
A Proofs for Section 4

This section provides proofs and definitions details for the theorems and lemmas presented in Section
4.

A.1 Proofs for TV distance

Definition 1. (TV distance) Let c(x, y) = 1(x 6= y) be a metric, and let π be a coupling between
probability distributions p and q. Define the total variation (TV) distance between two distributions
p, q as

TV (p, q) = inf
π

EX,Y∼π[c(X,Y)]

s.t.
∫
π(x, y)dy = p(x),

∫
π(x, y)dx = q(y).

Theorem 1. Suppose a model with parameters θ satisfies fairness criteria with respect to the noisy
groups Ĝ:

ĝj(θ) ≤ 0 ∀j ∈ G.

Suppose |h(θ, x1, y1) − h(θ, x2, y2)| ≤ 1 for any (x1, y1) 6= (x2, y2). If TV (pj , p̂j) ≤ γj for all
j ∈ G, then the fairness criteria with respect to the true groups G will be satisfied within slacks γj
for each group:

gj(θ) ≤ γj ∀j ∈ G.

Proof. For any group label j,

gj(θ) = gj(θ)− ĝj(θ) + ĝj(θ) ≤ |gj(θ)− ĝj(θ)|+ ĝj(θ).

By Kantorovich-Rubenstein theorem (provided here as Theorem 2), we also have

|ĝj(θ)− gj(θ)| = |EX,Y∼p̂j [h(θ,X, Y)]− EX,Y∼pj [h(θ,X, Y)]| ≤ TV (pj , p̂j).

By assumption that θ satisifes fairness constraints with respect to the noisy groups Ĝ, ĝj(θ) ≤ 0.
Thus, we have the desired result that gj(θ) ≤ TV (pj , p̂j) ≤ γj .
Note that if pj and p̂j are discrete, then the TV distance TV (pj , p̂j) could be very large. In that case,
the bound would still hold, but would be loose.

Theorem 2. (Kantorovich-Rubinstein).2 Call a function f Lipschitz in c if |f(x)− f(y)| ≤ c(x, y)
for all x, y, and let L(c) denote the space of such functions. If c is a metric, then we have

Wc(p, q) = sup
f∈L(c)

EX∼p[f(X)]− EX∼q[f(X)].

As a special case, take c(x, y) = I(x 6= y) (corresponding to TV distance). Then f ∈ L(c) if and
only if |f(x)− f(y)| ≤ 1 for all x 6= y. By translating f , we can equivalently take the supremum
over all f mapping to [0, 1]. This says that

TV (p, q) = sup
f :X→[0,1]

EX∼p[f(X)]− EX∼q[f(X)]

Lemma 1. Suppose P (G = i) = P (Ĝ = i) for a given i ∈ {1, 2, ...,m}. Then TV (pi, p̂i) ≤
P (G 6= Ĝ|G = i).

Proof. For probability measures pi and p̂i, the TV distance is given by

TV (pi, p̂i) = sup{|pi(A)− p̂i(A)| : A is a measurable event}.

2Edwards, D.A. On the Kantorovich–Rubinstein theorem. Expositiones Mathematicae, 20(4):387-398, 2011.

15

Fix A to be any measurable event for both pi and p̂i. This means that A is also a measurable event for
p, the distribution of the random variables X,Y . By definition of pi, pi(A) = P (A|G = i). Then

|pi(A)− p̂i(A)| = |P (A|G = i)− P (A|Ĝ = i)|
= |P (A|G = i, Ĝ = i)P (Ĝ = i|G = i)

+ P (A|G = i, Ĝ 6= i)P (Ĝ 6= i|G = i)

− P (A|Ĝ = i, G = i)P (G = i|Ĝ = i)

− P (A|Ĝ = i, G 6= i)P (G 6= i|Ĝ = i)|

= |P (A|G = i, Ĝ = i)
(
P (Ĝ = i|G = i)− P (G = i|Ĝ = i)

)
− P (Ĝ 6= G|G = i)

(
P (A|G = i, Ĝ 6= i)− P (A|Ĝ = i, G 6= i)

)
|

= |0− P (Ĝ 6= G|G = i)
(
P (A|G = i, Ĝ 6= i)− P (A|Ĝ = i, G 6= i)

)
|

≤ P (Ĝ 6= G|G = i)

The second equality follows from the law of total probability. The third and the fourth equalities
follow from the assumption that P (G = i) = P (Ĝ = i), which implies that P (Ĝ = G|G = i) =

P (G = Ĝ|Ĝ = i) since

P (G = Ĝ|G = i) =
P (G = Ĝ,G = i)

P (G = i)
=
P (G = Ĝ, Ĝ = i)

P (Ĝ = i)
= P (G = Ĝ|Ĝ = i).

This further implies that P (Ĝ 6= i|G = i) = P (G 6= i|Ĝ = i).

Since |pi(A) − p̂i(A)| ≤ P (Ĝ 6= G|G = i) for any measurable event A, the supremum over all
events A is also bounded by P (Ĝ 6= G|G = i). This gives the desired bound on the TV distance.

A.2 Generalization to Wasserstein distances

Theorem 1 can be directly extended to loss functions that are Lipschitz in other metrics. To do so, we
first provide a more general definition of Wasserstein distances:

Definition 2. (Wasserstein distance) Let c(x, y) be a metric, and let π be a coupling between p and
q. Define the Wasserstein distance between two distributions p, q as

Wc(p, q) = inf
π

EX,Y∼π[c(X,Y)]

s.t.
∫
π(x, y)dy = p(x),

∫
π(x, y)dx = q(y).

As a familiar example, if c(x, y) = ||x− y||2, then Wc is the earth-mover distance, and L(c) is the
class of 1-Lipschitz functions. Using the Wasserstein distance Wc under different metrics c, we can
bound the fairness violations for constraint functions h beyond those specified for the TV distance in
Theorem 1.

Theorem 3. Suppose a model with parameters θ satisfies fairness criteria with respect to the noisy
groups Ĝ:

ĝj(θ) ≤ 0 ∀j ∈ G.
Suppose the function h satisfies |h(θ, x1, y1)−h(θ, x2, y2)| ≤ c((x1, y1), (x2, y2)) for any (x1, y1) 6=
(x2, y2) w.r.t a metric c. If Wc(pj , p̂j) ≤ γj for all j ∈ G, then the fairness criteria with respect to
the true groups G will be satisfied within slacks γj for each group:

gj(θ) ≤ γj ∀j ∈ G.

Proof. By the triangle inequality, for any group label j,

|gj(θ)− g(θ)| ≤ |gj(θ)− ĝj(θ)|+ ĝj(θ)

16

By Kantorovich-Rubenstein theorem (provided here as Theorem 2), we also have
|ĝj(θ)− gj(θ)| = |EX,Y∼p̂j [h(θ,X, Y)]− EX,Y∼pj [h(θ,X, Y)]|

≤Wc(pj , p̂j).

By the assumption that θ satisifes fairness constraints with respect to the noisy groups Ĝ, ĝj(θ) ≤ 0.
Therefore, combining these with the triangle inequality, we get the desired result.

B Details on DRO formulation for TV distance

Here we describe the details on solving the DRO problem (3) with TV distance using the empirical
Lagrangian formulation. We also provide the pseudocode we used for the projected gradient-based
algorithm to solve it.

B.1 Empirical Lagrangian Formulation

We rewrite the constrained optimization problem (3) as a minimax problem using the Lagrangian
formulation. We also convert all expectations into expectations over empirical distributions given a
dataset of n samples (X1, Y1, G1), ..., (Xn, Yn, Gn).

Let nj denote the number of samples that belong to a true group G = j. Let the empirical distribution
p̂j ∈ Rn be a vector with i-th entry p̂ij = 1

nj
if the i-th example has a noisy group membership

Ĝi = j, and 0 otherwise. Replacing all expectations with expectations over the appropriate empirical
distributions, the empirical form of (3) can be written as:

min
θ

1

n

n∑
i=1

l(θ,Xi, Yi)

s.t. max
p̃j∈Bγj (p̂j)

n∑
i=1

p̃ijh(θ,Xi, Yi) ≤ 0 ∀j ∈ G
(9)

where Bγj (p̂j) = {p̃j ∈ Rn : 1
2

∑n
i=1 |p̃ij − p̂ij | ≤ γj ,

∑n
i=1 p̃

i
j = 1, p̃ij ≥ 0 ∀i = 1, ..., n}.

For ease of notation, for j ∈ {1, 2, ...,m}, let

f(θ) =
1

n

n∑
i=1

l(θ,Xi, Yi)

fj(θ, p̃j) =

n∑
i=1

p̃ijh(θ,Xi, Yi).

Then the Lagrangian of the empirical formulation (9) is

L(θ, λ) = f(θ) +

m∑
j=1

λj max
p̃j∈Bγ(p̂j)

fj(θ, p̃j)

and problem (9) can be rewritten as

min
θ

max
λ≥0

f(θ) +

m∑
j=1

λj max
p̃j∈Bγ(p̂j)

fj(θ, p̃j)

Moving the inner max out of the sum and rewriting the constraints as `1-norm constraints:

min
θ

max
λ≥0

max
p̃j∈Rn,p̃j≥0,
j=1,...,m

f(θ) +

m∑
j=1

λjfj(θ, p̃j)

s.t. ||p̃j − p̂j ||1 ≤ 2γj , ||p̃j ||1 = 1 ∀j ∈ {1, ...,m}

(10)

Since projections onto the `1-ball can be done efficiently [20], we can solve problem (10) using a
projected gradient descent ascent (GDA) algorithm. This is a simplified version of the algorithm
introduced by Namkoong and Duchi [46] for solving general classes of DRO problems. We provide
pseudocode in Algorithm 2, as well as an actual implementation in the attached code.

17

B.2 Projected GDA Algorithm for DRO

Algorithm 2 Project GDA Algorithm

Require: learning rates ηθ > 0, ηλ > 0, ηp > 0, estimates of P (G 6= Ĝ|Ĝ = j) to specify γj .
1: for t = 1, . . . , T do
2: Descent step on θ:

θ(t+1) ← θ(t) − ηθ∇θf(θ(t))− ηθ
∑m
j=1 λ

(t)
j ∇θfj(θ(t), p̃

(t)
j)

3: Ascent step on λ:
λ

(t+1)
j ← λ

(t)
j + ηλfj(θ, p̃

(t)
j)

4: for j = 1, ...,m do
5: Ascent step on p̃j : p̃

(t+1)
j ← p̃

(t)
j + ηpλ

(t)
j ∇p̃jfj(θ(t), p̃

(t)
j)

6: Project p̃(t+1)
j onto `1-norm constraints: ||p̃(t+1)

j − p̂j ||1 ≤ 2γj , ||p̃(t+1)
j ||1 = 1

7: end for
8: end for
9: return θ(t∗) where t∗ denotes the best iterate that satisfies the constraints in (3) with the lowest

objective.

B.3 Equalizing TPRs and FPRs using DRO

In the two case studies in Section 7, we enforce equality of opportunity and equalized odds [32] by
equalizing true positive rates (TPRs) and/or false positive rates (FPRs) within some slack α. In this
section, we describe in detail the implementation of the constraints for equalizing TPRs and FPRs
under the DRO approach.

To equalize TPRs with slack α under the DRO approach, we set

g̃TPR
j (θ) =

EX,Y∼p[1(Y = 1)1(Ŷ = 1)]

EX,Y∼p[1(Y = 1)]
−

EX,Y∼p̃j [1(Y = 1)1(Ŷ = 1)]

EX,Y∼p̃j [1(Y = 1)]
− α. (11)

The first term corresponds to the TPR for the full population. The second term estimates the TPR for
group j. Setting α = 0 exactly equalizes true positive rates.

To equalize FPRs with slack α under the DRO approach, we set

g̃FPR
j (θ) =

EX,Y∼p̃j [1(Y = 0)1(Ŷ = 1)]

EX,Y∼p̃j [1(Y = 0)]
− EX,Y∼p[1(Y = 0)1(Ŷ = 1)]

EX,Y∼p[1(Y = 0)]
− α. (12)

The first term estimates the FPR for group j. The second term corresponds to the FPR for the full
population. Setting α = 0 exactly equalizes false positive rates.

To equalize TPRs for Case Study 1, we apply m constraints,{
maxp̃j :TV (p̃j ,p̂j)≤γj ,p̃j�p g̃

TPR
j (θ) ≤ 0

}
∀j ∈ G.

To equalize both TPRs and FPRs simultaneously for Case Study 2, we apply 2m constraints,{
maxp̃j :TV (p̃j ,p̂j)≤γj ,p̃j�p g̃

TPR
j (θ) ≤ 0,maxp̃j :TV (p̃j ,p̂j)≤γj ,p̃j�p g̃

FPR
j (θ) ≤ 0

}
∀j ∈ G.

B.3.1 h(θ,X, Y) for equalizing TPRs and FPRs

Since the notation in Section 5 and in the rest of the paper uses generic functions h to express the
group-specific constraints, we show in Lemma 2 that the constraint using g̃TPR

j (θ) in Equation (11)
can also be written as an equivalent constraint in the form of Equation (3), as

g̃TPR
j (θ) = EX,Y∼p̃j [hTPR(θ,X, Y)]

for some function hTPR : Θ×X × Y → R.

Lemma 2. Denote Ŷ as 1(φ(X; θ) > 0). Let hTPR(θ,X, Y) be given by

18

hTPR(θ,X, Y) =
1

2

(
−1(Ŷ = 1, Y = 1)− 1(Y = 1)

(
α− EX,Y∼p[1(Y = 1, Ŷ = 1)]

EX,Y∼p[1(Y = 1)]

))
.

Then

EX,Y∼p[1(Y = 1)1(Ŷ = 1)]

EX,Y∼p[1(Y = 1)]
−

EX,Y∼p̃j [1(Y = 1)1(Ŷ = 1)]

EX,Y∼p̃j [1(Y = 1)]
− α ≤ 0

⇐⇒ EX,Y∼p̃j [hTPR(θ,X, Y)] ≤ 0.

Proof. Substituting the given function hTPR(θ,X, Y), and using the fact that
EX,Y∼p̃j [1(Y = 1)] ≥ 0:

EX,Y∼p̃j [hTPR(θ,X, Y)] ≤ 0

⇐⇒ EX,Y∼p̃j

[
1

2

(
−1(Ŷ = 1, Y = 1)− 1(Y = 1)

(
α− EX,Y∼p[1(Y = 1, Ŷ = 1)]

EX,Y∼p[1(Y = 1)]

))]
≤ 0

⇐⇒ −EX,Y∼p̃j [1(Ŷ = 1, Y = 1)]− EX,Y∼p̃j

[
1(Y = 1)

(
α− EX,Y∼p[1(Y = 1, Ŷ = 1)]

EX,Y∼p[1(Y = 1)]

)]
≤ 0

⇐⇒ −EX,Y∼p̃j [1(Ŷ = 1, Y = 1)]− αEX,Y∼p̃j [1(Y = 1)]

+
EX,Y∼p[1(Y = 1, Ŷ = 1)]

EX,Y∼p[1(Y = 1)]
EX,Y∼p̃j [1(Y = 1)] ≤ 0

⇐⇒ EX,Y∼p[1(Y = 1, Ŷ = 1)]

EX,Y∼p[1(Y = 1)]
−

EX,Y∼p̃j [1(Ŷ = 1, Y = 1)]

EX,Y∼p̃j [1(Y = 1)]
− α ≤ 0

By similar proof, we also show in Lemma 3 that the constraint using g̃FPR
j (θ) in Equation (12) can

also be written as an equivalent constraint in the form of Equation (3), as

g̃FPR
j (θ) = EX,Y∼p̃j [hFPR(θ,X, Y)]

for some function hFPR : Θ×X × Y → R.

Lemma 3. Denote Ŷ as 1(φ(X; θ) > 0). Let hFPR(θ,X, Y) be given by

hFPR(θ,X, Y) =
1

2

(
1(Ŷ = 1, Y = 0)− 1(Y = 0)

(
α+

EX,Y∼p[1(Y = 0, Ŷ = 1)]

EX,Y∼p[1(Y = 0)]

))
.

Then

EX,Y∼p̃j [1(Y = 0)1(Ŷ = 1)]

EX,Y∼p̃j [1(Y = 0)]
− EX,Y∼p[1(Y = 0)1(Ŷ = 1)]

EX,Y∼p[1(Y = 0)]
− α ≤ 0

⇐⇒ EX,Y∼p̃j [hFPR(θ,X, Y)] ≤ 0.

19

Proof. Substituting the given function hFPR(θ,X, Y), and using the fact that
EX,Y∼p̃j [1(Y = 0)] ≥ 0:

EX,Y∼p̃j [hFPR(θ,X, Y)] ≤ 0

⇐⇒ EX,Y∼p̃j

[
1

2

(
1(Ŷ = 1, Y = 0)− 1(Y = 0)

(
α+

EX,Y∼p[1(Y = 0, Ŷ = 1)]

EX,Y∼p[1(Y = 0)]

))]
≤ 0

⇐⇒ EX,Y∼p̃j [1(Ŷ = 1, Y = 0)]− EX,Y∼p̃j

[
1(Y = 0)

(
α+

EX,Y∼p[1(Y = 0, Ŷ = 1)]

EX,Y∼p[1(Y = 0)]

)]
≤ 0

⇐⇒ EX,Y∼p̃j [1(Ŷ = 1, Y = 0)]− αEX,Y∼p̃j [1(Y = 0)]

− EX,Y∼p[1(Y = 0, Ŷ = 1)]

EX,Y∼p[1(Y = 0)]
EX,Y∼p̃j [1(Y = 0)] ≤ 0

⇐⇒
EX,Y∼p̃j [1(Ŷ = 1, Y = 0)]

EX,Y∼p̃j [1(Y = 0)]
− EX,Y∼p[1(Y = 0, Ŷ = 1)]

EX,Y∼p[1(Y = 0)]
− α ≤ 0

B.4 DRO when Ĝ and G have different dimensionalities

The soft assignments approach is naturally formulated to be able to handle G ∈ G = {1, ...,m}
and Ĝ ∈ Ĝ = {1, ..., m̂} when m̂ 6= m. The DRO approach can be extended to handle this case
by generalizing Lemma 1 to TV (pj , p̂i) ≤ P (Ĝ 6= i|G = j), j ∈ G, i ∈ Ĝ, and generalizing the
DRO formulation to have the true group distribution pj bounded in a TV distance ball centered at p̂i.
Empirically comparing this generalized DRO approach to the soft group assignments approach when
m̂ 6= m is an interesting avenue of future work.

C Further details for soft group assignments approach

Here we provide additional technical details regarding the soft group assignments approach introduced
in Section 7.

C.1 Derivation for E[h(θ,X, Y)|G = j]

Here we show E[h(θ,X, Y)|G = j] = E[h(θ,X,Y)P (G=j|Ŷ ,Y,Ĝ)]
P (G=j) , assuming that h(θ,X, Y) depends

onX through Ŷ , i.e. Ŷ = 1(φ(θ,X) > 0). Using the tower property and the definition of conditional
expectation:

E[h(θ,X, Y)|G = j] =
E[h(θ,X, Y)1(G = j)]

P (G = j)

=
E[E[h(θ,X, Y)1(G = j)|Ŷ , Y, Ĝ]]

P (G = j)

=
E[h(θ,X, Y)E[1(G = j)|Ŷ , Y, Ĝ]]

P (G = j)

=
E[h(θ,X, Y)P (G = j|Ŷ , Y, Ĝ)]

P (G = j)

(13)

C.2 Equalizing TPRs and FPRs using soft group assignments

In the two case studies in Section 7, we enforce equality of opportunity and equalized odds [32] by
equalizing true positive rates (TPRs) and/or false positive rates (FPRs) within some slack α. In this
section, we describe in detail the implementation of the constraints for equalizing TPRs and FPRs
under the soft group assignments approach.

20

To equalize TPRs with slack α under the soft group assignments approach, we set

gTPR
j (θ, w) =

E[1(Y = 1)1(Ŷ = 1)]

E[1(Y = 1)]
− E[1(Y = 1)1(Ŷ = 1)w(j|Ŷ , Y, Ĝ)]

E[1(Y = 1)w(j|Ŷ , Y, Ĝ)]
− α. (14)

The first term corresponds to the TPR for the full population. The second term estimates the TPR
for group j as done by Kallus et al. [37] in Equation (5) and Proposition 8. Setting α = 0 exactly
equalizes true positive rates.

To equalize FPRs with slack α under the soft group assignments approach, we set

gFPR
j (θ, w) =

E[1(Y = 0)1(Ŷ = 1)w(j|Ŷ , Y, Ĝ)]

E[1(Y = 0)w(j|Ŷ , Y, Ĝ)]
− E[1(Y = 0)1(Ŷ = 1)]

E[1(Y = 0)]
− α. (15)

The first term estimates the FPR for group j as done previously for the TPR. The second term
corresponds to the FPR for the full population. Setting α = 0 exactly equalizes false positive rates.

To equalize TPRs for Case Study 1, we apply m constraints,
{

maxw∈W(θ) g
TPR
j (θ, w) ≤ 0

}
∀j ∈

G. To equalize both TPRs and FPRs simultaneously for Case Study 2, we apply 2m constraints,{
maxw∈W(θ) g

TPR
j (θ, w) ≤ 0,maxw∈W(θ) g

FPR
j (θ, w) ≤ 0

}
∀j ∈ G.

C.2.1 h(θ,X, Y) for equalizing TPRs and FPRs

Since the notation in Section 6 and in the rest of the paper uses generic functions h to express the
group-specific constraints, we show in Lemma 4 that the constraint using gTPR

j (θ, w) in Equation (14)
can also be written as an equivalent constraint in the form of Equation (6), as

gTPR
j (θ, w) =

E[hTPR(θ,X, Y)w(j|Ŷ , Y, Ĝ)]

P (G = j)

for some function hTPR : Θ×X × Y → R.

Lemma 4. Denote Ŷ as 1(φ(X; θ) > 0). Let hTPR(θ,X, Y) be given by

hTPR(θ,X, Y) =
1

2

(
−1(Ŷ = 1, Y = 1)− 1(Y = 1)

(
α− E[1(Y = 1, Ŷ = 1)]

E[1(Y = 1)]

))
.

Then

E[1(Y = 1)1(Ŷ = 1)]

E[1(Y = 1)]
− E[1(Y = 1)1(Ŷ = 1)w(j|Ŷ , Y, Ĝ)]

E[1(Y = 1)w(j|Ŷ , Y, Ĝ)]
− α ≤ 0

⇐⇒ E[hTPR(θ,X, Y)w(j|Ŷ , Y, Ĝ)]

P (G = j)
≤ 0.

for all j ∈ G, P (G = j) > 0.

21

Proof. Substituting the given function hTPR(θ,X, Y), and using the fact that P (G = j) > 0 and
E[1(Y = 1)w(j|Ŷ , Y, Ĝ)] ≥ 0:

E[hTPR(θ,X, Y)w(j|Ŷ , Y, Ĝ)]

P (G = j)
≤ 0

⇐⇒ E[hTPR(θ,X, Y)w(j|Ŷ , Y, Ĝ)] ≤ 0

⇐⇒ E

[
1

2

(
−1(Ŷ = 1, Y = 1)− 1(Y = 1)

(
α− E[1(Y = 1, Ŷ = 1)]

E[1(Y = 1)]

))
w(j|Ŷ , Y, Ĝ)

]
≤ 0

⇐⇒ −E[1(Ŷ = 1, Y = 1)w(j|Ŷ , Y, Ĝ)]

− E

[
1(Y = 1)

(
α− E[1(Y = 1, Ŷ = 1)]

E[1(Y = 1)]

)
w(j|Ŷ , Y, Ĝ)

]
≤ 0

⇐⇒ −E[1(Ŷ = 1, Y = 1)w(j|Ŷ , Y, Ĝ)]− αE[1(Y = 1)w(j|Ŷ , Y, Ĝ)]

+
E[1(Y = 1, Ŷ = 1)]

E[1(Y = 1)]
E[1(Y = 1)w(j|Ŷ , Y, Ĝ)] ≤ 0

⇐⇒ E[1(Y = 1, Ŷ = 1)]

E[1(Y = 1)]
− E[1(Ŷ = 1, Y = 1)w(j|Ŷ , Y, Ĝ)]

E[1(Y = 1)w(j|Ŷ , Y, Ĝ)]
− α ≤ 0

By similar proof, we also show in Lemma 5 that the constraint using gFPR
j (θ, w) in Equation (15) can

also be written as an equivalent constraint in the form of Equation (6), as

gFPR
j (θ, w) =

E[hFPR(θ,X, Y)w(j|Ŷ , Y, Ĝ)]

P (G = j)

for some function hFPR : Θ×X × Y → R.

Lemma 5. Denote Ŷ as 1(φ(X; θ) > 0). Let hFPR(θ,X, Y) be given by

hFPR(θ,X, Y) =
1

2

(
1(Ŷ = 1, Y = 0)− 1(Y = 0)

(
α+

E[1(Y = 0, Ŷ = 1)]

E[1(Y = 0)]

))
.

Then

E[1(Y = 0)1(Ŷ = 1)w(j|Ŷ , Y, Ĝ)]

E[1(Y = 0)w(j|Ŷ , Y, Ĝ)]
− E[1(Y = 0)1(Ŷ = 1)]

E[1(Y = 0)]
− α ≤ 0

⇐⇒ E[hFPR(θ,X, Y)w(j|Ŷ , Y, Ĝ)]

P (G = j)
≤ 0.

for all j ∈ G, P (G = j) > 0.

22

Proof. Substituting the given function hFPR(θ,X, Y), and using the fact that P (G = j) > 0 and
E[1(Y = 0)w(j|Ŷ , Y, Ĝ)] ≥ 0:

E[hFPR(θ,X, Y)w(j|Ŷ , Y, Ĝ)]

P (G = j)
≤ 0

⇐⇒ E[hFPR(θ,X, Y)w(j|Ŷ , Y, Ĝ)] ≤ 0

⇐⇒ E

[
1

2

(
1(Ŷ = 1, Y = 0)− 1(Y = 0)

(
α+

E[1(Y = 0, Ŷ = 1)]

E[1(Y = 0)]

))
w(j|Ŷ , Y, Ĝ)

]
≤ 0

⇐⇒ E[1(Ŷ = 1, Y = 0)w(j|Ŷ , Y, Ĝ)]

− E

[
1(Y = 0)

(
α+

E[1(Y = 0, Ŷ = 1)]

E[1(Y = 0)]

)
w(j|Ŷ , Y, Ĝ)

]
≤ 0

⇐⇒ E[1(Ŷ = 1, Y = 0)w(j|Ŷ , Y, Ĝ)]− αE[1(Y = 0)w(j|Ŷ , Y, Ĝ)]

− E[1(Y = 0, Ŷ = 1)]

E[1(Y = 0)]
E[1(Y = 0)w(j|Ŷ , Y, Ĝ)] ≤ 0

⇐⇒ E[1(Ŷ = 1, Y = 0)w(j|Ŷ , Y, Ĝ)]

E[1(Y = 0)w(j|Ŷ , Y, Ĝ)]
− E[1(Y = 0, Ŷ = 1)]

E[1(Y = 0)]
− α ≤ 0

D Optimality and feasibility for the Ideal algorithm

D.1 Optimality and feasibility guarantees

We provide optimality and feasibility guarantees for Algorithm 1 and optimality guarantees for
Algorithm 3.
Theorem 4 (Optimality and Feasibility for Algorithm 1). Let θ∗ ∈ Θ be such that it satisfies
the constraints max

w∈W(θ)
gj(θ

∗, w) ≤ 0, ∀j ∈ G and f0(θ∗) ≤ f(θ) for every θ ∈ Θ that satisfies

the same constraints. Let 0 ≤ f0(θ) ≤ B, ∀θ ∈ Θ. Let the space of Lagrange multipliers be
defined as Λ = {λ ∈ Rm+ | ‖λ‖1 ≤ R}, for R > 0. Let Bλ ≥ maxt ‖∇λL(θ(t), λ(t))‖2. Let θ be
the stochastic classifier returned by Algorithm 1 when run for T iterations, with the radius of the
Lagrange multipliers R = T 1/4 and learning rate ηλ = R

Bλ
√
T

Then:

Eθ∼θ [f(θ)] ≤ f(θ∗) + O
(

1

T 1/4

)
+ ρ

and

Eθ∼θ

[
max

w∈W(θ)
gj(θ, w)

]
≤ O

(
1

T 1/4

)
+ ρ′

Thus for any given ε > 0, by solving Steps 2 and 4 of Algorithm 1 to sufficiently small errors ρ, ρ′,
and by running the algorithm for a sufficiently large number of steps T , we can guarantee that the
returned stochastic model is ε-optimal and ε-feasible.

Proof. Let λ = 1
T

∑T
t=1 λ

(t). We will interpret the minimax problem in (8) as a zero-sum between
the θ-player who optimizes L over θ, and the λ-player who optimizes L over λ. We first bound the
average regret incurred by the players over T steps. The best response computation in Step 2 of
Algorithm 1 gives us:

1

T

T∑
t=1

Eθ∼θ̂(t)

[
L(θ, λ(t))

]
≤ 1

T

T∑
t=1

min
θ∈Θ
L(θ, λ(t)) + ε

≤ min
θ∈Θ

1

T

T∑
t=1

L(θ, λ(t)) + ρ

23

= min
θ∈Θ
L(θ, λ) + ρ

≤ min
θ∈Θ

max
λ∈Λ

L(θ, λ) + ρ

≤ f(θ∗) + ρ. (16)

We then apply standard gradient ascent analysis for the projected gradient updates to λ in Step 4 of
the algorithm, and get:

max
λ∈Λ

1

T

T∑
t=1

m∑
j=1

λjδ
(t)
j ≥ 1

T

T∑
t=1

m∑
j=1

λ
(t)
j δ

(t)
j − O

(
R√
T

)
.

We then plug the upper and lower bounds for the gradient estimates δ(t)
j ’s from Step 3 of the Algorithm

1 into the above inequality:

max
λ∈Λ

1

T

T∑
t=1

m∑
j=1

λj

(
Eθ∼θ̂(t)

[
max

w∈W(θ)
gj(θ, w)

]
+ ρ′

)

≥ 1

T

T∑
t=1

m∑
j=1

λ
(t)
j Eθ∼θ̂(t)

[
max

w∈W(θ)
gj(θ, w)

]
− O

(
R√
T

)
.

which further gives us:

max
λ∈Λ


m∑
j=1

λjEθ∼θ̂(t)

[
max

w∈W(θ)
gj(θ, w)

]
+ ‖λ‖1ρ′


≥

m∑
j=1

λ
(t)
j Eθ∼θ̂(t)

[
max

w∈W(θ)
gj(θ, w)

]
− O

(
R√
T

)
.

Adding 1
T

∑T
t=1 Eθ∼θ̂(t) [f(θ)] to both sides of the above inequality, we finally get:

1

T

T∑
t=1

Eθ∼θ̂(t)

[
L(θ, λ(t))

]
≥ max

λ∈Λ

{
1

T

T∑
t=1

Eθ∼θ̂(t) [L(θ, λ)] + ‖λ‖1ρ′
}
− O

(
R√
T

)
. (17)

Optimality. Now, substituting λ = 0 in (17) and combining with (16) completes the proof of the
optimality guarantee:

Eθ∼θ [f(θ)] ≤ f0(θ∗) + O
(
R√
T

)
+ ρ

Feasibility. To show feasibility, we fix a constraint index j ∈ G. Now substituting λj = R and
λj′ = 0,∀j′ 6= j in (17) and combining with (16) gives us:

1

T

T∑
t=1

Eθ∼θ̂(t)

[
f(θ) +R max

w∈W(θ)
gj(θ, w)

]
≤ f(θ∗) + O

(
R√
T

)
+ ρ + Rρ′.

which can be re-written as:

Eθ∼θ

[
max

w∈W(θ)
gj(θ, w)

]
≤

f(θ∗) − Eθ∼θ [f(θ)]

R
+ O

(
1√
T

)
+

ρ

R
+ ρ′.

≤ B

R
+ O

(
1√
T

)
+

ρ

R
+ ρ′,

which is our feasibility guarantee. Setting R = O(T 1/4) then completes the proof.

D.2 Best Response over θ

We next describe our procedure for computing a best response over θ in Step 2 of Algorithm 1. We
will consider a slightly relaxed version of the best response problem where the equality constraints in
W(θ) are replaced with closely-approximating inequality constraints.

24

Algorithm 3 Best response on θ of Algorithm 1

Require: λ′, learning rate ηw > 0, estimates of P (G = j|Ĝ = k) to specify constraints rg,ĝ’s, κ
1: for q = 1, . . . , Q do
2: Best response on (θ, µ): use an oracle to find find θ(q) ∈ Θ and µ(q) ∈Mm such that:

`(θ(q),µ(q),w(q);λ′) ≤ min
θ∈Θ,µ∈Mm

`(θ,µ,w(q);λ′) + κ,

for a small slack κ > 0.
3: Ascent step on w:

w
(q+1)
j ← ΠW∆

(
w

(q)
j + ηw∇wj `(θ(q),µ(q),w(q);λ′)

)
,

where∇wj `(·) is a sub-gradient of ` w.r.t. wj .
4: end for
5: return A uniform distribution θ̂ over θ(1), . . . , θ(Q)

Recall that the constraint setW(θ) contains two sets of constraints (5), the total probability constraints
that depend on θ, and the simplex constraints that do not depend on θ. So to decouple these constraint
sets from θ, we introduce Lagrange multipliers µ for the total probability constraints to make them a
part of the objective, and obtain a nested minimax problem over θ, µ, and w, where w is constrained
to satisfy the simplex constraints alone. We then jointly minimize the inner Lagrangian over θ and
µ, and perform gradient ascent updates on w with projections onto the simplex constraints. The
joint-minimization over θ and µ is not necessarily convex and is solved using a minimization oracle.

We begin by writing out the best-response problem over θ for a fixed λ′:

min
θ∈Θ
L(θ, λ′) = min

θ∈Θ
f(θ) +

m∑
j=1

λ′j max
wj∈W(θ)

gj(θ, wj), (18)

where we use wj to denote the maximizer overW(θ) for constraint gj explicitly. We separate out the
the simplex constraints inW(θ) (5) and denote them by:

W∆ =

{
w ∈ RG×{0,1}

2×Ĝ
+

∣∣∣∣ m∑
j=1

w(j | ŷ, y, k) = 1, ∀k ∈ Ĝ, y, ŷ ∈ {0, 1}
}
,

where we represent each w as a vector of values w(i|ŷ, y, k) for each j ∈ G, ŷ ∈ {0, 1}, y ∈ {0, 1},
and k ∈ Ĝ. We then relax the total probability constraints inW(θ) into a set of inequality constraints:

P (G = j|Ĝ = k) −
∑

ŷ,y∈{0,1}

w(j | ŷ, y, k)P (Ŷ (θ) = ŷ, Y = y|Ĝ = k) − τ ≤ 0

∑
ŷ,y∈{0,1}

w(j | ŷ, y, k)P (Ŷ (θ) = ŷ, Y = y|Ĝ = k) − P (G = j|Ĝ = k) − τ ≤ 0

for some small τ > 0. We have a total of U = 2×m× m̂ relaxed inequality constraints, and will
denote each of them as ru(θ, w) ≤ 0, with index u running from 1 to U . Note that each ru(θ, w) is
linear in w.

Introducing Lagrange multipliers µ for the relaxed total probability constraints, the optimization
problem in (18) can be re-written equivalently as:

min
θ∈Θ

f(θ) +
m∑
j=1

λ′j max
wj∈W∆

min
µj∈M

{
gj(θ, wj)−

U∑
u=1

µj,u ru(θ, wj)

}
,

where note that each wj is maximized over only the simplex constraintsW∆ which are independent
of θ, andM = {µj ∈ Rm×m̂+ | ‖µj‖1 ≤ R′}, for some constant R′ > 0. Because each wj and µj
appears only in the j-th term in the summation, we can pull out the max and min, and equivalently

25

rewrite the above problem as:

min
θ∈Θ

max
w∈Wm

∆

min
µ∈Mm

f(θ) +

m∑
j=1

λ′j

(
gj(θ, wj)−

U∑
u=1

µj,u ru(θ, wj)︸ ︷︷ ︸
ω(θ,µj ,wj)

)

︸ ︷︷ ︸
`(θ,µ,w;λ′)

, (19)

where w = (w1, . . . , wm) and µ = (µ1, . . . , µm). We then solve this nested minimax problem in
Algorithm 3 by using an minimization oracle to perform a full optimization of ` over (θ, µ), and
carrying out gradient ascent updates on ` over wj .

We now proceed to show an optimality guarantee for Algorithm 3.
Theorem 5 (Optimality Guarantee for Algorithm 3). Suppose for every θ ∈ Θ, there exists a
w̃j ∈ W∆ such that ru(θ, w̃j) ≤ −γ, ∀u ∈ [U], for some γ > 0. Let 0 ≤ gj(θ, wj) ≤ B′, ∀θ ∈
Θ, wj ∈ W∆. Let Bw ≥ maxq ‖∇w `(θ

(q),µ(q),w(q);λ′))‖2. Let θ̂ be the stochastic classifier
returned by Algorithm 3 when run for a given λ′ for Q iterations, with the radius of the Lagrange
multipliers R′ = B′/γ and learning rate ηw = R′

Bw

√
T

. Then:

Eθ∼θ̂ [L(θ, λ′)] ≤ min
θ∈Θ
L(θ, λ′) + O

(
1√
Q

)
+ κ.

Before proving Theorem 5, we will find it useful to state the following lemma.
Lemma 6 (Boundedness of Inner Lagrange Multipliers in (19)). Suppose for every θ ∈ Θ, there
exists a w̃j ∈ W such that ru(θ, w̃j) ≤ −γ, ∀u ∈ [U], for some γ > 0. Let 0 ≤ gj(θ, wj) ≤
B′, ∀θ ∈ Θ, wj ∈ W∆. Let M = {µj ∈ RK+ | ‖µj‖1 ≤ R′} with the radius of the Lagrange
multipliers R′ = B′/γ. Then we have for all j ∈ G:

max
wj∈W∆

min
µj∈M

ω
(
θ, µj , wj

)
= max
wj∈W∆: ru(θ,wj)≤0, ∀u

gj(θ, wj).

Proof. For a given j ∈ G, let w∗j ∈ argmax
wj∈W∆: ru(θ,wj)≤0, ∀u

gj(θ, wj). Then:

gj(θ, w
∗
j) = max

wj∈W∆

min
µj∈RK+

ω
(
θ, µj , wj

)
, (20)

where note that µj is minimized over all non-negative values. Since the ω is linear in both µj and wj ,
we can interchange the min and max:

gj(θ, w
∗
j) = min

µj∈RK+
max
wj∈W∆

ω
(
θ, µj , wj

)
.

We show below that the minimizer µ∗ in the above problem is in fact bounded and present inM.

gj(θ, w
∗
j) = max

wj∈W
ω
(
θ, µ∗j , wj

)
= max

wj∈W

{
gj(θ, wj) −

K∑
k=1

µ∗j,k rk(θ, wj)

}
≥ gj(θ, w̃j) − ‖µ∗j‖1 max

k∈[K]
rk(θ, w̃j)

≥ gj(θ, wj) + ‖µ∗j‖1γ ≥ ‖µ∗j‖1γ.

We further have:
‖µ∗j‖1 ≤ gj(θ, wj)/γ ≤ B′/γ. (21)

Thus the minimizer µ∗j ∈ M. So the minimization in (20) can be performed over onlyM, which
completes the proof of the lemma.

Equipped with the above result, we are now ready to prove Theorem 5.

26

Proof of Theorem 5. Let wj = 1
Q

∑Q
q=1 w

(q)
j . The best response on θ and µ gives us:

1

Q

Q∑
q=1

(
f(θ(q)) +

m∑
j=1

λ′j ω
(
θ(q), µ

(q)
j , w

(q)
j

))

≤ 1

Q

Q∑
q=1

min
θ∈Θ,µ∈Mm

(
f(θ) +

m∑
j=1

λ′j ω
(
θ, µj , w

(q)
j

))
+ κ

=
1

Q

Q∑
q=1

(
min
θ∈Θ

f(θ) +

m∑
j=1

λ′j min
µj∈M

ω
(
θ, µj , w

(q)
j

))
+ κ (j-th summation term depends on µj alone)

≤ min
θ∈Θ

1

Q

Q∑
q=1

(
f(θ) +

m∑
j=1

λ′j min
µj∈M

ω
(
θ, µj , w

(q)
j

))
+ κ

≤ min
θ∈Θ

{
f(θ) +

m∑
j=1

λ′j min
µj∈M

1

Q

Q∑
q=1

ω
(
θ, µj , w

(q)
j

)}
+ κ

= min
θ∈Θ

{
f(θ) +

m∑
j=1

λ′j min
µj∈M

ω
(
θ, µj , wj

)}
+ κ

≤ min
θ∈Θ

{
f(θ) +

m∑
j=1

λ′j max
wj∈W

min
µj∈M

ω
(
θ, µj , wj

)}
+ κ (by linearity of ω in wj)

= min
θ∈Θ

{
f(θ) +

m∑
j=1

λ′j max
wj : ru(θ,wj)≤0, ∀u

gj(θ, wj)
}

+ κ (from Lemma 6)

= min
θ∈Θ
L(θ, λ′) + κ. (22)

Applying standard gradient ascent analysis to the gradient ascent steps on w (using the fact that ω is
linear in w)

1

Q

Q∑
q=1

(
f(θ(q)) +

m∑
j=1

λ′j ω
(
θ(q), µ

(q)
j , w

(q)
j

))

≥ max
w∈Wm

∆

1

Q

Q∑
q=1

(
f(θ(q)) +

m∑
j=1

λ′j ω
(
θ(q), µ

(q)
j , wj

))
− O

(
1√
Q

)

=
1

Q

Q∑
q=1

(
f(θ(q)) +

m∑
j=1

λ′j max
wj∈W∆

ω
(
θ(q), µ

(q)
j , wj

))
−O

(
1√
Q

)
(j-th summation term depends on wj alone)

≥ 1

Q

Q∑
q=1

(
f(θ(q)) +

m∑
j=1

λ′j max
wj∈W∆

min
µj∈M

ω
(
θ(q), µj , wj

))
− O

(
1√
Q

)
(by linearity of ω in wj and µj)

= Eθ∼θ̂

f(θ) +

m∑
j=1

λ′j max
wj∈W∆

min
µj∈M

ω
(
θ, µj , wj

) − O(1√
Q

)

= Eθ∼θ̂

f(θ(q)) +

m∑
j=1

λ′j max
wj∈W∆: ru(θ,wj)≤0, ∀u

gj(θ, wj)

 − O(1√
Q

)
(from Lemma 6)

= Eθ∼θ̂ [L(θ, λ′)] − O
(

1√
Q

)
. (23)

Combining (22) and (23) completes the proof.

27

Algorithm 4 Practical Algorithm

Require: learning rates ηθ > 0, ηλ > 0, estimates of
P (G = j|Ĝ = k) to specifyW(θ)

1: for t = 1, . . . , T do
2: Solve for w given θ using linear programming or a gradient method:

w(t) ← maxw∈W(θ(t))

∑m
j=1 λ

(t)
j gj(θ

(t), w)

3: Descent step on θ:
θ(t+1) ← θ(t) − ηθδ(t)

θ , where

δ
(t)
θ = ∇θ

(
f0(θ(t)) +

∑m
j=1 λ

(t)
j gj

(
θ(t), w(t+1)

))
4: Ascent step on λ:

λ̃
(t+1)
j ← λ

(t)
j + ηλgj

(
θ(t+1), w(t+1)

)
∀j ∈ G

λ(t+1) ← ΠΛ(λ̃(t+1)),
5: end for
6: return θ(t∗) where t∗ denotes the best iterate that satisfies the constraints in (7) with the lowest

objective.

E Discussion on the Practical algorithm

Here we provide the details of the practical Algorithm 4 to solve problem (8). We also further discuss
how we arrive at Algorithm 4. Recall that in the minimax problem in (8), restated below, each of the
m constraints contain a max over w:

min
θ∈Θ

max
λ∈Λ

f(θ) +

m∑
j=1

λj max
w∈W(θ)

gj(θ, w).

We show below that this is equivalent to a minimax problem where the sum over j and max over w
are swapped:
Lemma 7. The minimax problem in (8) is equivalent to:

min
θ∈Θ

max
λ∈Λ

max
w∈W(θ)

f(θ) +

m∑
j=1

λjgj(θ, w). (24)

Proof. Recall that the space of Lagrange multipliers Λ = {λ ∈ Rm+ | ‖λ‖1 ≤ R}, for R > 0. So the
above maximization over Λ can be re-written in terms of a maximization over the m-dimensional
simplex ∆m and a scalar β ∈ [0, R]:

min
θ∈Θ

max
β∈[0,R], ν∈∆m

f(θ) + β

m∑
j=1

νj max
w∈W(θ)

gj(θ, w)

= min
θ∈Θ

max
β∈[0,R]

f(θ) + β max
ν∈∆m

m∑
j=1

νj max
w∈W(θ)

gj(θ, w)

= min
θ∈Θ

max
β∈[0,R]

f(θ) + βmax
j∈G

max
w∈W(θ)

gj(θ, w)

= min
θ∈Θ

max
β∈[0,R]

f(θ) + β max
w∈W(θ)

max
j∈G

gj(θ, w)

= min
θ∈Θ

max
β∈[0,R]

f(θ) + β max
w∈W(θ)

max
ν∈∆m

m∑
j=1

νjgj(θ, w)

= min
θ∈Θ

f(θ) + max
β∈[0,R], ν∈∆m

max
w∈W(θ)

m∑
j=1

βνjgj(θ, w)

= min
θ∈Θ

f(θ) + max
λ∈Λ

max
w∈W(θ)

m∑
j=1

λjgj(θ, w),

28

which completes the proof.

The practical algorithm outlined in Algorithm 4 seeks to solve the re-written minimax problem in
(24), and is similar in structure to the ideal algorithm in Algorithm 1, in that it has two high-level
steps: an approximate best response over θ and gradient ascent updates on λ. However, the algorithm
works with deterministic classifiers θ(t), and uses a simple heuristic to approximate the best response
step. Specifically, for the best response step, the algorithm finds the maximizer of the Lagrangian
over w for a fixed θ(t) by e.g. using linear programming:

w(t) ← max
w∈W(θ(t))

m∑
j=1

λ
(t)
j gj(θ

(t), w),

uses the maximizer w(t) to approximate the gradient of the Lagrangian at θ(t):

δ
(t)
θ = ∇θ

(
f0(θ(t)) +

m∑
j=1

λ
(t)
j fj

(
θ(t), w(t+1)

))
and performs a single gradient update on θ:

θ(t+1) ← θ(t) − ηθδ(t)
θ .

The gradient ascent step on λ is the same as the ideal algorithm, except that it is simpler to implement
as the iterates θ(t) are deterministic:

λ̃
(t+1)
j ← λ

(t)
j + ηλfj

(
θ(t+1), w(t+1)

)
∀j ∈ G;

λ(t+1) ← ΠΛ(λ̃(t+1)).

F Additional experiment details and results

We provide more details on the experimental setup as well as further results.

F.1 Additional experimental setup details

This section contains further details on the experimental setup, including the datasets used and
hyperparameters tuned. All categorical features in each dataset were binarized into one-hot vectors.
All numerical features were bucketized into 4 quantiles, and further binarized into one-hot vectors.
All code that we used for pre-processing the datasets from their publicly-downloadable versions can
be found at https://github.com/wenshuoguo/robust-fairness-code.

For the naïve approach, we solve the constrained optimization problem (2) with respect to the noisy
groups Ĝ. For comparison, we also report the results of the unconstrained optimization problem
and the constrained optimization problem (1) when the true groups G are known. For the DRO
problem (3), we estimate the bound γj = P (Ĝ 6= G|G = j) in each case study. For the soft group
assignments approach, we implement the practical algorithm (Algorithm 4).

In the experiments, we replace all expectations in the objective and constraints with finite-sample
empirical versions. So that the constraints will be convex and differentiable, we replace all indicator
functions with hinge upper bounds, as in Davenport et al. [16] and Eban et al. [22]. We use a linear
model: φ(X; θ) = θTX . The noisy protected groups Ĝ are included as a feature in the model,
demonstrating that conditional independence between Ĝ and the model φ(X; θ) is not required here,
unlike some prior work [4]. Aside from being used to estimate the noise model P (G = k|Ĝ = j) for
the soft group assignments approach3, the true groups G are never used in the training or validation
process.

3If P (G = k|Ĝ = j) is estimated from an auxiliary dataset with a different distribution than test, this could
lead to generalization issues for satisfying the true group constraints on test. In our experiments, we lump those
generalization issues in with any distributional differences between train and test.

29

Each dataset was split into train/validation/test sets with proportions 0.6/0.2/0.2. For each algorithm,
we chose the best iterate θ(t∗) out of T iterates on the train set, where we define best as the iterate that
achieves the lowest objective value while satisfying all constraints. We select the hyperparameters that
achieve the best performance on the validation set (details in Appendix F). We repeat this procedure
for ten random train/validation/test splits and record the mean and standard errors for all metrics4.

F.1.1 Adult dataset

For the first case study, we used the Adult dataset from UCI [18], which includes 48,842 examples.
The features used were age, workclass, fnlwgt, education, education_num, marital_status, occupation,
relationship, race, gender, capital_gain, capital_loss, hours_per_week, and native_country. Detailed
descriptions of what these features represent are provided by UCI [18]. The label was whether or
not income_bracket was above $50,000. The true protected groups were given by the race feature,
and we combined all examples with race other than “white” or “black” into a group of race “other.”
When training with the noisy group labels, we did not include the true race as a feature in the model,
but included the noisy race labels as a feature in the model instead. We set α = 0.05 as the constraint
slack.

The constraint violation that we report in Figure 1 is taken over a test dataset with n examples
(X1, Y1, G1), ..., (Xn, Yn, Gn), and is given by:

max
j∈G

∑n
i=1 1(Ŷ (θ)i = 1, Yi = 1)∑n

i=1 1(Yi = 1)
−
∑n
i=1 1(Ŷ (θ)i = 1, Yi = 1, Gi = j)∑n

i=1 1(Yi = 1, Gi = j)
− α,

where Ŷ (θ)i = 1(φ(θ;Xi) > 0).

Section C.2 shows how we specifically enforce equality of opportunity using the soft assignments
approach, and Section B.3 shows how we enforce equality of opportunity using DRO.

F.1.2 Credit dataset

For the second case study, we used default of credit card clients dataset from UCI [18] collected
by a company in Taiwan [53], which contains 30000 examples and 24 features. The features
used were amount_of_the_given_credit, gender, education, education, marital_status, age, his-
tory_of_past_payment, amount_of_bill_statement, amount_of_previous_payment. Detailed descrip-
tions of what these features represent are provided by UCI [18]. The label was whether or not default
was true. The true protected groups were given by the education feature, and we combined all
examples with education level other than “graduate school” or “university” into a group of education
level “high school and others”. When training with the noisy group labels, we did not include the
true education as a feature in the model, but included the noisy education level labels as a feature in
the model instead. We set α = 0.03 as the constraint slack.

The constraint violation that we report in Figure 1 is taken over a test dataset with n examples
(X1, Y1, G1), ..., (Xn, Yn, Gn), and is given by:

max
j∈G

max(∆TPR
j ,∆FPR

j)

where

∆TPR
j =

∑n
i=1 1(Ŷ (θ)i = 1, Yi = 1)∑n

i=1 1(Yi = 1)
−
∑n
i=1 1(Ŷ (θ)i = 1, Yi = 1, Gi = j)∑n

i=1 1(Yi = 1, Gi = j)
− α

and

∆FPR
j =

∑n
i=1 1(Ŷ (θ)i = 1, Yi = 0, Gi = j)∑n

i=1 1(Yi = 0, Gi = j)
−
∑n
i=1 1(Ŷ (θ)i = 1, Yi = 0)∑n

i=1 1(Yi = 0)
− α

and Ŷ (θ)i = 1(φ(θ;Xi) > 0).

Section C.2 shows how we specifically enforce equalized odds using the soft assignments approach,
and Section B.3 shows how we enforce equalized odds using DRO.

4When we report the “maximum” constraint violation, we use the mean and standard error of the constraint
violation for the group j with the maximum mean constraint violation.

30

F.1.3 Optimization code

For all case studies, we performed experiments comparing the naïve approach, the DRO approach
(Section 5) and the soft group assignments approach (Section 6). We also compared these to the
baselines of optimizing without constraints and optimizing with constraints with respect to the true
groups. All optimization code was written in Python and TensorFlow 5. All gradient steps were
implemented using TensorFlow’s Adam optimizer 6, though all experiments can also be reproduced
using simple gradient descent without momentum. We computed full gradients over all datasets,
but minibatching can also be used for very large datasets. Implementations for all approaches are
included in the attached code. Training time was less than 10 minutes per model.

Table 1: Hyperparameters tuned for each approach

HPARAM VALUES TRIED RELEVANT APPROACHES DESCRIPTION

ηθ {0.001,0.01,0.1} ALL APPROACHES LEARNING RATE FOR θ
ηλ {0.25,0.5,1.0,2.0} ALL EXCEPT UNCONSTRAINED LEARNING RATE FOR λ
ηp̃j {0.001, 0.01, 0.1} DRO LEARNING RATE FOR p̃j
ηw {0.001, 0.01, 0.1} SOFT ASSIGNMENTS LEARNING RATE USING

GRADIENT METHODS FOR w

F.1.4 Hyperparameters

The hyperparameters for each approach were chosen to achieve the best performance on the validation
set on average over 10 random train/validation/test splits, where “best” is defined as the set of
hyperparameters that achieved the lowest error rate while satisfying all constraints relevant to the
approach. The final hyperparameter values selected for each method were neither the largest nor
smallest of all values tried. A list of all hyperparameters tuned and the values tried is given in Table 1.

For the naïve approach, the constraints used when selecting the hyperparameter values on the
validation set were the constraints with respect to the noisy group labels given in Equation (2). For the
DRO approach and the soft group assignments approach, the respective robust constraints were used
when selecting hyperparameter values on the validation set. Specifically, for the DRO approach, the
constraints used were those defined in Equation (3), and for the soft group assignments approach, the
constraints used were those defined in Equation (7). For the unconstrained baseline, no constraints
were taken into account when selecting the best hyperparameter values. For the baseline constrained
with access to the true group labels, the true group constraints were used when selecting the best
hyperparameter values.

Hinge relaxations of all constraints were used during training to achieve convexity. Since the hinge
relaxation is an upper bound on the real constraints, the hinge-relaxed constraints may require some
additional slack to maintain feasibility. This positive slack β was added to the original slack α when
training with the hinge-relaxed constraints, and the amount of slack β was chosen so that the relevant
hinge-relaxed constraints were satisfied on the training set.

All approaches ran for 750 iterations over the full dataset.

F.2 Additional experiment results

This section provides additional experiment results. All results reported here and in the main paper
are on the test set (averaged over 10 random train/validation/test splits).

F.2.1 Case study 1 (Adult)

This section provides additional experiment results for case study 1 on the Adult dataset.

Figure 4 that the naïve approach, DRO approach, and soft assignments approaches all satisfied the
fairness constraints for the noisy groups on the test set.

5Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. tensorflow.org.
6https://www.tensorflow.org/api_docs/python/tf/compat/v1/train/AdamOptimizer

31

Figure 5 confirms that the DRO approach and the soft assignments approaches both managed to
satisfy their respective robust constraints on the test set on average. For the DRO approach, the
constraints measured in Figure 5 come from Equation (3), and for the soft assignments approach, the
constraints measured in Figure 5 come from Equation (7). We provide the exact error rate values and
maximum violations on the true groups for the Adult dataset in Table 2.

0.1 0.2 0.3 0.4 0.5
Group noise level

−0.10

−0.05

0.00

0.05

0.10

Pr
ox

y
gr

ou
p

fa
irn

es
s v

io
l.

Naive
All neg.

0.1 0.2 0.3 0.4 0.5
Group noise level

−0.10

−0.05

0.00

0.05

0.10

Pr
ox

y
gr

ou
p

fa
irn

es
s v

io
l.

DRO
All neg.

0.1 0.2 0.3 0.4 0.5
Group noise level

−0.10

−0.05

0.00

0.05

0.10

Pr
ox

y
gr

ou
p

fa
irn

es
s v

io
l.

SA
All neg.

Figure 4: Maximum fairness constraint violations with respect to the noisy groups Ĝ on the test
set for different group noise levels γ on the Adult dataset. For each noise level, we plot the mean
and standard error over 10 random train/val/test splits. The black solid line illustrates a maximum
constraint violation of 0. While the naïve approach (left) has increasingly higher fairness constraints
with respect to the true groups as the noise increases, it always manages to satisfy the constraints
with respect to the noisy groups Ĝ

0.1 0.2 0.3 0.4 0.5
Group noise level

−0.10

−0.05

0.00

0.05

0.10

R
ob

us
t c

on
st

ra
in

t v
io

l. DRO
All neg.

0.1 0.2 0.3 0.4 0.5
Group noise level

−0.10

−0.05

0.00

0.05

0.10

R
ob

us
t c

on
st

ra
in

t v
io

l. SA
All neg.

Figure 5: Maximum robust constraint violations on the test set for different group noise levels
P (Ĝ 6= G) on the Adult dataset. For each noise level, we plot the mean and standard error over 10
random train/val/test splits. The black dotted line illustrates a maximum constraint violation of 0.
Both the DRO approach (left) and the soft group assignments approach (right) managed to satisfy
their respective robust constraints on the test set on average for all noise levels.

Table 2: Error rate and fairness constraint violations on the true groups for the Adult dataset (mean
and standard error over 10 train/test/splits).

DRO Soft Assignments
Noise Error rate Max G Viol. Error rate Max G Viol.

0.1 0.152 ± 0.001 0.002 ± 0.019 0.148 ± 0.001 -0.048 ± 0.002
0.2 0.200 ± 0.002 -0.045 ± 0.003 0.157 ± 0.003 -0.048 ± 0.002
0.3 0.216 ± 0.010 -0.044 ± 0.004 0.158 ± 0.005 0.002 ± 0.030
0.4 0.209 ± 0.006 -0.019 ± 0.031 0.188 ± 0.003 -0.016 ± 0.016
0.5 0.219 ± 0.012 -0.030 ± 0.032 0.218 ± 0.002 0.004 ± 0.006

F.2.2 Case study 2 (Credit)

This section provides additional experiment results for case study 2 on the Credit dataset.

32

Figure 6 shows the constraint violations with respect to the true groups on test separated into TPR
violations and FPR violations. For all noise levels, there were higher TPR violations than FPR
violations. However, this does not mean that the FPR constraint was meaningless – the FPR constraint
still ensured that the TPR constraints weren’t satisfied by simply adding false positives.

Figure 7 confirms that the naïve approach, DRO approach, and soft assignments approaches all
satisfied the fairness constraints for the noisy groups on the test set.

Figure 8 confirms that the DRO approach and the soft assignments approaches both managed to
satisfy their respective robust constraints on the test set on average. For the DRO approach, the
constraints measured in Figure 8 come from Equation (3), and for the soft assignments approach, the
constraints measured in Figure 8 come from Equation (7).

We provide the exact error rate values and maximum violations on the true groups for the Credit
dataset in Table 3.

0.1 0.2 0.3 0.4 0.5
Group noise level

−0.04

−0.02

0.00

0.02

0.04

Tr
ue

 g
ro

up
 T

PR
 v

io
l.

Naive
All neg.

0.1 0.2 0.3 0.4 0.5
Group noise level

−0.04

−0.02

0.00

0.02

0.04
Tr

ue
 g

ro
up

 T
PR

 v
io

l. DRO
All neg.

0.1 0.2 0.3 0.4 0.5
Group noise level

−0.04

−0.02

0.00

0.02

0.04

Tr
ue

 g
ro

up
 T

PR
 v

io
l. SA

All neg.

0.1 0.2 0.3 0.4 0.5
Group noise level

−0.04

−0.02

0.00

0.02

0.04

Tr
ue

 g
ro

up
 F

PR
 v

io
l. Naive

All neg.

0.1 0.2 0.3 0.4 0.5
Group noise level

−0.04

−0.02

0.00

0.02

0.04

Tr
ue

 g
ro

up
 F

PR
 v

io
l. DRO

All neg.

0.1 0.2 0.3 0.4 0.5
Group noise level

−0.04

−0.02

0.00

0.02

0.04

Tr
ue

 g
ro

up
 F

PR
 v

io
l. SA

All neg.

Figure 6: Case study 2 (Credit): Maximum true group TPR (top) and FPR (bottom) constraint
violations for the Naive, DRO, and soft assignments (SA) approaches on test set for different group
noise levels γ on the Credit dataset (mean and standard error over 10 train/val/test splits). The black
solid line represents the performance of the trivial “all negatives” classifier, which has constraint
violations of 0. A negative violation indicates satisfaction of the fairness constraints on the true
groups.

0.1 0.2 0.3 0.4 0.5
Group noise level

−0.04

−0.02

0.00

0.02

0.04

Pr
ox

y
gr

ou
p

fa
irn

es
s v

io
l.

Naive
All neg.

0.1 0.2 0.3 0.4 0.5
Group noise level

−0.04

−0.02

0.00

0.02

0.04

Pr
ox

y
gr

ou
p

fa
irn

es
s v

io
l.

DRO
All neg.

0.1 0.2 0.3 0.4 0.5
Group noise level

−0.04

−0.02

0.00

0.02

0.04

Pr
ox

y
gr

ou
p

fa
irn

es
s v

io
l.

SA
All neg.

Figure 7: Maximum fairness constraint violations with respect to the noisy groups Ĝ on the test
set for different group noise levels γ on the Credit dataset. For each noise level, we plot the mean
and standard error over 10 random train/val/test splits. The black solid line illustrates a maximum
constraint violation of 0. While the naïve approach (left) has increasingly higher fairness constraints
with respect to the true groups as the noise increases, it always manages to satisfy the constraints
with respect to the noisy groups Ĝ

33

0.1 0.2 0.3 0.4 0.5
Group noise level

−0.04

−0.02

0.00

0.02

0.04

R
ob

us
t c

on
st

ra
in

t v
io

l. DRO
All neg.

0.1 0.2 0.3 0.4 0.5
Group noise level

−0.04

−0.02

0.00

0.02

0.04

R
ob

us
t c

on
st

ra
in

t v
io

l. SA
All neg.

Figure 8: Maximum robust constraint violations on the test set for different group noise levels
P (Ĝ 6= G) on the Credit dataset. For each noise level, we plot the mean and standard error over 10
random train/val/test splits. The black dotted line illustrates a maximum constraint violation of 0.
Both the DRO approach (left) and the soft group assignments approach (right) managed to satisfy
their respective robust constraints on the test set on average for all noise levels.

Table 3: Error rate and fairness constraint violations on the true groups for the Credit dataset (mean
and standard error over 10 train/test/splits).

DRO Soft Assignments
Noise Error rate Max G Viol. Error rate Max G Viol.

0.1 0.206 ± 0.003 -0.006 ± 0.006 0.182 ± 0.002 0.000 ± 0.005
0.2 0.209 ± 0.002 -0.008 ± 0.008 0.182 ± 0.001 0.004 ± 0.005
0.3 0.212 ± 0.002 -0.006 ± 0.006 0.198 ± 0.001 -0.025 ± 0.007
0.4 0.210 ± 0.002 -0.017 ± 0.008 0.213 ± 0.001 -0.028 ± 0.005
0.5 0.211 ± 0.003 -0.015 ± 0.006 0.211 ± 0.001 -0.014 ± 0.004

34

