
Appendix

A Expression for K(d)

The K
(d) matrix is computed by the recursion in (2).

K̃
(1)(s, s0) = ⌃(1)(s, s0) = ⌃(s, s0),M (l)

ss0 =

⌃(l)(s, s) ⌃(l)(s, s0)
⌃(l)(s0, s) ⌃(l)(s0, s0)

�
2 R2

,

⌃(l+1)(s, s0) = 2 · E
(q,q0)⇠N(0,M(l)

ss0)
[�(q)�(q0)] , ⌃̂(l+1)(s, s0) = 2 · E

(q,q0)⇠N(0,M(l)

ss0)
[@�(q)@�(q0)] ,

K̃
(l+1) = K̃

(l)
� ⌃̂(l+1) + ⌃(l+1)

,K
(d) =

⇣
K̃

(d) + ⌃(d)
⌘
/2 (2)

where s, s
0
2 [n] are two input examples in the dataset, ⌃ is the data Gram matrix, @� stands for the

derivative of the activation function with respect to the pre-activation input, N(0,M) stands for the
mean-zero Gaussian distribution with co-variance matrix M .

B Proofs of technical results

Proof of Proposition 1.1

Proof. We know that et = (et(s), s 2 [n]) 2 Rn, and et(s) = ŷ⇥t(xs)� y(s). Now

L⇥t =
1

2

nX

s0=1

(ŷ⇥t � y)2

=
1

2

nX

s0=1

e
2
t

r⇥L⇥t =
nX

s0=1

r⇥ŷ⇥t(xs0)et(s
0)

r⇥L⇥t =
nX

s0=1

 xs0 ,⇥tet(s
0) (3)

For gradient descent, ⇥̇t = �r⇥L⇥t , from (3) it follows that

⇥̇t = �

nX

s0=1

 xs0 ,⇥tet(s
0) (4)

Now ėt = ˙̂y⇥t , and expanding ˙̂y⇥t(xs) for some s 2 [n], we have:

˙̂y⇥t(xs) =
dŷ⇥t(xs)

dt

=
X

✓2⇥

dŷ⇥t(xs)

d✓

d✓t

dt
, by expressing this summation as a dot product we obtain

˙̂y⇥t(xs) = h xs,⇥t , ⇥̇ti (5)

We now use that fact that ⇥t is updated by gradient descent

˙̂y⇥t(xs) = �h xs,⇥t ,

nX

s0=1

 xs0 ,⇥tet(s
0)i

= �

nX

s0=1

K⇥t(s, s
0)et(s

0) (6)

The proof is complete by recalling that ŷ⇥t = (ŷ⇥t(xs), s 2 [n]), and ėt = ˙̂y⇥t .

12

Proof of Proposition 2.1

Proof. Let x 2 Rdin be the input to the DNN and ŷ⇥(x) be its output. The output can be written in
terms of the final hidden layer output as:

ŷ⇥(x) =
wX

jd�1=1

⇥(1, jd�1, d) · zx,⇥(jd�1, d� 1)

=
wX

jd�1=1

⇥(1, jd�1, d) ·Gx⇥(jd�1, d� 1) · qx,⇥(jd�1, d� 1) (7)

Now qx,⇥(jd�1, d� 1) for a fixed jd�1 can again be expanded as

qx,⇥(jd�1, d� 1) =
wX

jd�2=1

⇥(jd�1, jd�2, d� 1) · zx,⇥(jd�2, d� 2)

=
wX

jd�2=1

⇥(jd�1, jd�2, d� 1) ·Gx,⇥(jd�2, d� 2) · qx,⇥(jd�2, d� 2) (8)

Now plugging in (8) in the expression in (7), we have

ŷ⇥(x) =
wX

jd�1=1

⇥(1, jd�1, d) ·Gx⇥(jd�1, d� 1)

wX

jd�2=1

⇥(jd�1, jd�2, d� 1)

·Gx,⇥(jd�2, d� 2) · qx,⇥(jd�2, d� 2)

!

=
X

jd�1,jd�22[w]

Gx,⇥(jd�1, d� 1) ·Gx,⇥(jd�2, d� 2) ·⇥(1, jd�1, d)

·⇥(jd�1, jd�2, d� 1) · qx,⇥(jd�2, d� 2)

(9)

By expanding q’s for all the previous layers till the input layer we have

ŷ⇥(x) =
X

jd=1,jd�1,...,j12[w],j2[din]

x(j)⇧d�1
l=1 Gx,⇥(jl, l)⇧

d

l=1⇥(jl, jl�1, l)

Proof of Lemma 2.1

Proof.

h�xs,⇥,�xs0 ,⇥i =
X

p2[P]

xs(I0(p))xs0(I0(p))A⇥(xs, p)A⇥(xs0 , p)

=
dinX

i=1

xs(i)xs0(i)⇤⇥(s, s
0)

= hxs, xs0i · ⇤⇥(s, s
0) (10)

Proof of Proposition 3.1

Proof. Let ⇥ = (xs,⇥, s 2 [n]) 2 Rdnet⇥n be the NTF matrix, then the NTK matrix is given
by K⇥t = >

⇥t
 ⇥t . Note that, ŷ⇥(xs) = h�xs,⇥, v⇥i = hv⇥,�xs,⇥i = v

>
⇥�xs,⇥. Now xs,⇥ =

r⇥v⇥�xs,⇥, and hence = r⇥v⇥�⇥. Hence, K⇥t = >
⇥t
 ⇥t = �>

⇥(r⇥v⇥)>(r⇥v⇥)�⇥ =
�>

⇥V⇥�⇥.

13

Proof of Proposition 3.2

Proof. Follows in a similar manner as the proof of Proposition 1.1.

Proof of Proposition 3.3

Proof. ⇢min(K⇥) = min
x2Rn

kxk2=1

x
>
K⇥x. Let x0

2 Rn such that kx0
k2 = 1 and ⇢min(H⇥) = x

0>
H⇥x

0.

Now, ⇢min(K⇥) x
0>
K⇥x

0. Let y0 = �x0, then we have, ⇢min(K⇥) y
0>
V⇥y

0. Hence
⇢min(K⇥) ky

0
k
2
2⇢max(V⇥). Proof is complete by noting that ky0k22 = x

0>�>
⇥�⇥x

0 = ⇢min(H⇥).

Proof of Proposition 4.1

Proof. Follows in a similar manner as proof of Proposition 1.1.

B.1 Proof of Theorem 5.1

B.1.1 Calculation of E
h
K

v
⇥DGN

0

i

Proposition B.1. Let ✓
v
2 ⇥v

be a weight in layer l✓v , and let p be a path that passes through ✓
v
.

Then

@✓vv⇥v(p) =⇧d

l=1,l 6=l✓v
⇥(Il(p), Il�1(p), l) (11)

Proof. Proof follows by noting that v⇥v(p) = ⇧d

l=1⇥(Il(p), Il�1(p), l).

Lemma B.1. Let 'p,⇥ be as in Definition 3.1, under the assumption in Theorem 5.1, for paths

p1, p2 2 [P], p1 6= p2, at initialisation we have (i) E
⇥
h'p1,⇥v

0
,'p2,⇥v

0
i
⇤
= 0, (ii) h'p1,⇥v

0
,'p1,⇥v

0
i =

d · �
2(d�1)

.

Proof.

h'p1,⇥v
0
,'p2,⇥v

0
i =

X

✓v2⇥v

@✓vv⇥v
0
(p1)@✓vv⇥v

0
(p2)

Let ✓v
2 ⇥v be an arbitrary weight. If either p1 or p2 does not pass through ✓v, then it follows that

@✓vv⇥v
0
(p1)@✓vv⇥v

0
(p2) = 0. Let us consider the the case when p1, p2 pass through ✓v and without of

loss of generality let ✓v belong to layer l✓v 2 [d]. we have

E
⇥
@✓vv⇥v

0
(p1)@✓vv⇥v

0
(p2)

⇤

= E

2

4 d

⇧
l=1
l 6=l✓v

⇥v

0(Il(p1), Il�1(p1), l)⇥
v
0(Il(p2), Il�1(p2), l)

!3

5

=
d

⇧
l=1
l 6=l✓v

E [⇥v
0(Il(p1), Il�1(p1), l)⇥

v
0(Il(p2), Il�1(p2), l)]

where the E [·] moved inside the product because at initialisation the weights (of different layers) are
independent of each other. Since p1 6= p2, there exist a layer l̃ 2 [d], l̃ 6= l✓v such that they do not
pass through the same weight in layer l̃, i.e., ⇥v

0(Il̃(p1), Il̃�1(p1), l̃,) and ⇥v
0(Il̃(p2), Il̃�1(p2), l̃)

14

are distinct weights. Using this fact, we have
E
⇥
@✓vv⇥v

0
(p1)@✓vv⇥v

0
(p2)

⇤

=

d

⇧
l=1

l 6=l✓v ,l̃

E [⇥v
0(Il(p1), Il�1(p1), l)⇥

v
0(Il(p2), Il�1(p2), l)]

!

·

E
h
⇥v

0(Il̃(p1), Il̃�1(p1), l̃)
i
E
h
⇥v

0(Il̃(p2), Il̃�1(p2), l̃)
i!

=0

The proof of (ii) is complete by noting that a given path p1 pass through only ‘d’ weights, and henceP
✓v2⇥v @✓vv⇥v

0
(p1)@✓vv⇥v

0
(p1) has ‘d’ non-zero terms, and the fact that at initialisation we have

@✓vv⇥v
0
(p1)@✓vv⇥v

0
(p1)

=
d

⇧
l=1
l 6=l✓v

[⇥v
0(Il(p), Il�1(p), l)]

2

= �
2(d�1)

Theorem B.1. E
h
K

v

⇥DGN

0

i
= d · �

2(d�1)
·HFNPF.

Proof. Let �FNPF = �⇥f
0
=
⇣
�xs,⇥f

0
, s 2 [n]

⌘
2 RP⇥n be the NPF matrix.

E
h
K

v
⇥DGN

0

i
= E

⇥
�>

FNPFV⇥v
0
�FNPF

⇤

= E
⇥
�>

FNPF(r⇥vv⇥v
0
)>(r⇥vv⇥v

0
)�FNPF

⇤

= �>
FNPF

�
E
⇥
(r⇥vv⇥v

0
)>(r⇥vv⇥v

0
)
⇤�
�FNPF

(a)
= d · �

2(d�1)
·
�
�>

FNPF�FNPF
�

= d · �
2(d�1)

·HFNPF

Here, (a) follows from Lemma B.1, i.e., E
⇥
(r⇥vv⇥v

0
)>(r⇥vv⇥v

0
)
⇤
= d · �

2(d�1)
· IP⇥P , where

IP⇥P is a P ⇥ P identity matrix.

B.1.2 Calculation of V ar

h
K

v
⇥DGN

0

i

Notation: For x, x0
2 Rdin , let �(p) = �x,⇥f

0
(p), and �0(p) = �x0,⇥f

0
(p). Also in what follows we

use ✓a, ✓b to denote the individual weights in the value network, and pa, p
0
a
, pb, p

0
b
2 [P] to denote

the paths. Further, unless otherwise specified, quantities ✓a, ✓b, pa, p
0
a
, pb, p

0
b

are unrestricted.

Proposition B.2.
K

v

⇥DGN

0
(x, x0) =

X

✓a,pa,p
0
a

�(pa)�
0(p0

a
)@✓a

v⇥v

0
(pa)@✓a

v⇥v

0
(p0

a
) (12)

(13)

Proof.

K
v
⇥DGN

0
(x, x0) =hr⇥v ŷ⇥DGN

0
(x),r⇥v ŷ⇥DGN

0
(x0)i (14)

=
X

✓a2⇥v

0

@
X

pa2[P]

�(pa)@✓av⇥v
0
(pa)

1

A

0

@
X

p0
a2[P]

�
0(p0

a
)@✓av⇥v

0
(p0

a
)

1

A (15)

=
X

✓a,pa,p
0
a

�(pa)�
0(p0

a
)@✓av⇥v

0
(pa)@✓av⇥v

0
(p0

a
) (16)

15

We now drop ⇥v in v⇥v
0

and v, ⇥DGN
0 from K

v
⇥DGN

0
, and we denote ⇥v by ⇥.

Proposition B.3.
E [K(x, x0)] =

X

✓a,pa

�(pa)�
0(pa)E

h
(@✓a

v(pa))
2
i

(17)

E
⇥
K

2(x, x0)
⇤
=
X

✓a,pa,p
0
a

✓b,pb,p
0
b

�(pa)�
0(p0

a
)�(pb)�

0(p0
b
)E [@✓a

v(pa)@✓a
v(p0

a
)@✓b

v(pb)@✓b
v(p0

b
)] (18)

Proof.

E [K(x, x0)] =
X

✓a,pa,p
0
a

�(pa)�
0(p0

a
)E [@✓av(pa)@✓av(p

0
a
)] (19)

(a)
=
X

✓a,pa

�(pa)�
0(pa)E

h
(@✓av(pa))

2
i

(20)

where (a) follows from Lemma B.1 that for pa 6= p
0
a
E [@✓av(pa)@✓av(p

0
a
)] = 0.

The expression for E
⇥
K

2(x, x0)
⇤

is obtained by squaring the expression in (12) and pushing the E [·]
inside the summation.

Definition B.1.

1. Let ⌧ = (pa, p0a, pb, p
0
b
; ✓a, ✓b) denote the index used to sum the terms in the expression

for E
⇥
K

2(x, x0)
⇤

given in (18). Note that the index contains 4 path variables namely

pa, p
0
a
, pb, p

0
b

and 2 weight variables namely ✓a, ✓b.

2. An index ⌧ = (pa, p0a, pb, p
0
b
; ✓a, ✓b) is said to correspond to a ‘base’ term if pa = p

0
a

and

pb = p
0
b
. We define B to be the set of indices corresponding to ‘base’ terms given by

B = {⌧ = (pa, p0a, pb, p
0
b
; ✓a, ✓b) : pa = p

0
a
, pb = p

0
b
}.

3. For ⌧ = (pa, p0a, pb, p
0
b
; ✓a, ✓b), define !(⌧)

def

= �(pa)�0(p0a)�(pb)�
0(p0

b
).

4. For ⌧ = (pa, p0a, pb, p
0
b
; ✓a, ✓b), define E(⌧)

def

= E [@✓a
v(pa)@✓a

v(p0
a
)@✓b

v(pb)@✓b
v(p0

b
)].

Remark: Definition B.1 helps us to re-write (18) as E
⇥
K

2(x, x0)
⇤
=
P

⌧
!(⌧)E(⌧).

Proposition B.4. For ⌧ = (pa, p0a, pb, p
0
b
; ✓a, ✓b), let ✓a belong to layer la 2 [d] and ✓b belong to

layer lb 2 [d]. Let paths pa and p
0
a

pass through ✓a and paths pb and p
0
b

pass through ✓b.

E(⌧) = ⇧d

l=1
l 6=lb
l 6=la

E
⇥
⇥(Il(pa), Il�1(pa), l)⇥(Il(p

0
a), Il�1(p

0
a), l)⇥(Il(pb), Il�1(pb), l)⇥(Il(p

0
b), Il�1(p

0
b), l)

⇤

| {z }
Term-I

·E
⇥
⇥(Ilb(pa), Ilb�1(pa), lb)⇥(Ilb(p

0
a), Ilb�1(p

0
a), lb)

⇤
| {z }

Term-II

·E
⇥
⇥(Ila(pb), Ila�1(pb), la)⇥(Ila(p

0
b), Ila�1(p

0
b), la)

⇤
| {z }

Term-III

(21)

Proof. Since the paths pa, p
0
a

pass through ✓a and paths pb, p
0
b

pass through ✓b, it follows that
@✓av(pa) 6= 0, @✓av(p

0
a
) 6= 0, @✓b(pb) 6= 0 and @✓b(p

0
b
) 6= 0. Note that,

@✓av(pa) =⇧
d

l=1,l 6=la
⇥(Il(pa), Il�1(pa), l)

@✓av(p
0
a
) =⇧d

l=1,l 6=la
⇥(Il(p

0
a
), Il�1(p

0
a
), l)

@✓av(pb) =⇧
d

l=1,l 6=lb
⇥(Il(pb), Il�1(pb), l)

@✓av(p
0
b
) =⇧d

l=1,l 6=lb
⇥(Il(p

0
b
), Il�1(p

0
b
), l)

16

The proof is complete by using the fact that weights of different layers are independent and pushing the
E operator inside the E [@✓av(pa)@✓av(p

0
a
)@✓bv(pb)@✓bv(p

0
b
)] to convert the expectation of products

into a product of expectations.

Proposition B.5. For ⌧ = (pa, p0a, pb, p
0
b
; ✓a, ✓b), E(⌧) = �

4(d�1)
if and only if

• Condition I: pa, p0a pass through ✓a and pb, p
0
b

pass through ✓b.

• Condition II: In every layer, l 2 [d] either all the 4 paths pa, p
0
a
, pb, p

0
b

pass through the same

weight or there exists two distinct weights, say ✓I,l and ✓II,l such that, 2 paths out of pa, p
0
a
, pb, p

0
b

pass through ✓I,l and the other 2 paths pass through ✓II,l.

Proof.

Sufficiency: If Condition I and Condition II hold, then from (21) it follows that E(⌧) = �
4(d�2)

·

�
2
· �

2 = �
4(d�1).

Necessity: If Condition I does not hold, then either one of @✓av(pa), @✓av(p
0
a
), @✓bv(pb), @✓bv(p

0
b
)

becomes 0. If Condition II does not hold, either Term-I or Term-II or Term-III in (21) evaluates to 0
because all the weights involved are independent symmetric Bernoulli.

Definition B.2 (Crossing). Paths ⇢a and ⇢b are said to cross each other if they pass through the same

node in one or one or more of the intermediate layers l = 2, . . . , d� 1. For the sake of consistency,

for paths ⇢a and ⇢b that do not cross, we call them to have 0 crossings.

Definition B.3 (Splicing). Let (⇢a, ⇢a, ⇢b, ⇢b) be 4 paths (from a base term) occurring in pairs

of 2 each. Let ⇢a and ⇢b cross at k 2 {0, . . . , d � 1} intermediate nodes, belonging to layers

l1, . . . , lk (let l0 = 0 and lk+1 = d). Let the set of permutations of (a, a, b, b) be denoted by

Pm ((a, a, b, b)) ⇢ {a, b}
4

. We say that paths (pa, p0a, pb, p
0
b
) to be ‘splicing’ of (⇢a, ⇢a, ⇢b, ⇢b) if

there exists base(i, ·) 2 Pm ((a, a, b, b)) , i = 1, . . . , k + 1 such that

Il(pa) = Il(⇢base(i,1)), l 2 [li�1, li], i = 1, . . . , k + 1

Il(p
0
a
) = Il(⇢base(i,2)), l 2 [li�1, li], i = 1, . . . , k + 1

Il(pb) = Il(⇢base(i,3)), l 2 [li�1, li], i = 1, . . . , k + 1

Il(p
0
b
) = Il(⇢base(i,4)), l 2 [li�1, li], i = 1, . . . , k + 1

Lemma B.2. Let ⌧ = (pa, p0a, pb, p
0
b
; ✓a, ✓b) be such that E(⌧) = �

4(d�1)
. Then there exists ⇢a and

⇢b such that ⇢a passes through ✓a, and ⇢b passes through ✓b, and (pa, p0a, pb, p
0
b
) is a splicing of

(⇢a, ⇢a, ⇢b, ⇢b).

Proof. Using Proposition B.5 and the fact that pa, p0a, pb, p0b are paths, only the layouts shown in
Figure 4 are possible. In Figure 4, the 4 different coloured lines stand for the 4 different paths namely
pa, p

0
a
, pb, p

0
b
. The hidden nodes are denoted by the circles. Here, (a) is the case where all the 4 paths

pass through the same weight in a given layer. (b),(c), (d) are the cases where 2 paths out of the 4
paths pass through one weight and the other 2 paths pass through a different weight in a given layer.
Table 3 provides the conditions for the possible current and next layer layouts.

Figure 4: Various ways in which the 4 paths pa, p0a, pb, p0b can pass through a given layer.

17

Current Layer Layout Next Layer Layout
(a) (a) or (b)
(b) (c) or (d)
(c) (a) or (b)
(d) (c) or (d)

Table 3: Show the possible current and next layer layouts.

Thus in each layer pa, p0a, pb, p0b can always be paired to obtain ⇢a and ⇢b. In the splicing, base(i, 1)
specifies whether pa follows ⇢a or ⇢b between layers li�1 and li (i.e., between crossing points). The
role of base(i, 2), base(i, 3) and base(i, 4) can be explained in a similar manner.

Lemma B.3. Let ⌧
0 = (⇢a, ⇢a, ⇢b, ⇢b; ✓a, ✓b) 2 B be an index in the base set such that ⇢a and

⇢b do not cross and E(⌧ 0) 6= 0. Let ⌧ = (pa, p0a, pb, p
0
b
; ✓a, ✓b) be such that (pa, p0a, p

0
b
, pb) 6=

(⇢a, ⇢a, ⇢b, ⇢b) is a ‘splicing’ of (⇢a, ⇢a, ⇢b, ⇢b). Then E(⌧) = 0.

Proof. Since E(⌧ 0) 6= 0, it follows that ⇢a passes through ✓a and ⇢b passes through ✓b. Since ⇢a
and ⇢b do not cross each other, the only possible splicings are the permutations of (⇢a, ⇢a, ⇢b, ⇢b)
itself. For the sake of concreteness, let us pick a ⌧ such that (pa, p0a, p0b, pb) = (⇢a, ⇢b, ⇢a, ⇢b) (a
non-identity permutation). For E(⌧) 6= 0 to hold, @✓av(⇢b) 6= 0 and @✓bv(⇢a) 6= 0 should also hold,
which implies both ⇢a and ⇢b pass through ✓a and ✓b. However, we assumed that ⇢a and ⇢b do not
cross each other. Hence, E(⌧) = 0 for any ⌧ such that (pa, p0a, p0b, pb) is a non-identity permutation
of (⇢a, ⇢a, ⇢b, ⇢b).

Proposition B.6. Let ⌧ and B be as in Definition B.1, then

E [K(x, x0)]
2
=
X

⌧2B
!(⌧)E(⌧)

Proof. Writing down the left-hand and right-hand sides, we have:

E [K(x, x0)]
2
=
X

✓a,pa

✓b,pb

�(pa)�
0(pa)�(pb)�

0(pb)E
h
(@✓av(pa))

2
i
E
h
(@✓bv(pb))

2
i

X

⌧2B
!(⌧)E(⌧) =

X

✓a,pa

✓b,pb

�(pa)�
0(pa)�(pb)�

0(pb)E
h
(@✓av(pa))

2 (@✓bv(pb))
2
i

When @✓av(pa) 6= 0 and @✓bv(pb) 6= 0, for symmetric Bernoulli weights it follows that
E
h
(@✓av(pa))

2
i
E
h
(@✓bv(pb))

2
i
= E

h
(@✓av(pa))

2 (@✓bv(pb))
2
i
= �

4(d�1).

Theorem B.2. Let the weights be chosen as in Theorem 5.1. Then, it follows that

V ar [K(x, x0)] Cd
2
in

d
3

w

Proof.

V ar [K(x, x0)] =E
⇥
K

2(x, x0)
⇤
� E [K(x, x0)]

2

=
X

⌧

!(⌧)E(⌧)�
X

⌧2B
!(⌧)E(⌧)

=
X

⌧ /2B

!(⌧)E(⌧)

In what follows, without loss of generality, let |!(⌧)| 1. Then,

V ar [K(x, x0)]
X

⌧ /2B

E(⌧)

18

Let B̄ = {⌧ /2 B}. From Lemma B.2 we know that every ⌧ 2 B̄ such that E(⌧) = �
4(d�1) can

always be identified with a base term ⌧
0 = (⇢a, ⇢a, ⇢b, ⇢b; ✓a, ✓b) 2 B, and from Lemma B.3, we

know that in such a ⌧ 0, the base paths ⇢a and ⇢b cross k > 0 times. Now, there are
�(d�1)

k

�
< d

k

possible ways in which the k crossing can occur within the (d � 1) layers, and within each layer
there are w possible nodes in which such crossings can occur. The total number of paths that pass
through k < d� 1 nodes is P

wk , where P = dinw
(d�1). And the number of splicings of base terms

with k crossings is less than 6k+1. Once we obtain the paths, the crossings, the splicing, the weights
✓a and ✓b can each occur in up to any of the d� 1 layers. Putting all this together, we have

V ar [K(x, x0)]
1X

k=1

d
26k+1

· (wd)k ·

✓
P

2

w2k

◆
�
4(d�1)

6d2in�
02
✓
6d3

w

◆
1

1� 6d
w

!

Cd
2
in
d
3

w

Proof ofTheorem 5.1

Proof. Follows from Theorem B.1 and Theorem B.2.

C Applying Theorem 5.1 In Finite Width Case

In this section, we describe the technical step in applying Theorem 5.1 which requires w ! 1 to
measure the information in the gates of a DNN with finite width. Since we are training only the value
network in the FPNP mode of the DGN, it is possible to let the width of the value network alone go to
1, while keeping the width of the feature network (which stores the fixed NPFs) finite. This is easily
achieved by multiplying the width by a positive integer m 2 Z+, and padding the gates ‘m’ times.

Definition C.1. Define DGN
(m)

to be the DGN whose feature network is of width w and depth d,

and whose value network is a fully connected network of width mw and depth d. The mw(d � 1)
gating values are obtained by ‘padding’ the w(d� 1)gating values of the width ‘w’, depth ‘d’ feature

network ‘m’ times (see Figure 5, Table 4).

Feature Network (NPF) Value Network (NPV)
z

f
x
(0) = x z

v
x
(0) = x

q
f
x
(i, l) =

P
j
⇥f(i, j, l) · zx(j, l � 1) q

v
x
(i, l) =

P
j
⇥v(i, j, l) · zv

x
(j, l � 1)

z
f
x
(i, l) = q

f
x
(i, l) · {qf

x(i,l)>0} z
v
x
(i, l) = q

v
x
(i, l) ·Gx(i, l)

None ŷ⇥DGN(m)(x) =
P

j
⇥v(1, j, l) · zv

x
(j, d� 1)

Hard ReLU: Gx(i, l) = {qf
x(i,l)>0} or Soft-ReLU: Gx(i, l) = 1/

�
1 + exp(�� · q

f
x
(i, l) > 0)

�

Table 4: Deep Gated Network with padding. Here the gating values are padded, i.e., Gx(kw+ i, l) =
Gx(i, l), 8k = 0, 1, . . . ,m� 1, i 2 [w].

Remark: DGN(m) has a total of P (m) = (mw)(d�1)
din paths. Thus, the NPF and NPV are quantities

in RP
(m)

. In what follows, we denote the NPF matrix of DGN(m) by �(m)
⇥f

0
2 RP

(m)⇥n, and use

H
(m)
FNPF = (�(m)

⇥f
0
)>�(m)

⇥f
0

.

Before we proceed to state the version of Theorem 5.1 for DGN(m), we will look at an equivalent
definition for ⇤⇥ (see Definition 2.2).
Definition C.2. For input examples s, s

0
2 [n] define

1. ⌧⇥(s, s0, l)
def

=
P

w

i=1 Gxs,⇥(i, l)Gxs0 ,⇥(i, l) be the number of activations that are “on” for both

inputs s, s
0
2 [n] in layer l 2 [d� 1].

19

2. ⇤⇥(s, s0)
def

= ⇧d�1
l=1 ⌧⇥(s, s

0
, l).

Figure 5: DGN(m) where the value network is of width mw and depth d. The gates are derived
by padding the gating values obtained from the feature network ‘m’ times, i.e., Gx(kw + i, l) =
Gx(i, l), 8k = 0, 1, . . . ,m� 1, i 2 [w].

Corollary C.1 (Corollary to Theorem 5.1). Under the same assumptions as in Theorem 5.1 with �

replaced by �(m) = �/
p
m, as m ! 1,

K
v

⇥DGN
(m)

0

! K
(d)
FNPF

= d · �
2(d�1)
(m) H

(m)
FNPF

= d · �
2(d�1)

HFNPF

20

Proof. Let⇤(m)
FNPF and ⌧ (m)

FNPF be quantities associated with DGN(m). We know that H(m)
FNFP = ⌃�⇤(m)

FNPF.
Dropping the subscript FNPF to avoid notational clutter, we have

�
�/

p
m
�2(d�1)

⇤(m)(s, s0) = �
2(d�1) 1

m(d�1)
⇧d�1

l=1 ⌧
(m)(s, s0, l)

= �
2(d�1) 1

m(d�1)
⇧d�1

l=1 (m⌧(s, s0, l))

= �
2(d�1) 1

m(d�1)
m

(d�1)⇧d�1
l=1 ⌧(s, s

0
, l)

= �
2(d�1)⇧d�1

l=1 ⌧(s, s
0
, l)

= �
2(d�1)⇤(s, s0)

D DGN as a Lookup Table: Applying Theorem 5.1 to a pure memorisation
task

In this section, we modify the DGN in Figure 2 into a memorisation network to solve a pure
memorisation task. The objective of constructing the memorisation network is to understand the roles
of depth and width in Theorem 5.1 in a simplified setting. In this setting, we show increasing depth
till a point helps in training and increasing depth beyond it hurts training.
Definition D.1 (Memorisation Network/Task). Given a set of values (ys)ns=1 2 R, a memorisation

network (with weights ⇥ 2 Rdnet) accepts s 2 [n] as its input and produces ŷ⇥(s) ⇡ ys as its output.

The loss of the memorisation network is defined as L⇥ = 1
2

P
n

s=1(ŷ⇥(s)� ys)2.

Layer Memorisation Network
Input z⇥(0) = 1
Pre-Activation qs,⇥(l) =

P
j
⇥(i, j, l) · zs,⇥(j, l � 1)

Hidden zs,⇥(i, l) = qs,⇥(i, l) ·Gs(i, l)
Final Output ŷ⇥(s) =

P
j
⇥(1, j, d) · zs,⇥(j, d� 1)

Table 5: Memorisation Network. The input is fixed and is equal to 1. All the internal variables
depend on the index s and the parameter ⇥. The gating values Gs(i, l) are external and independent
variables.

Fixed Random Gating: The memorisation network is described in Table 5. In a memorisation
network, the gates are fixed and random, i.e., for each index s 2 [n], the gating values Gs(i, l), 8l 2
[d � 1], i 2 [w] are sampled from Ber(µ), µ 2 (0, 1) taking values in {0, 1}, and kept fixed
throughout training. The input to the memorisation network is fixed as 1, and since the gating is
fixed and random there is a separate random sub-network to memorise each target ys 2 R. The
memorisation network can be used to memorise the targets (ys)ns=1 by training it using gradient
descent by minimising the squared loss L⇥. In what follows, we let K0 and H0 to be the NTK and
NPK of the memorisation network at initialisation.

Performance of Memorisation Network: From Proposition 1.1 we know that as w ! 1, the
training error dynamics of the memorisation network follows:

ėt = �K0et, (22)

i.e., the spectral properties of K0 (or H0) dictates the rate of convergence of the training error to
0. In the case of the memorisation network with fixed and random gates, we can calculate E [K0]
explicitly.

Spectrum of H0: The input Gram matrix ⌃ is a n⇥ n matrix with all entries equal to 1 and its rank
is equal to 1, and hence H0 = ⇤0. We can now calculate the properties of ⇤0. It is easy to check that
Eµ [⇤0(s, s)] = (µw)(d�1)

, 8s 2 [n] and Eµ [⇤0(s, s0)] = (µ2
w)(d�1)

, 8s, s
0
2 [n]. For � =

q
1
µw

,

and Eµ [K0(s, s)/d] = 1, and Eµ [K0(s, s0)/d] = µ
(d�1).

21

Figure 6: Ideal spectrum of E [K0] /d for a memorisation network for n = 200.

Figure 7: Shows the plots for the memorisation network with µ = 1
2 and � =

q
2
w

. The number of
points to be memorised is n = 200. The left most plot shows the e.c.d.f for w = 25 and the second
plot from the left shows the error dynamics during training for w = 25. The second plot from the
right shows the e.c.d.f for w = 500 and the right most plot shows the error dynamics during training
for w = 500. All plots are averaged over 10 runs.

Why increasing depth till a point helps ? We have:

E [K0]

d
=

2

664

1 µ
d�1

. . . µ
d�1

. . .

. . . 1 . . . µ
d�1

. . .

. . . µ
d�1

. . . 1 . . .

. . . µ
d�1

. . . µ
d�1 1

3

775 (23)

i.e., all the diagonal entries are 1 and non-diagonal entries are µ
d�1. Now, let ⇢i � 0, i 2 [n]

be the eigenvalues of E[K0]
d

, and let ⇢max and ⇢min be the largest and smallest eigenvalues. One
can easily show that ⇢max = 1 + (n � 1)µd�1 and corresponds to the eigenvector with all entries
as 1, and ⇢min = (1 � µ

d�1) repeats (n � 1) times, which corresponds to eigenvectors given by
[0, 0, . . . , 1,�1| {z }

i and i + 1

, 0, 0, . . . , 0]> 2 Rn for i = 1, . . . , n� 1. Note that as d ! 1, ⇢max, ⇢min ! 1.

Why increasing depth beyond a point hurts? As the depth increases the variance of the entries
K0(s, s0) deviates from its expected value E [K0(s, s0)]. Thus the structure of the Gram matrix
degrades from (23), leading to smaller eigenvalues.

D.1 Experiment

We set n = 200, and ys ⇠ Uniform[�1, 1]. We look at the cumulative eigenvalue (e.c.d.f) obtained
by first sorting the eigenvalues in ascending order then looking at their cumulative sum. The ideal
behaviour (Figure 6) as predicted from theory is that for indices k 2 [n � 1], the e.c.d.f should
increase at a linear rate, i.e., the cumulative sum of the first k indices is equal to k(1� µ

d�1), and
the difference between the last two indices is 1 + (n� 1)µd�1. In Figure 7, we plot the actual e.c.d.f
for various depths d = 2, 4, 6, 8, 12, 16, 20 and w = 25, 500 (first and third plots from the left in
Figure 7).

Roles of depth and width: In order to compare how the rate of convergence varies with the depth,
we set the step-size ↵ = 0.1

⇢max
, w = 100. We use the vanilla SGD-optimiser. Note the 1

⇢max
in

the stepsize, ensures that the uniformity of maximum eigenvalue across all the instances, and the

22

convergence should be limited by the smaller eigenvalues. We also look at the convergence rate of
the ratio ketk2

2

ke0k2
2

. We notice that for w = 25, increasing depth till d = 8 improves the convergence,
however increasing beyond d = 8 worsens the convergence rate. For w = 500, increasing the depth
till d = 12 improves convergence, and d = 16, 20 are worse than d = 12.

23

	Introduction
	Background: Neural Tangent Feature and Neural Tangent Kernel
	Our Contributions

	Neural Path Feature and Kernel: Encoding Gating Information
	Paths, Neural Path Feature, Neural Path Value and Network Output
	Neural Path Kernel : Similarity based on active sub-networks

	Dynamics of Gradient Descent with NPF and NPV Learning
	Dynamics of NPFs and NPV
	Re-writing Gradient Descent Dynamics

	Deep Gated Networks: Decoupling Neural Path Feature and Value
	Learning with Fixed NPFs: Role Of Active Sub-Networks
	Experiments: Fixed NPFs, NPF Learning and Verification of Claim II
	Setup
	Result Discussion

	Related Work
	Conclusion
	Broader Impact
	Expression for K(d)
	Proofs of technical results
	Proof of th:main
	Calculation of E[KvDGN0]
	Calculation of Var[KvDGN0]

	Applying th:main In Finite Width Case
	DGN as a Lookup Table: Applying th:main to a pure memorisation task
	Experiment

