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Abstract

To operate effectively in the real world, agents should be able to act from high-
dimensional raw sensory input such as images and achieve diverse goals across long
time-horizons. Current deep reinforcement and imitation learning methods can
learn directly from high-dimensional inputs but do not scale well to long-horizon
tasks. In contrast, classical graphical methods like A* search are able to solve
long-horizon tasks, but assume that the state space is abstracted away from raw
sensory input. Recent works have attempted to combine the strengths of deep
learning and classical planning; however, dominant methods in this domain are
still quite brittle and scale poorly with the size of the environment. We introduce
Sparse Graphical Memory (SGM), a new data structure that stores states and
feasible transitions in a sparse memory. SGM aggregates states according to a
novel two-way consistency objective, adapting classic state aggregation criteria
to goal-conditioned RL: two states are redundant when they are interchangeable
both as goals and as starting states. Theoretically, we prove that merging nodes
according to two-way consistency leads to an increase in shortest path lengths that
scales only linearly with the merging threshold. Experimentally, we show that SGM
significantly outperforms current state of the art methods on long horizon, sparse-
reward visual navigation tasks. Project video and code are available at https:

//mishalaskin.github.io/sgm/.

1 Introduction

Learning-driven approaches to control, like imi-
tation learning and reinforcement learning, have
been quite successful in both training agents to
act from raw, high-dimensional input [34] as
well as to reach multiple goals by condition-
ing on them [1, 35]. However, this success has
been limited to short horizon scenarios, and scal-
ing these methods to distant goals remains ex-
tremely challenging. On the other hand, clas-
sical planning algorithms have enjoyed great
success in long-horizon tasks with distant goals
by reduction to graph search [18, 25]. For in-
stance, A* was successfully used to control
Shakey the robot for real-world navigation over
five decades ago [7]. Unfortunately, the graph
nodes on which these search algorithms operate
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Figure 1: [llustration of Sparse Graphical Memory
(SGM). New states are either merged with existing
graph nodes according to our two-way consistency
criterion, or a new node is generated. After graph
construction, incorrect edges representing infeasi-
ble transitions are corrected.
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(a) Node merging example (b) Node creation example

Figure 2: Examples where two-way consistency (TWC) merges nodes (left) and creates a new node
(right). Consider a directed graph with three nodes connected as A <+ B — C. Given a new image
in the dashed yellow box, should it be merged into an existing node or a new node be created? (a) On
the left, we can merge the new image with node A safely. (b) On the right, the new image D contains
a bottle which is about to fall off the table edge. While B is perceptually similar to the new image,
the agent cannot move the bottle from D to A, but it can move from B to A. As we cannot transition
to neighbors in the same manner, our TWC criterion is not satisfied and a new node is created.

is abstracted away from raw sensory data via domain-specific priors, and planning over these nodes
assumes access to well-defined edges as well as a perfect controller to move between nodes. Hence,
these planning methods struggle when applied to agents operating directly from high-dimensional,
raw-sensory images [32].

How can we have best of both worlds, i.e., combine the long-horizon ability of classic graph-based
planning with the flexibility of modern, parametric, learning-driven control? One way is to build a
graph out of an agent’s experience in the environment by constructing a node for every state and use a
learning-based controller (whether RL or imitation) to move between those nodes. Some recent work
has investigated this combination in the context of navigation [9, 41]; however, these graphs grow
quadratically in terms of edges and quickly become unscalable beyond small mazes [9]. This strategy
either leads to extremely brittle plans because such large graphs contain many errors (infeasible
transitions represented by edges), or relies on human demonstrations for bootstrapping [41].

In this work, we propose to address challenges in combining the classical and modern paradigms by
dynamically sparsifying the graph as the agent collects more experience in the environment to build
what we call Sparse Graphical Memory (SGM), illustrated in Figure 1. In fact, building a sparse
memory of key events has long been argued by neuroscientists to be fundamental to animal cognition.
The idea of building cognitive topological maps was first demonstrated in rats by seminal work of [47].
The key aspect that makes building and reasoning over these maps feasible in the ever-changing,
dynamic real world is the sparse structure enforced by landmark-based embedding [12, 14, 48]. Yet,
in artificial agents, automatic discovery of sparse landmark nodes remains a key challenge.

One way to discover a sparse graph structure is to dynamically merge similar nodes. But how does one
obtain a similarity measure? This is a subtle but central piece of the puzzle. States that look similar
in the observation space may be far apart in the action space, and vice-versa. Consider the example
in Figure 2, where the graph already contains 3 nodes {4, B, C'}. In 2a, similar looking nodes can
be merged safely. While in 2b, although the new node D is visually similar to B, but merging with
B would imply that the bottle can be saved from breaking. Therefore, a purely visual comparison
of the scenes cannot serve as a viable metric. We propose to use an asymmetric distance function
between nodes and employ two-way consistency (TWC) as the similarity measure for merging nodes
dynamically. The basic idea is that two nodes are similar if they both can be reached with a similar
number of steps from all their neighbors as well as if all their neighbors can be reached from both
of them with similar effort. For our conceptual example, it is not possible to go back from the
falling-bottle to the standing-bottle, and hence the two-way consistency does not align for scene B
and the new state. Despite similar visual appearance, they will not be merged. We derive two-way
consistency as an extension of prior Q-function based aggregation criteria to goal-conditioned tasks,
and we prove that the sparse graphs that result from TWC preserve (up to an error factor that scales
linearly with the merging threshold) the quality of the original dense graphs.

We evaluate the success of our method, SGM, in a variety of navigation environments. First, we
observe in Table 1 that SGM has a significantly higher success rate than previous methods, on average
increasing the success rate by 2.1x across the environments tested. As our ablation experiments
demonstrate, SGM’s success is due in large part to its sparse structure that enables efficient correction



of distance metric errors. In addition, we see that the performance gains of SGM hold across a range
of environment difficulties from a simple point maze to complex visual environments like ViZDoom
and SafetyGym. Finally, compared to prior methods, planning with our proposed sparse memory can
lead to nearly an order of magnitude increase in speed (see Appendix E).

2 Related work

Planning is a classic problem in artificial intelligence. In the context of robotics, RRTs [25] use
sampling to construct a tree for path planning in configuration space, and SLAM jointly localizes the
agent and learns a map of the environment for navigation [2, 8]. Given an abstract, graphical repre-
sentation of an environment, Dijkstra’s Algorithm [6] generalizes breadth-first search to efficiently
find shortest paths in weighted graphs, and the use of a heuristic function to estimate distances, as
done in A* [18], can improve computational efficiency.

Beyond graph-based planning, there are various parametric approaches to planning. Perhaps the
most popular planning framework is model predictive control (MPC) [13]. In MPC, a dynamics
model, either learned or known, is used to search for paths over future time steps. To search for paths,
planners solve an optimization problem that aims to minimize cost or, equivalently, maximize reward.
Many such optimization methods exist, including forward shooting, cross-entropy, collocation, and
policy methods [17, 40]. The resulting agent can either be open-loop and just follow its initial plan,
or it can be closed-loop and replan at each step.

Aside from MPC, a variety of reinforcement learning algorithms, such as policy optimization and
Q-learning, learn a policy without an explicit dynamics model [27, 33, 43, 44]. In addition to learning
a single policy for a fixed goal, some methods aim to learn hierarchical policies to decompose complex
tasks [22, 36, 42], and other methods aim to learn goal-conditioned policies able to reaching arbitrary
goals. Parametric in nature, these model-free approaches are highly flexible, but, as does MPC with a
learned dynamics model, they struggle to plan over long time horizons due to accumulation of error.

Recent work combines these graph-based and parametric planning approaches by using past observa-
tions for graph nodes and a learned distance metric for graph edges. Variations of this approach include
Search on the Replay Buffer [9], which makes no attempt to sparsify graph nodes; Semi-Parametric
Topological Memory [41], which assumes a demonstration to bootstrap the graph; Mapping State
Space Using Landmarks for Universal Goal Reaching [20], which subsamples the policy’s past
training observations to choose graph nodes; and Composable Planning with Attributes [50], which
stores abstracted attributes on each node in the graph. Hallucinative Topological Memory (HTM) [28]
uses a contrastive energy model to construct more accurate edges, and [45] use dynamic programming
for planning with a learned graph.

In contrast to the methods listed above, the defining feature of our work is a two-way consistency
check to induce sparsity. Previous work either stores the entire replay buffer in a graph, limiting
scalability as the graph grows quadratically in the number of nodes, or it subsamples the replay buffer
without considering graph structure. Moreover, Neural Topological SLAM [4] assumes access to
a 360°camera and a pose sensor whereas we do not. In [5], the nodes in the graph are manually
specified by humans whereas we automatically abstract nodes from the data. In contrast to our
method, the work in [31] has no theoretical guarantees, requires trajectories rather than unordered
observations, and uses human demonstrations.

Prior work has proposed MDP state aggregation criteria such as bisimulation metrics that compare the
dynamics at pairs of states [11, 15] and Utile distiction [30] that compares value functions. Because
bisimulation is a strict criterion [26] that would not result in meaningful sparsity in the memory,
our proposed two-way consistency criteria adapts approximate value function irrelevance [21] to
goal-conditioned settings and high-dimensional observations.

3 Preliminaries

We consider long-horizon, goal-conditioned tasks. At test time, an agent is provided with its starting
state St and a goal state sgo., and the agent seeks to reach the goal state via a sequential decision
making process. Many visual tasks can be defined by a goal state such as an image of a goal location
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Figure 3: Execution using a graphical memory. In localization, the agent finds the closest node using
discrepancies in the asymmetric distance function. In planning, the agent uses Dijkstra’s algorithm to
find the shortest path. (For simplicity, this illustration omits the direction of edges.) In path following,
the agent may divergence from the waypoints or experience a transition failure. The agent then needs
to correct the memory, relocalize, and replan.
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for navigation. Our task is an instance of undiscounted finite-horizon goal-conditioned RL in which
the agent receives a -1 living reward until it reaches a given goal.

To reach distant goals, we use a semi-parametric, hierarchical agent that models feasible transitions
with a nonparametric graph (i.e. graphical memory) to guide a parametric low-level controller.

Nodes in the graphical memory are prior states encountered by the agent, connected through a learned
distance metric. Once the graphical memory is constructed, the agent can plan using a graph search
method such as Dijkstra’s algorithm [6] and execute plans with a low-level controller learned with
reinforcement learning or imitation learning [9, 41]; see Figure 3. Therefore, given a final goal, the
high-level planner acts as a policy that provides waypoints, nodes along the shortest path, to the
low-level controller, and updates the plan as the low-level agent moves between waypoints:

7" uses Q" (s, a = w|g) to select a graph waypoint w to reach the final goal g

7'l uses Q" (s, alw) to take an environment step a to reach the waypoint w.

As the agent receives an undiscounted -1 living reward, the optimal low-level value function measures
the number of steps to reach a waypoint, i.e. the distance d(s,w) = — max, Q" (s, a|w).

The main challenge with the above semi-parametric formalism is the detrimental effect of errors in
the graphical memory. Since nodes are connected by an approximate metric, the number of errors in
the graph grows as O(|V|?) where |V| is the number of graph nodes. Moreover, in order for graphical
memory methods to scale to larger environments, it is infeasible to store every state encountered in
the graph as done in prior work [9, 41]. For the above reasons, node sparsity is a desirable feature
for any graphical memory method. In this work, we seek to answer the following research question:
given a dense graphical memory, what is the optimal algorithm for transforming it into a sparse one?

4 Sparse Graphical Memory

The number of errors in graphical memory can be minimized by removing redundant states, as each
state in the memory can introduce several infeasible transitions through its incident edges. Any
aggregation algorithm must answer a key question: when can we aggregate states?

Sparse Graphical Memory is constructed from a buffer of exploration trajectories by retaining the
minimal set of states that fail our two-way consistency aggregation criterion. In Sec. 4.1, we introduce
this two-way consistency criterion, which extends prior work to the goal-conditioned RL setting. We
then prove that as long as a sparsified graph satisfies two-way consistency, plans in the sparsified
graph are close to the optimal plan in the original graph. In Sec. 4.2, we design an online algorithm
for checking two-way consistency by selecting the approximate minimal set from the replay buffer.
Finally, in Sec. 4.3, we outline a cleanup procedure for removing remaining infeasible transitions.



4.1 State aggregation via two-way consistency

As a state aggregation criterion, prior work argues for S
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However, in the goal-conditioned setting, we face a chal- C in (51 , 52)
lenge: the states in the memory define the action space
of the high-level policy, i.e. the waypoints selected by Figure 4: SGM uses a two-way consis-
the graph planner. Aggregating states changes the action tency criterion to find redundant pairs of
space by removing possible waypoints. states in the replay buffer.

In order to extend value irrelevance to the goal-

conditioned setting, we propose two-way consistency (TWC). Under two-way consistency, two
states are redundant if they are both interchangeable as goals and interchangeable as starting states
according to the goal-conditioned value function.

The graph planner acts as a nonparametric high-level policy, selecting a waypoint w for the low-level
controller as an intermediate goal. Then, the action space is given by candidate waypoints. Formally,
using the optimal value function of the high-level policy, states s; and s, are interchangeable as
starting states if

max!th(sl,a:w\g)—th(SQ,a:w\g)| < 7. ()

Then, as 7, — 0, the high-level policy will behave the same in both states. Equation (1) can be seen
as verifying that the sparsification is a 7,-approximate ()-irrelevant abstraction [21] given a fixed set
of waypoints as actions. Further, we say that states s; and s, are interchangeable as waypoints for
the purposes of planning if

H}q%X|th(50,a:51\9)*th(50,a:52|g)| < 7o (2

As a consequence, eliminating s from the memory and thus from the action space will not incur a
loss in value at any starting state as the policy can select s; instead. Together, (1) and (2) form the
two directions of our two-way consistency criterion in the high-level value space.

While we have motivated two-way consistency in terms of Q" as 7, — 0, it furthermore holds that
two-way consistency gives a meaningful error bound for any asymmetric distance function d(-, -)
satisfying Coyz(81, 82) < 7, and Cyy, (81, $2) < 7, for any finite 7, where

Cout(81,82) := max |d(s1,w) — d(s2,w)| and Cyy (81, 52) := max |d(s0,81) —d(s0,82)]. (3)

The following theorem shows that aggregating states according to two-way consistency of d(, -)
incurs a bounded increase in path length that scales linearly with 7,. Furthermore, given an error
bound on the distance function d(-, -), it provides an error bound on distances in the sparsified graph.

Theorem 1. Let Gg be a graph with all states from a replay buffer B and weights from a distance
Sunction d(-,-). Suppose Grw ¢ is a graph formed by aggregating nodes in G according to two-way
consistency Coyr and Cyy, < To. For any shortest path Pry ¢ in Gy o, consider the corresponding
shortest path Pg in Gg that connects the same start and goal nodes. Suppose P has k edges. Then:

(i) The weighted path length of Pry ¢ minus the weighted path length of Pg is no more than 2k,

(ii) Furthermore, if d(-,-) has error at most ¢, the weighted path length of Pryy ¢ is within ke+2kT,,
the true weighted distance along Pp.

Theorem 1 is proved in Appendix D. We emphasize that it makes no assumptions on the distance
function, but relies on both directions of our criterion. This distance can be derived from the value
function by negation or learned in a supervised manner, depending on the application. According
to Theorem 1, we can aggregate pairs of states that satisfy two-way consistency without leading to
significantly longer plans (only a constant increase). Since two-way consistency is approximate, at
the same time, it also leads to more sparsity than restrictive criteria like bisimilarity.

In contrast to two-way consistency, a naive strategy like random subsampling of the replay buffer
does not provide a guarantee without further assumptions on the exploration data such as an even



Algorithm 1 BuildSparseGraph

Input: replay buffer 3, distance function d
Output: sparse graph G = (V,E, W)
Initialize empty vertex set V = ()
for s € B, each state in the replay buffer, do
if state is novel according to TWC, i.e. C;y,(s,8) < 74, Cout(s,5) < 7, Vs € V then
add the state § to the graph G:
Y =VUuU{s}
E=EU{(s,8):s€V,d(s,§) <MaxDist} U{(8,s):s€V,d(8s) < MAXDIST}
end if
end for
. assign weights W(s;, s;) = d(si, s;) V(si,s5) € €
. filter transition set £ to k nearest neighbors
s return G = (V,E, W)
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coverage of the state space. For example, when randomly subsampling the buffer, a rarely visited
bottleneck state will be dropped with the same probability as states in frequently visited regions. As
multiple states can be covered by the same state, two-way consistency is a prioritized sparsification
of the replay buffer that seeks to cover the environment regardless of sampling density.

4.2 Constructing the graph from a replay buffer

State aggregation can be seen as an instance of set cover, a classic subset selection problem. In our
instantiation, we select a subset of the states in the replay buffer to store in the agent’s memory so that
all states in the replay buffer are “covered”. Coverage is determined according to the state aggregation
criterion, two-way consistency (3). Unfortunately, set cover is a combinatorial optimization problem
that is NP-hard to solve exactly, or even to approximate to a constant factor [10, 29, 39].

Motivated by the difficulty of the set cover problem, we propose an online, greedy algorithm for
replay buffer subset selection. The graphical memory is built via a single pass through a replay buffer
of experience according to Algorithm 1, which requires quadratically many evaluations of the TWC
criterion. In particular, a state is only recorded if it is novel according to the two-way consistency
criterion. Once a state is added to the graph, we create incoming and outgoing edges, and set the edge
weight to the distance.

4.3 Graphical memory cleanup

Although TWC produces a compact graph with substantially fewer errors than the original graphical
memory, faulty edges may still remain. If even one infeasible transition between distant states remains
as an edge in the graph, the planner will exploit it, and the agent will not be able to carry out the
plan [9]. Therefore, eliminating faulty edges is key for robustness.

We bound the number of errors in the memory by filtering edges, limiting nodes to their k£ nearest
successors. After filtration, the worst-case number of untraversable edges grows only linearly
in the sparsified node count, not quadratically. This is a simple, inexpensive procedure that we
experimentally found removes many of the infeasible transitions.

Finally, we propose a novel self-supervised error removal technique — cleanup. During test-time
execution, a random goal g is sampled and the planner provides a set of waypoints w for the low-level
agent. When the low-level agent is unable to reach a consecutive waypoint w; — w;4 1, it removes the
edge between (w;, w;+1) and re-plans its trajectory. This procedure is efficient for a TWC sparsified
graph since |Grwe| < |Gs].

S Experimental Setup

We evaluate SGM under two high-level learning frameworks: reinforcement learning (RL), and
self-supervised learning (SSL). As a general data structure, SGM can be paired with any learned
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Figure 5: The three environments used for testing SGM. PointEnv is a small maze with coordinate
observations. We increase its difficulty by thinning the walls. ViZDoom is a large environment,
which can take up to 5 minutes and 5k steps to traverse entirely. ViZDoom actions are discrete and
observations are first-person camera views. SafetyGym is another large environment with first-person
view observations, and supports continuous actions.

TECHNIQUE SUCCESS RATE  CLEANUP STEPS  OBSERVATION ENv
SORB 28.0 £6.3% 400K PROPRIO POINTENV
SORB + SGM 100.0 £ .1% 400K PROPRIO POINTENV
SPTM 39.34+£4.0% - VISUAL ViZDooM
SPTM + SGM 60.7 + 4.0% 114K VISUAL ViZDooM
CONSPTM 68.2 +£4.1% 1M VISUAL SAFETYGYM
CONSPTM + SGM 92.9 + 1.4% 1M VISUAL SAFETYGYM

Table 1: SGM boosts performance of all existing state-of-the-art semi-parametric graphical methods.

image features, asymmetric distance metric, or low-level controller. Below, we describe our training
procedure in detail.

We benchmark against the two available environments used by the SORB and SPTM baselines, and
an additional visual navigation environment. These range in complexity and are shown in Figure 5.
The environment descriptions are as follows: PointEnv[9] continuous control of a point-mass in a
maze used in SORB. Observations and goals are positional (x, y) coordinates. ViZDoom[49] discrete
control of an agent in a visual maze environment used in SPTM. Observations and goals are images.
SafetyGym[38] continuous control of an agent in a visual maze environment. Observations and
goals are images, though odometry data is available for observations but not for goals.

We utilize the PointEnv maze for RL experiments, where SGM is constructed using undiscounted
Q-functions with a sparse reward of 0 (goal-reached) and —1 (goal not reached). We increase the
difficulty of this environment by thinning the walls in the maze, which exposes errors in the distance
metric since two nearby coordinates may be on either side of a maze wall. SoRB also ran visual
experiments on the SUNCG houses data set [46], but these environments are no longer public.

To evaluate SGM in image-based environments, we use the ViZDoom navigation environment and
pretrained networks from SPTM. In addition, we evaluate navigation in the OpenAl SafetyGym
[37]. In both environments, the graph is constructed over visual first-person view observations in a
large space with obstacles, reused textures, and walls. Such observations pose a real challenge for
learning distance metrics, since they are both high-dimensional and perceptually aliased: there are
many visually similar images that are temporally far apart. We also implemented state-of-the-art
RL algorithms without the graphical planner, such as DDPG [27] and SAC [16] with Hindsight
Experience Replay [1], but found that these methods achieved near-zero percent success rates on all
three environments, and were only able to reach nearby goals. For this reason, we did not include
these baselines in our figures.

6 Results

SGM increases robustness of plans: We compare how SGM performs relative to prior neural
topological methods in Table 1. SGM sets a new state-of-the-art in terms of success rate on all
three environments tested and, on average, outperforms prior methods by 2.1x. In fact, thinning the
walls in the PointEnv maze breaks the policy from the SoRB baseline because it introduces faulty edges
through the walls. SORB is not robust to these faulty edges and achieves a 28% score even after 400k
steps of self-supervised cleanup. SGM, on the other hand, is able to remove faulty edges by merging
according to two-way consistency and performing cleanup, robustly achieving a 100% success rate.
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TECHNIQUE <200M <400M < 600 M OVERALL
RANDOM ACTIONS 58.0% 21.5% 12.0% 30.5%
VISUAL CONTROLLER 75.0% 34.5% 18.5% 42.7%
SPTM, SUBSAMPLED OBSERVATIONS 70.0% 34.0% 14.0% 39.3%
SPTM + SGM + 54K CLEANUP STEPS 88.0% 52.0% 26.0% 55.3%
SPTM + SGM + 114K CLEANUP STEPS 92.0% 64.0% 26.0% 60.7 %

Table 2: SGM improves graph-based success rates across goal difficulties in ViZDoom. More cleanup
steps yield better performance because more infeasible transitions are removed from the graph.

Similarly, in visual environments, the sparse graph induced by SGM produces significantly more
robust plans than the SPTM baselines. While SGM solves the SafetyGym environment with a 96.6%
success rate, it navigates to only 60.7% of goals in ViZDoom. Note that this VizDoom success rate is
lower than in [41] because [41] uses human demonstrations whereas we do not. We found that the
primary source of error in VizDoom was due to perceptual aliasing where two perceptually similar
observations are actually far apart. For further details, see Appendix B.

We examine SGM performance with and with-
out cleanup. Figure 6 shows that success rapidly
increases as the sparse graph is corrected. How-
ever, without sparsity, the number of errors is
too large to quickly correct. Success rates in
Table 3 show that sparsity-enabled cleanup is
essential for robust planning and that cleanup
improves mean performance by 2.4x.
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We also study success as a function of goal dif-
ficulty in Table 2, where difficulty is determined
by the ground-truth distance between the ini-
tial agent’s position and its goal. Even with
cleanup, performance degrades with goal dif-
ficulty, which is likely the result of perceptual
aliasing causing faulty edges (Appendix B).

Cleanup Timesteps (Millions)
Figure 6: Success rate as a function of cleanup
steps in PointEnv (FourRooms maze) and Safe-
tyGym. SGM is rapidly corrected while SoRB,
because of errors in its dense graph, is infeasible
to clean. SPTM can be cleaned, but only slowly.

Two-way consistency is the preferred sub- CRITERION  W/O CLEANUP W/ CLEANUP
sampling strategy: We ablate different sub- UNIFORM 312+3.8% 64.6%+34%
sampling strategies to examine the source of our PERCEPTUAL 31 .8 + 3.6% 77'0 T 2'5%
performance gains. We compare SGM with two- INCOMING 33.6 T 3' 1% 84'1 T 2'0%
way consistency with variants of SGM with one- OUTGOING 28'7 + 3'2% 86.8 T 2'9%
way consistency, where connectivity between i i i .

two nodes is determined by only checking either =~ TWO WAY 38.2+3.8% 92.9+1.2%

incoming or outgoing distance function values,
as well as a simple random subsampling strategy
where a subset of nodes and edges are uniformly
removed from the dense graph. Table 3 shows
success rates for a SafetyGym navigation task before cleanup and after 1M steps of cleanup. Before
cleanup, all plans perform poorly with a maximum 38.2% success rate achieved by two-way SGM.
After cleanup the SGM variants significantly outperform a naive uniform subsampling strategy, and
subsampling with two-way consistency achieves the highest success rate before and after cleanup.

Table 3: Comparing node subsampling strategies
in SafetyGym. Two-way consistency improves
success rate relative to other criteria.

Investigation of two-way consistent graph quality: We further investigate how individual com-
ponents of two-way consistent SGM affect final graph and plan quality. In Figure 7 (left), we display
the total edge count for various edge lengths in the ViZDoom graphical memory after different steps
of the SGM algorithm. Since nodes should only be connected locally, long edges are most likely to be
faulty, representing infeasible transitions. Although the different components of the SGM algorithm
all help reduce errors, two-way consistency removes the most incorrect edges from the original
dense graph while preserving the most correct edges.

Finally, in Figure 7 (right) we display the average number of steps required for different agents to
reach their goal in ViZDoom. The average is only taken over successful paths, and the dotted line
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Figure 7: (Left) Overlayed histograms of edge lengths for graphical memories in ViZDoom, where
long edges are incorrect. Graph quality significantly improves with SGM, which reduces the frequency
of long edges. (Right) SGM reaches goals using the fewest environment steps (shortest path length).

shows the maximum number of steps allowed. We show that, on average, agents equipped with
sparse graphical memory take the fewest steps to reach their goals compared to other methods. This
suggests that shorter paths are another reason for improved success relative to other methods.

7 Conclusion

In this work, we proposed a new data structure: an efficient, sparse graphical memory that allows
an agent to consolidate many environment states, model its capability to traverse between states,
and correct errors. In a range of difficult visual and coordinate-based navigation environments,
we demonstrate significantly higher success rates, shorter rollouts, and faster execution over dense
graph baselines and learned controllers. We showed that our novel two-way consistency aggregation
criterion is critical to this success, both theoretically and empirically. We hope that this direction
of combining classic search-based planning with modern learning techniques will enable efficient
approaches to long-horizon sensorimotor control tasks. In particular, we see scaling sparse graphical
memory to challenging manipulation tasks as a key outstanding challenge for future work.

Broader impact

Interpretability To build trust in deep RL systems, users would, ideally, be able to interrogate
the system: “What is the deep RL system going to do? Why?” With state-of-the-art model-free
approaches such as proximal policy optimization [44], it is not possible to answer these questions —
the policy network is a black box. The explicit graphical plans produced by SGM, in contrast, can
provide a partial answer to these questions. The future nodes in a plan given by SGM indicate what it
is attempting to do, and errors in an overall plan can be debugged by tracing them to individual faulty
edges in the graph. For this reason, we see graphical planning methods such as SGM as advantageous
for the trust and interpretability of deep RL systems relative to model-free methods.

Safety SGM assumes that the agent’s only reward signal is an indication of whether or not the
current state satisfies the goal. This problem formulation ignores potential damage that could be
caused during the intermediate steps taken to reach the goal, which, depending on the application,
could be significant. Designing an RL agent that can safely explore and reach goals in its environment
is a fundamental challenge for the entire field.

Real-world applications While methods for long-horizon RL are highly general, such as the
method we present in this paper, the most immediate potential applications of our method are in
robotics. Completely solving the problem formulation in this paper, long-horizon control from high-
dimensional input with sparse reward, would have wide-sweeping impact across robotic applications.
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