem 9 and provide a closed form solution for the parameter λ given ρ as well as the
gradient of the bound w.r.t. ρ for fixed λ. Then we give the closed form solutions for the parameters
λ and γ given ρ and the gradient w.r.t. ρ for fixed λ and γ for the bound in Theorem 10. After that,
we describe the alternating minimization procedure we applied for optimization in our experiments.
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H.1 Minimization of the bound in Theorem 9

Optimal λ given ρ Given ρ, the optimal λ in Theorem 9 can be computed following Tolstikhin and
Seldin [2013] and Thiemann et al. [2017], because the optimization problem is the same:

λ =
2√

2nEρ2 [L̂(h,h′,S)]
2KL(ρ‖π)+ln 2

√
n
δ

+ 1 + 1

.

Gradient with respect to ρ given λ Next we calculate the gradient for minimizing the bound
in Theorem 9 with respect to ρ under fixed λ. The minimization is equivalent to minimizing
f(ρ) = Eρ2 [L̂(h, h′, S)] + 2

λn KL(ρ‖π) under the constraint that ρ is a probability distribution. Let
(∇f)h for h ∈ H denote the component of the gradient corresponding to hypothesis h. We also
use L̂tnd to denote the matrix of empirical tandem losses and ln ρ

π to denote the vector with entry
corresponding to hypothesis h being ln ρ(h)

π(h) . We have:

(∇f)h = 2
∑
h′

ρ(h′)L̂(h, h′, S) +
2

λn

(
1 + ln

ρ(h)

π(h)

)
,

∇f = 2

(
L̂tndρ+

1

λn

(
1 + ln

ρ

π

))
.

H.2 Minimization of the bound in Theorem 10

Optimal λ and γ given ρ The optimal λ can be computed as above, because the optimization
problem is the same. The only difference is that we have δ/2 instead of δ:

λ =
2√

2nEρ[L̂(h,S)]
KL(ρ‖π)+ln 4

√
n
δ

+ 1 + 1

.

Minimization of the bound in Theorem 10 with fixed ρ with respect to γ is equivalent to minimizing
γ
2a + b

γ with a = Eρ2 [D̂(h, h′, S′)] and b = 2KL(ρ‖π)+ln(4
√
m/δ)

m . The minimum is achieved by

γ =
√

2b
a :

γ =

√
4KL(ρ‖π) + ln(16m/δ2)

mEρ2 [D̂(h, h′, S′)]
.

Gradient with respect to ρ Minimization of the bound with respect to ρ for fixed λ and γ is
equivalent to constrained minimization of f(ρ) = 2aEρ[L̂(h, S)]−bEρ2 [D̂(h, h′, S′)]+2cKL(ρ‖π),
where a = 1

1−λ/2 , b = 1− γ/2, and c = 1
λ(1−λ/2)n + 1

γm , and the constraint is that ρ is a probability

distribution. We use L̂ to denote the vector of empirical losses of h ∈ H and D̂ to denote the matrix
of empirical disagreements. We have:

(∇f)h = 2aL̂(h, S)− 2b
∑
h′

ρ(h′)D(h, h′, S) + 2c
(
1 + ln

ρ

π

)
,

∇f = 2
(
aL̂− bD̂ρ+ c

(
1 + ln

ρ

π

))
.

H.3 Alternating optimization procedure

In our experiments, we applied an alternating optimization procedure to improve the weighting ρ of
the ensemble members as well as the parameters λ and, when considering the disagreement, γ.

Let M = |H| denote the number of ensemble members. We parameterize ρ by ρ̃ ∈ RM with
ρ = softmax(ρ̃), where ρi = exp ρ̃i∑M

j=1 exp ρ̃j
for i = 1, . . . ,M . This ensures that ρ is a proper

probability distribution and allows us to apply unconstrained optimization in the adaption of ρ.
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Because we are using uniform priors π and due to the regularization in terms of the Kullback-Leibler
divergence between ρ and π in the bounds, excluding ρi ∈ {0, 1} for each i = 1, . . . , B is not a
limitation.

Starting from uniform ρ and the corresponding optimal λ and, if applicable, γ, we looped through
the following steps: We applied iterative gradient-based optimization of ρ parameterized by ρ̃ until
the bound did not improve for 10 iterations. Then we computed the optimal λ and, in the case of the
DIS bound, γ for the optimized ρ. We stopped if the change in the bound was smaller than 10−9. We
applied iRProp+ for the gradient based optimization, a first order method with adaptive individual
step sizes [Igel and Hüsken, 2003, Florescu and Igel, 2018].

I Experiments

This section provides details on the data sets used in the experiments and provides details, additional
figures, and numerical values for the empirical evaluations: empirical evaluation of the bounds using
a standard random forest with uniform weighting (Section I.2, expanding the first experiment and
Figure 1 in the body), and optimization of the weighting of the trees (Section I.3, expanding the
second experiment and Figure 2 in the body). We also include additional experiments with reduced
bagging, where we use less data for construction of each tree in order to leave larger out-of-bag sets
for improved estimation of the second order quantities. The diagram below provides an overview of
the experiments with references to the relevant subsections.

Full Reduced

U
ni

fo
rm

O
pt

im
iz

ed

Bagging

W
ei

gh
ts

A

B

C

A Comparison of uniformly weighted random forests and random forests with optimized
weighting in the full bagging setting: Section I.3, expanding on the experiments in the body
of the paper.

B Comparison of uniformly weighted random forests with standard (full) and reduced bagging:
Section I.4.

C Comparison of random forests with optimized weighting in the full and reduced bagging
settings: Section I.4

For each experiment, we report the mean and standard deviations of 50 runs. We used standard
random forests trained on S (80% of the data) and evaluated on test set Stest (20%). 100 trees were
used for each data set, and

√
d features were considered in each split. The bounds were evaluated on

the OOB data, with uniform π and δ = 0.05.

Furthermore, Section I.5 presents an empirical evaluation of the DIS bound in the setting with only a
small amount of labeled data available and large amounts of unlabeled data. For this experiment, we
reserved part of S as unlabeled data and evaluated FO, TND and DIS. We varied the split between
labeled training data and unlabeled data and report the means and standard deviations of 20 runs for
each split.

18



Table I.1: Data set overview. cmin and cmax denote the minimum and maximum class frequency.
Dataset N d c cmin cmax Source

ADULT 32561 123 2 0.2408 0.7592 LIBSVM (a1a)
COD-RNA 59535 8 2 0.3333 0.6667 LIBSVM
CONNECT-4 67557 126 3 0.0955 0.6583 LIBSVM
FASHION-MNIST 70000 784 10 0.1000 0.1000 Zalando Research
LETTER 20000 16 26 0.0367 0.0406 UCI
MNIST 70000 780 10 0.0902 0.1125 LIBSVM
MUSHROOM 8124 22 2 0.4820 0.5180 LIBSVM
PENDIGITS 10992 16 10 0.0960 0.1041 LIBSVM
PHISHING 11055 68 2 0.4431 0.5569 LIBSVM
PROTEIN 24387 357 3 0.2153 0.4638 LIBSVM
SVMGUIDE1 3089 4 2 0.3525 0.6475 LIBSVM
SATIMAGE 6435 36 6 0.0973 0.2382 LIBSVM
SENSORLESS 58509 48 11 0.0909 0.0909 LIBSVM
SHUTTLE 58000 9 7 0.0002 0.7860 LIBSVM
SPLICE 3175 60 2 0.4809 0.5191 LIBSVM
USPS 9298 256 10 0.0761 0.1670 LIBSVM
W1A 49749 300 2 0.0297 0.9703 LIBSVM

I.1 Data sets

As mentioned, we considered data sets from the UCI and LibSVM repositories [Dua and Graff, 2019,
Chang and Lin, 2011], as well as FASHION-MNIST from Zalando Research3. We used data sets
with size 3000 ≤ N ≤ 70000 and dimension d ≤ 1000. These relatively large data sets were chosen
in order to provide meaningful bounds in the standard bagging setting, where individual trees are
trained on n = 0.8N randomly subsampled points with replacement and the size of the overlap of
out-of-bag sets is roughly n/9. An overview of the data sets is given in Table I.1.

For all experiments, we removed patterns with missing entries and made a stratified split of the data
set. For data sets with a training and a test set (SVMGUIDE1, SPLICE, ADULT, W1A, MNIST,
SHUTTLE, PENDIGITS, PROTEIN, SATIMAGE, USPS) we combined the training and test sets and
shuffled the entire set before splitting.

I.2 Standard uniformly weighted random forests

This section provides additional figures and numerical values of the bounds computed for the standard
uniformly weighted random forest using bagging (Figure 1 in the body), as well as additional statistics
for the experiments.

Figures I.4 and I.5 plot the bounds obtained by the standard random forest for the binary and multiclass
data sets respectively. Table I.2 reports the means and standard deviations for all data sets. Additional
information (randomized loss, tandem loss, etc.) is reported in Table I.3.

TND is tightest for 2 out of 7 binary data sets and 3 out of 10 multiclass data sets, while FO is tightest
for the rest. Figure I.6 plots the ratio between the empirical disagreement Eρ2 [D̂(h, h′, Sh ∩ Sh′)]
and the empirical randomized loss Eρ[L̂(h, Sh)] versus the ratio between the TND and FO bounds.
This figure shows that TND bound tends to be tighter than FO when the disagreement is large in
relation to the randomized loss. Since the amounts of data |Sh ∩ Sh′ | available for estimation of the
tandem losses are considerably smaller than the amounts of data |Sh| available for estimation of the
first order losses, the empirical disagreement has to be considerably larger than the empirical loss for
TND to take the advantage over FO. This is in agreement with the discussion provided in Sections
3.2 and 4.4.

Comparing TND to the other second order bounds, we see that TND is tighter (or almost as tight)
in all cases, except for MUSHROOM, where C1 is tighter. This is due to C1 being given in terms
of an upper bound on Eρ[L(h)] and a lower bound on Eρ2 [D(h, h′)]. With the lower bound being

3https://research.zalando.com/welcome/mission/research-projects/fashion-mnist/
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Figure I.4: Plot of the bounds for binary data sets with the standard uniformly weighted random
forests. The test losses are depicted by black lines.
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Figure I.5: Plot of the bounds for multiclass data sets with standard uniformly weighted random
forests. The test losses are depicted by black lines.

almost zero, we have C1 ≈ 2FO and since the disagreement is very low, TND ≈ 4FO. We note
that even though C1 is tighter than TND in this case, it is still much weaker than FO, because, as it
has been discussed in Section 3.2, problems with low disagreement are not well-suited for second
order bounds.

I.3 Standard random forests with optimized weights

This section contains numerical values and additional figures for the optimization experiments
provided in the second experiment in the body (Figure 2). FO was optimized using Theorem 8 and
the alternating update rules of [Thiemann et al., 2017]. For optimizing TND, we used iRProp+ [Igel
and Hüsken, 2003], see Appendix H. We denote the weights after optimization of FO and TND by
ρ∗FO and ρ∗TND, respectively.
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data sets Mushroom, Shuttle and Protein are excluded. The first two because the randomized loss is
extremely small. And the third one because the bounds are higher than 1.

Figures I.7 and I.8 show the bounds before and after optimization for binary and multiclass data sets
respectively. The FO bound achieves higher reduction after minimization, however, as illustrated in
both figures and Figure 2 in the body, this improvement comes at the cost of considerable increase of
the test loss L(MVρ∗FO

,Stest). The latter happens because FO places most of the posterior mass on a
few top classifiers and diminishes the power of the ensemble, see Figure 2b. The improvement of
the TND after minimization is more modest, but on a highly positive side it does not degrade the
classifier.
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the binary data sets. The test risk is shown in black.
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Table I.6 shows the numerical values used in Figure 2a.

I.4 Random forests with reduced bagging vs. full bagging with uniform and optimized
weights

The TND bound depends on the size of overlaps Sh ∩ Sh′ , which are used to estimate the tandem
losses and define the denominator of the bound. In order to ensure that the overlaps Sh ∩ Sh′ are not
too small, it might be beneficial to generate splits with |Sh| of at least (2/3)n, so that |Sh ∩ Sh′ | is at
least n/3. In our application to random forests we reduce the number of sampled points in bagging
from n to n/2, which increases the number of out-of-bag samples |Sh| from roughly n/3 to roughly
(2/3)n and the overlaps from roughly n/9 to n/3. We show that the corresponding decrease in |Th|
leads to a relatively small decrease of prediction quality of individual trees and improves the bounds.

We call the bagging procedure that samples n points with replacement a standard bagging or full
bagging and the procedure that samples n/2 points reduced bagging. This section presents results for
random forests trained with reduced bagging, including comparisons to the full bagging setting.

Figure I.13 compares the test risk in the full bagging and the reduced bagging settings with uniform
and optimized weights. In both uniform and optimized weights we see a limited increase (and in a
few cases even a small decrease) in test risk when reducing the amount of data sampled in bagging,
indicating that reduced bagging has relatively minor impact on the quality of a uniformly weighted
ensemble. At the same time, Figures I.14, I.9, I.10, I.11, and I.12 show that the bounds are improved
in most cases, sometimes considerably.
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Table I.4 reports the means and standard deviations for all data sets. Additional information (random-
ized loss, tandem loss, etc.) is reported in Table I.5. Table I.7 reports the performance of the final
majority vote with and without optimized weights.
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Figure I.9: Comparison of the bounds in the full (not dotted) and reduced bagging (dotted) setting
with uniform weighting for binary data sets. The test risk is shown in black.

I.5 DIS bound vs. TND bound in presence of unlabeled data

In this section we compare the tightness of the TND and DIS bounds in a setting, where a lot of
unlabeled data is available.

We considered the largest binary data sets (N > 8000) from Table I.1. As in the previous setting, 20%
of the data, Stest, was reserved for testing. The remaining 80%, were split with a fraction r ∈ [0, 1]
of patterns S used for training, and a fraction (1 − r) set aside as unlabeled patterns, Su. Forests
with 100 trees were trained with bagging, using the Gini criterion for splitting and considering

√
d

features in each split. We considered values of r ∈ {0.05, 0.1, ..., 0.5}. For each split, we repeated
the experiment 20 times.

Figure I.15 plots the test risk and FO, TND and DIS bounds as a function of r. For each data set, the
mean and standard deviation over 20 runs are plotted. In agreement with the discussion in Section 4.4,
DIS had the highest advantage over TND when the amount of unlabeled data relative to labeled data
was the largest. As the amount of unlabeled data relative to labeled data was decreasing the difference
between the bounds became smaller, with TND eventually overtaking DIS in most cases.
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Table I.3: Statistics for each data set when using bagging. We use the following short-hand: Eρ[L̂] =
Eρ[L̂(h, Sh)], Eρ2 [D̂] = Eρ2 [D̂(h, h′, Sh ∩ Sh′)], Eρ2 [L̂] = Eρ2 [L̂(h, h′, Sh ∩ Sh′)]
Dataset L̂(MV,Stest) Eρ[L̂] min |Sh| Eρ2 [D̂] Eρ2 [L̂] min |Sh ∩ Sh′ |
ADULT 0.16941 0.20851 9459.96 0.17422 0.12138 3359.92
COD-RNA 0.04018 0.08456 17348.12 0.10315 0.03298 6228.60
CONNECT-4 0.17120 0.29985 19697.48 0.34343 0.15527 7077.06
FASHION-MNIST 0.11752 0.23465 20410.22 0.28396 0.12142 7335.90
LETTER 0.03602 0.18644 5785.64 0.26280 0.08995 2032.40
MNIST 0.03144 0.18663 20416.56 0.27435 0.07668 7337.68
MUSHROOM 0.00000 0.00019 2327.40 0.00036 0.00001 797.00
PENDIGITS 0.00854 0.06403 3158.70 0.10004 0.01828 1095.48
PHISHING 0.02916 0.05097 3178.92 0.05747 0.02224 1100.30
PROTEIN 0.32959 0.53934 7065.98 0.59019 0.31349 2497.42
SVMGUIDE1 0.03129 0.04606 869.08 0.04601 0.02297 284.54
SATIMAGE 0.08386 0.16636 1837.52 0.19830 0.08061 623.54
SENSORLESS 0.00131 0.02193 17049.78 0.03845 0.00318 6112.32
SHUTTLE 0.00015 0.00069 16899.58 0.00097 0.00023 6055.44
SPLICE 0.02957 0.17561 895.60 0.25165 0.04976 293.14
USPS 0.03820 0.15736 2668.56 0.22115 0.06944 916.28
W1A 0.01108 0.01852 14483.72 0.01695 0.01005 5176.26
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Table I.5: Statistics for each data set when using reduced bagging. We use the following short-hand:
Eρ[L̂] = Eρ[L̂(h, Sh)], Eρ2 [D̂] = Eρ2 [D̂(h, h′, Sh ∩ Sh′)], Eρ2 [L̂] = Eρ2 [L̂(h, h′, Sh ∩ Sh′)]
Dataset L̂(MV,Stest) Eρ[L̂] min |Sh| Eρ2 [D̂] Eρ2 [L̂] min |Sh ∩ Sh′ |
ADULT 0.16370 0.21105 15702.72 0.19390 0.11409 9401.66
COD-RNA 0.04346 0.09649 28763.86 0.12166 0.03566 17277.52
CONNECT-4 0.17716 0.31235 32643.02 0.35965 0.16125 19614.80
FASHION-MNIST 0.12258 0.24472 33827.88 0.29624 0.12725 20337.04
LETTER 0.04326 0.22119 9630.06 0.30819 0.11160 5745.70
MNIST 0.03553 0.20590 33828.08 0.30029 0.08716 20331.38
MUSHROOM 0.00000 0.00057 3894.98 0.00104 0.00005 2299.78
PENDIGITS 0.01052 0.07817 5276.38 0.12164 0.02289 3127.52
PHISHING 0.03009 0.06443 5308.52 0.07962 0.02464 3146.54
PROTEIN 0.33413 0.54520 11746.54 0.59434 0.31870 7019.70
SVMGUIDE1 0.03006 0.04796 1470.06 0.05098 0.02247 853.08
SATIMAGE 0.09063 0.17665 3080.48 0.21070 0.08664 1813.18
SENSORLESS 0.00187 0.03000 28265.20 0.05216 0.00462 16971.34
SHUTTLE 0.00024 0.00101 28014.66 0.00144 0.00034 16823.72
SPLICE 0.03398 0.19427 1511.18 0.27746 0.05557 876.88
USPS 0.04385 0.17617 4458.86 0.24642 0.07926 2636.72
W1A 0.01121 0.01991 24022.24 0.01957 0.01013 14412.94

Dataset L̂(MVu,Stest) L̂(MVρ∗FO
,Stest) L̂(MVρ∗TND

,Stest)

ADULT 0.16941 (0.00303) 0.19136 (0.01335) 0.17004 (0.00313)
COD-RNA 0.04018 (0.00150) 0.07193 (0.00530) 0.03963 (0.00138)
CONNECT-4 0.17120 (0.00204) 0.28148 (0.01407) 0.17123 (0.00202)
FASHION-MNIST 0.11752 (0.00228) 0.20678 (0.03283) 0.11895 (0.00222)
LETTER 0.03602 (0.00315) 0.14998 (0.03493) 0.03784 (0.00336)
MNIST 0.03144 (0.00134) 0.16014 (0.03238) 0.03223 (0.00137)
MUSHROOM 0.00000 (0.00000) 0.00000 (0.00000) 0.00000 (0.00000)
PENDIGITS 0.00854 (0.00183) 0.04752 (0.01515) 0.00856 (0.00168)
PHISHING 0.02916 (0.00356) 0.03865 (0.00649) 0.02935 (0.00355)
PROTEIN 0.32959 (0.00500) 0.49377 (0.03958) 0.33402 (0.00578)
SVMGUIDE1 0.03129 (0.00628) 0.03786 (0.00764) 0.03120 (0.00637)
SATIMAGE 0.08386 (0.00716) 0.13876 (0.02631) 0.08437 (0.00711)
SENSORLESS 0.00131 (0.00034) 0.01304 (0.00298) 0.00118 (0.00029)
SHUTTLE 0.00015 (0.00011) 0.00022 (0.00015) 0.00013 (0.00011)
SPLICE 0.02957 (0.00798) 0.11257 (0.02121) 0.03005 (0.00769)
USPS 0.03820 (0.00395) 0.12554 (0.03381) 0.03954 (0.00417)
W1A 0.01108 (0.00081) 0.01586 (0.00279) 0.01106 (0.00081)

Table I.6: Test risks computed when using different bounds for optimizing ρ. Best risk achieved
overall is marked in bold, while best risk achieved by optimization is marked with underline.
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Dataset L̂(MVu,Stest) L̂(MVρ∗FO
,Stest) L̂(MVρ∗TND

,Stest)

ADULT 0.16370 (0.00322) 0.19592 (0.01385) 0.16427 (0.00337)
COD-RNA 0.04346 (0.00158) 0.07990 (0.00725) 0.04282 (0.00167)
CONNECT-4 0.17716 (0.00238) 0.29161 (0.01928) 0.17698 (0.00211)
FASHION-MNIST 0.12258 (0.00244) 0.23242 (0.01962) 0.12367 (0.00262)
LETTER 0.04326 (0.00374) 0.19865 (0.02292) 0.04613 (0.00341)
MNIST 0.03553 (0.00153) 0.18514 (0.02914) 0.03662 (0.00164)
MUSHROOM 0.00000 (0.00000) 0.00000 (0.00000) 0.00000 (0.00000)
PENDIGITS 0.01052 (0.00164) 0.06012 (0.01572) 0.01070 (0.00174)
PHISHING 0.03009 (0.00364) 0.05129 (0.00849) 0.02958 (0.00370)
PROTEIN 0.33413 (0.00552) 0.51822 (0.02526) 0.33895 (0.00504)
SVMGUIDE1 0.03006 (0.00541) 0.03845 (0.00701) 0.03126 (0.00532)
SATIMAGE 0.09063 (0.00713) 0.15094 (0.02514) 0.09114 (0.00690)
SENSORLESS 0.00187 (0.00038) 0.01819 (0.00269) 0.00171 (0.00040)
SHUTTLE 0.00024 (0.00011) 0.00035 (0.00020) 0.00016 (0.00012)
SPLICE 0.03398 (0.00759) 0.12252 (0.02238) 0.03657 (0.00857)
USPS 0.04385 (0.00457) 0.14450 (0.02630) 0.04534 (0.00418)
W1A 0.01121 (0.00068) 0.01572 (0.00234) 0.01117 (0.00078)

Table I.7: Test risks computed when using different bounds for optimizing ρ for random forest trained
using reduced bagging. Best risk achieved overall is marked in bold, while best risk achieved by
optimization is marked with underline.
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