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Abstract

Causal inference relies on two fundamental assumptions: ignorability and positivity.
We study causal inference when the true confounder value can be expressed as
a function of the observed data; we call this setting estimation with functional
confounders (EFC). In this setting ignorability is satisfied, however positivity is
violated, and causal inference is impossible in general. We consider two scenarios
where causal effects are estimable. First, we discuss interventions on a part of
the treatment called functional interventions and a sufficient condition for effect
estimation of these interventions called functional positivity. Second, we develop
conditions for nonparametric effect estimation based on the gradient fields of the
functional confounder and the true outcome function. To estimate effects under
these conditions, we develop Level-set Orthogonal Descent Estimation (LODE).
Further, we prove error bounds on LODE’s effect estimates, evaluate our methods
on simulated and real data, and empirically demonstrate the value of EFC.

1 Introduction

Determining the effect of interventions on outcomes using observational data lies at the core of many
fields like medicine, economic policy, and genomics. For example, policy makers estimate effects
to elect whether to invest in education or job training programs. In medicine, doctors use effects to
design optimal treatment strategies for patients. Geneticists perform genome-wide association studies
(GWAS) to relate genotypes and phenotypes. In observational data, there could exist unobserved
variables that affect both the intervention and the outcome, called confounders. A necessary condition
for the causal effect to be identified is that all confounders are observed; called ignorability. If
ignorability holds, a sufficient condition for causal effect estimation is adequate variation in the
intervention after conditioning on the confounders; this condition is called positivity.

The data apriori does not differentiate between confounders and interventions. It is the practitioners
that select interventions of interest from all pre-outcome variables (variables that occur before the
outcome). Then, assuming knowledge of the data generating mechanism, practitioners can label
certain variables amongst the remaining pre-outcome variables as confounders. This corresponds to
indexing into the set of pre-outcome variables.

In certain problems the confounders are specified as a function of the pre-outcome variables that does
not simply index into the set of pre-outcome variables. For a concrete example, consider GWAS. The
goal in GWAS is to estimate the influence of genetic variations on phenotypes like disease risk. In
GWAS, population and family structures both result in certain genetic variations and affect phenotypes
and therefore, are confounders [4]. Practitioners specify these confounders by using the genetic
similarity between individuals [15, 19, 31], which is a function of the genetic variations. When the
confounders are a function of the same pre-outcome variables that define the interventions, positivity
is violated. Then, the class of interventions whose effects are estimable is not well-defined.
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We study causal effect estimation in such settings, where a function of the pre-outcome variables
provides the confounder and these same pre-outcome variables define the intervention. We call this
estimation with functional confounders (EFC). In EFC, one column in the observed data is the outcome
and all others are pre-outcome variables. We assume access to a function h(·) that takes as input the
pre-outcome variables and returns the value of the confounder. Further, we assume these confounders
give us ignorability. In settings like GWAS, the function h reflects the practitioner-specified function
that captures the genetic variation influenced by the population structure. In traditional observational
causal inference (OBS-CI), h(·) reflects the selection of certain variables in the data and labelling
them as confounders. In EFC, two different values of the confounder are never observed for the same
setting of the pre-outcome variables. This means that positivity is violated and the effects of only
certain interventions may be estimable.

We address this issue in two ways. First, we investigate a class of plausible interventions that are
functions of the observed pre-outcome variables, called functional interventions. We develop a
sufficient condition to estimate the effects of said functional interventions, called functional positivity
(F-POSITIVITY). Second, we consider intervening on all pre-outcome variables, called the full inter-
vention. We develop a sufficient condition to estimate the effect of the full intervention, called causal
redundancy (C-REDUNDANCY). For an intervention, given a confounder value, C-REDUNDANCY
allows us to compute a surrogate intervention such that the conditional effect of the surrogate is
equal to that of the original intervention. We also show that such surrogate interventions exist only
under a certain condition that we call Effect Connectivity, that is necessary for nonparametric effect
estimation in EFC. This condition is satisfied by default in traditional OBS-CI if ignorability and
positivity hold. Then, we develop an algorithm for causal estimation assuming C-REDUNDANCY,
called Level-set Orthogonal Descent Estimation (LODE), which estimates effects using surrogate
interventions. If the surrogate is not estimated well, LODE’s estimates are biased. We establish bounds
on this bias that capture the mitigating effect of the smoothness of the true outcome function.

Related work The problem of genome-wide association studies (GWAS) is to estimate the effect of
genetic variations(also called single nucleotide polymorphisms (SNPs)) on the phenotype [29]. The
ancestry of the subjects acts as a confounder in GWAS. In GWAS practice, principle component analysis
(PCA) and linear mixed models (LMMs) are used to compute this confounding structure [19, 31].
Lippert et al. [15] suggest estimating the confounders and effects on separate subsets of the SNPs.
This separation disregards the confounding that is captured in the interaction of the two subsets of
SNPs. GWAS is a special case of effects from multiple treatments (MTE) where the confounder value
is specified via optimization as a function of the pre-outcome variables [20, 30]. In all these settings,
positivity is violated and not all effects are estimable. We provide an avenue for nonparametric
effect-estimation of the full intervention under a new condition, C-REDUNDANCY.

Traditional observational causal inference (OBS-CI) review We setup causal inference with
Structural Causal Models [17] and use do(t = t∗) to denote making an intervention. Let t be a
vector of the interventions, z be the confounder, and y be the outcome. Let η ∼ p(η)(η |= (z, t)) be
noise. With f as the outcome function, we define the causal model for traditional OBS-CI as 1:

z ∼ p(z), t ∼ p(t | z), y = f(t, z,η).

Let p(y, z, t) denote the joint distribution implied by this data generating process. The effects of
interest under the full intervention do(t = t∗) are the average and conditional effect

(average) τ(t∗) = Ez,ηf(t
∗, z,η) (conditional) φ(t∗, z) = Eη [f(t∗, z,η)] . (1)

With observed confounders, two assumptions make causal estimation possible: ignorability and
positivity. Ignorability means that all confounders z are observed in data. Conditioning on all the
confounders, the outcome under an intervention is distributed as if conditional on the value of the
intervention: p(y = y1 |do(t = t∗), z = z) = p(f(t∗, z,η) = y1) = p(y = y1 | t = t∗, z =
z). This allows the expression of average effect as an expectation over the observed outcomes
τ(t∗) = Ez,η[f(t

∗, z,η)] = EzE[y | z, t∗]. The conditional expectation only exists for all t∗ if
p(y | z, t = t∗) = p(y,z,t=t∗)/p(z)p(t=t∗ |z) exists. Positivity guarantees this existence

(positivity) ∀t∗ ∈ supp(t) p(z = z) > 0 =⇒ p(t = t∗ | z = z) > 0. (2)

1We focus on f that generates y from t, z. SCMs generally specify the function that generates t from z also.
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Figure 1: Causal Graphs for Traditional OBS-CI vs. EFC.

2 Estimation with functional confounders
In traditional OBS-CI, causal estimation relied on knowing the confounders. In this section, we
consider settings where confounders are known via a function of the pre-outcome variables h(t) = z.
We call this setting estimation with functional confounders (EFC). An example of this is GWAS, where
SNPs (the pre-outcome variables) are used to estimate the confounding population structure through
methods like PCA [31]. Assuming the confounders are a function of the pre-outcome variables
violates positivity in general. Positivity is violated in this setting because
∀t1, t2 ∈ supp(t) s.t. h(t2) 6= h(t1) =⇒ p(z = h(t2) | t = t1) = 0 6= p(z = h(t2)) > 0

In words, two different confounder values cannot occur for the same t. A positivity violation precludes
nonparametric effect estimation of the full intervention do(t = t∗).

Positivity and Regression Identifiability Positivity can be viewed as providing identifiability. To
see this, let the confounder be z = h(t) and the outcome be y(t, z,η) = z + h(t). Now consider
regressing z and t onto y. Then, functions y = αz+ βh(t) indexed by α,β, such that α+ β = 2,
are consistent with the observed data. Thus, there exist infinitely many solutions to the conditional
expectation of y on (t, z), meaning that the regression is not identifiable. Assuming positivity
necessitates sufficient randomness to identify the regression and thus the causal effect. A violation of
positivity means that nonparametric estimation of causal effects needs further assumptions.

2.1 Setup for EFC

In EFC, the confounder is provided as a non-bijective function h of the pre-outcome variables t. To
reflect this property, we use h(t) to denote the confounder. As an illustrative example, let G be the
Gamma distribution and consider z ∈ {−1, 1},p(z = 1) = 0.5 is the confounder and the intervention
of interest is t = z ∗ G(1, exp(z)). Note sign(t) = z meaning that h(t) = sign(t) is the confounder.
Figure 1 shows causal graphs connecting our EFC notation to that in traditional OBS-CI. With noise
η ∼ p(η)(η |= t), our causal model samples, in order, the confounder ”part” of pre-outcome variables
h(t), the pre-outcome variables t, and the outcome y via the outcome function f 2:

h(t) ∼ p(h(t)) t ∼ p(t |h(t)) y = f(t,h(t),η)
Similar to traditional OBS-CI, for an intervention t∗ the average effect, τ(·), and the conditional
effect, φ(·, ·) at h(t∗2), respectively, are defined as:

τ(t∗) = E
h(t),η

[f(t∗,h(t),η)], φ(t∗,h(t∗2)) = E
η
[f(t∗,h(t∗2),η)]. (3)

As the pre-outcome variables determine the confounder, positivity is violated. Further, the outcome
function f(t,h(t),η) could recover the exact value of h(t) from t instead of its second argument.
Thus, two different outcome functions could lead to the same observational data distribution, posing
a fundamental obstacle to causal effect estimation. This is the central challenge in EFC.

2.2 Causal Questions With Functional Positivity
Without positivity, we can only estimate the effects of certain functions of t. We call such in-
terventions, on some function g(t), functional interventions. The implied causal model for the
outcome for functional intervention value g(t∗) and confounder value h(t∗2) is first t ∼ p(t |g(t) =
g(t∗),h(t) = h(t∗2)) and then y = f(t,h(t∗2),η)

3. Then, the functional average effect is
(average) τ(g(t∗)) = Eh(t),ηEt |g(t)=g(t∗),h(t)[f(t,h(t),η)].

An example of a functional intervention is intervening on the cumulative dosage of a drug. In contrast,
traditional interventions would set each individual dose given at different points in time.

2We also assume no interference [10] (also called Stable Unit Treatment Value Assumption [24]) which
means that an individual’s outcome does not depend on others’ treatment. In EFC, when t and η are sampled IID
there is no interference. To see this, note ∀i, j (ti,ηi) |= (tj,ηj) =⇒ (yi, ti) |= (yj, tj) =⇒ yi |= tj.

3Intervening on g(t) can be interpreted as making a soft intervention [9, 7] of t to p(t | z,g(t) = g(t̃)).
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F-POSITIVITY and Functional Effect Estimation For the causal model above to be well-defined
for all functional interventions g(t∗), the conditional p(t |g(t) = g(t∗),h(t) = h(t∗2)) must exist.
To guarantee this existence, we define functional positivity (F-POSITIVITY) for any g(t∗)

(F-POSITIVITY) p(h(t) = h(t∗2)) > 0 =⇒ p(g(t) = g(t∗) |h(t) = h(t∗2)) > 0. (4)

F-POSITIVITY says that the function of the pre-outcome variables that is being intervened on needs
to have sufficient randomness when the function of the pre-outcome variables that defines the
confounders is fixed. Further, under F-POSITIVITY, effect estimation for functional interventions
is reduced to traditional OBS-CI on data p(y,g(t),h(t)). With positivity and ignorability satisfied,
traditional causal estimators such as propensity scores [23], matching [21], regression [11], and
doubly robust methods [22] can be used to estimate the causal effect. Focusing on regression, let
fθ be a flexible function, then minθ Ey,t[(y − fθ(h(t),g(t)))2] would estimate the conditional
expectation of interest : E[y |h(t),g(t∗)]. With θ, the effect of g(t∗) can be estimated by averaging
the estimate of the conditional expectation over the marginal distribution p(h(t)):

τ(g(t∗)) = Et[fθ(h(t),g(t∗))]. (5)

3 Identification of effects of the full intervention
When positivity is violated, causal effects cannot be estimated as conditional expectations over the
observed data in general. We give a functional condition, called causal redundancy (C-REDUNDANCY),
that allows us to estimate the effect of the full intervention do(t = t∗), even when positivity is
violated. Specifically, C-REDUNDANCY allows us to construct a surrogate intervention t′(t∗,h(t∗2))
whose conditional effect at h(t′) matches the conditional effect of interest, φ(t∗,h(t∗2)). Let t̃ be a
fixed value of the full intervention, then C-REDUNDANCY is

Assumption. Recall the outcome y = f(t̃,h(t̃),η). With∇t̃ as gradient w.r.t. to argument t̃:

∀t̃,h(t̃2),η, ∇t̃f(t̃,h(t̃2),η)T∇t̃h(t̃) = 0.

In words, C-REDUNDANCY is the condition that the outcome function f uses the value of the
confounder from its second argument instead of computing h(t) from the first argument4. To
compute the conditional effect φ(t∗,h(t∗2)), we develop Level-set Orthogonal Descent Estimation
(LODE). LODE’s key step is to construct a surrogate intervention t′(t∗,h(t∗2)) such that

φ(t∗,h(t∗2)) = φ(t
′(t∗,h(t∗2)),h(t

∗
2)), h(t∗2) = h(t

′(t∗,h(t∗2))).

Figure 2: LODE’s traversal.

By definition, a surrogate intervention lives in the conditional
effect level-set: {t̃ : φ(t̃,h(t∗2)) = φ(t∗,h(t∗2))}. So LODE
searches this level-set for t′(t∗,h(t∗2)). See fig. 2 which plots the
conditional effect level-sets with the value of h(t) fixed (red) in
(supp(t), supp(h(t)))-space. Green corresponds to the observed
data, supp(t,h(t)). LODE finds t′(t∗,h(t∗2)) by traversing the
level-sets (black) to account for the confounder part mismatch
h(t∗) 6= h(t∗2). C-REDUNDANCY ensures LODE can traverse
these level-sets as it implies∇t̃φ(t̃,h(t̃2))∇t̃h(t̃) = 0 under the
regularity conditions in theorem 1. Thus, under C-REDUNDANCY, surrogate interventions can be
constructed by solving a gradient flow equation which guarantees identification as follows:

Theorem 1. Assume C-REDUNDANCY holds. Assuming the following:

1. Let t′(t∗,h(t∗2)) be the limiting solution to the gradient flow equation dt̃(s)
ds

= −∇t̃(h(t̃(s)) −

h(t∗2))
2, initialized at t̃(0) = t∗; i.e. t′(t∗,h(t∗2)) = lims→∞ t̃(s).

Further, let h(t′(t∗,h(t∗2))) = h(t
∗
2) and t′(t∗,h(t∗2)) ∈ supp(t).

2. f(t̃,h(t̃),η) and h(t̃) as functions of t̃,h(t̃) are continuous and differentiable and the derivatives
exist for all t̃,η. Let ∇t̃f(t̃,h(t̃),η) exist and be bounded and integrable w.r.t. the probability
measure corresponding to p(η), for all values of t̃ and h(t̃).

4If f transforms its first argument t̃ into h(t̃) as one amongst many different computations, the chain rule
implies∇t̃f(t̃,h(t∗2))

>∇t̃h(t̃) has a term ‖∇t̃h(t̃)‖2 which is non-zero in general.
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Then the conditional effect (and therefore the average effect) is identified:

φ(t∗,h(t∗2)) = φ (t′(t∗,h(t∗2)),h(t
′(t∗,h(t∗2)))) = E [y | t = t′(t∗,h(t∗2))] (6)

In words, the key idea is that starting at t̃(0) = t∗ and following∇t̃h(t̃) means t̃(s) always lies in the
level-set {t̃ : φ(t̃,h(t∗2)) = φ(t

∗,h(t∗2))}. See appendix A.2 for the proof. While C-REDUNDANCY
is stated in terms of the gradient of the outcome function, it suffices for theorem 1 to assume a weaker
condition about the gradient of the conditional effect: ∇t̃Eηf(t̃, t̃2,η)>∇t̃h(t̃) = 0.

Surrogate Positivity In theorem 1, we assumed that the surrogate t′(t∗,h(t∗2)) ∈ supp(t). This
condition, which we call surrogate positivity (analogous to positivity), states that for any intervention
and confounder, surrogate interventions that are limiting solutions to the gradient flow equation have
nonzero density conditional on the confounder value. Formally, for any intervention t = t∗

p(h(t) = h(t∗2)) > 0 =⇒ p(t = t′(t∗,h(t∗2)) |h(t) = h(t
∗
2)) > 0, (7)

and t′(t∗,h(t∗2)) satisfies assumption 1 in theorem 1. Surrogate positivity along with C-
REDUNDANCY, is sufficient for full effect estimation under EFC. Next, we show that the positivity
assumption in traditional causal inference is a special case of surrogate positivity.

Traditional observational causal inference (OBS-CI) and LODE Let the confounder and interven-
tion of interest in traditional OBS-CI be z and a respectively. Assume both are scalars and ignorability
and positivity hold. This setup can be embedded in EFC by defining the vector of pre-outcome
variables as: t = [a; z]. In this setting, C-REDUNDANCY and surrogate positivity(eq. (7)) hold by
default. Let the outcome be y = f(t,h(t)) = f(a, z), where f only depends on the first element
of t, i.e. a5. Let e1 = [1, 0] and e2 = [0, 1]. In traditional OBS-CI as EFC, ∇t̃f(t̃,h(t∗2)) ∝ e1 and
∇t̃h(t̃) ∝ e2 meaning that ∇t̃f(t̃,h(t∗2))

>∇t̃h(t̃) = 0. Thus, C-REDUNDANCY holds by default.
Moreover, under positivity of a w.r.t. z, we also have surrogate positivity for traditional OBS-CI as
an EFC problem. In this setting, LODE computes t′ = [a∗,h(t∗2)] by following −∇t̃h(t̃) = [0,−1],
which only changes the value of h(t̃2), not the value of a. Thus, t∗ and t′(t∗,h(t∗2)) will have
the same first element and t′’s second element will be h(t∗2). As a has positivity w.r.t. z, we
have p(a = a∗, z = h(t∗2)) > 0 which means t′ ∈ supp(t). The estimated conditional effect
is E[y | t = t′(t∗,h(t∗2))] = f([a∗, z∗],h(t∗2)) = E[y |a = a∗, z = h(t∗2))], which matches the
estimate in traditional OBS-CI.

Implementation of LODE LODE first estimates the conditional expectation E[y | t]; this can
be done with model-based or nonparametric estimators. This is achieved by regressing y on t,
f̂ = arg minu∈F Ey,t∼D(y − u(t))2, with empirical distribution D. The surrogate intervention
t′(t∗,h(t∗2)) is computed using Euler integration to solve the gradient flow equation. Euler inte-
gration in this setting is equivalent to gradient descent with a fixed step size. Other, more efficient
schemes like Runge–Kutta numerical integration methods [3] could also be used. The conditional
effect estimate is f̂(t′(t∗,h(t∗2))). See algorithm 1 for a description.

3.1 Estimation error of LODE in practice
To compute the surrogate intervention t′, LODE uses the gradients of h(·) in Euler integration. In prac-
tice, taking Euler integration steps, instead of solving the gradient flow exactly, could result in errors.
Then t′ could lie outside the level-set of the conditional effect φ(t∗,h(t∗2)) = Eη[f(t∗,h(t∗2),η)].
Further, if h(t′(t∗,h(t∗2))) 6= h(t∗2), LODE incurs error for conditioning on a value of the con-
founder that is different from h(t∗2). The error due to t′ estimation is decoupled from the error in the
estimation of E[y | t] which adds without further amplification. We formalize this error:

Theorem 2. Consider the conditional effect φ(t∗,h(t∗2)). Let t̂(t∗,h(t∗2)) be the estimate of the
surrogate intervention computed by LODE, computed via Euler integration of the gradient flow
dt̃(s)
ds

= −∇t̃(h(t̃(s)) − h(t
∗
2))

2, initialized at t̃(0) = t∗. Assume the true surrogate t′(t∗,h(t∗2))
exists and is the limiting solution to the gradient flow equation.

1. Let the finite sample estimator of E[y | t = t̃] be f̂(t̃). Let the error for all t̃ be bounded,
|f̂(t̃) − E[y | t = t̃]| 6 c(N), where N is the sample size and limN→∞ c(N) = 0.

2. Assume K Euler integrator steps were taken to find the surrogate estimate t̂(t∗,h(t∗2)),
each of size `. Let the maximum confounder mismatch be maxi6K(h(t̃i) − h(t∗2))

2 =M.

5We ignore noise in the outcome for ease of exposition.
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3. Let Lz,t̃ be the Lipschitz-constant of φ(t̃,h(t̃2)) as a function of h(t̃2), for fixed t̃.
Let Le be the Lipschitz-constant of E[y | t = t̃] = φ(t̃,h(t̃)) as a function of t̃.
Assume h has a gradient with bounded norm, ‖∇h(t̃)‖2 < Lh.
Assume f’s Hessian has bounded eigenvalues: ∀t̃, t̃2, ‖∇2

t̃φ(t̃,h(t̃2))‖2 6 σHφ.

The conditional effect estimate error, ξ(t∗,h(t∗2)) = |f̂(t̂) − φ(t∗,h(t∗2))|, is upper bounded by:

c(N) + min
(
Le‖t′ − t̂‖2, 2K`2

(
O(`) +MσHφL

2
h

)
+ Lz,t̂‖h(t̂) − h(t∗2)‖2

)
(8)

See appendix A.3 for the proof. Theorem 2 captures the trade-off between biases due to conditioning
on the wrong confounder value and due to the accumulated error in solving the gradient flow equation.
This accumulated error analysis may be loose in settings where the sum of many gradient steps lead
to t̂ ≈ t′, even if each step individually induces large error. In such settings, the term that depends on
‖t̂− t′‖2 is a better measure of error. The maximum-mismatchM appears because Euler integrator
takes steps that depend on the magnitude of the gradient which depends on the mismatch value
(h(t̃i) − h(t

∗
2)). If mismatch is large for some i, the Euler step could lead to a large error for a fixed

step size `. We discuss the assumptions in theorems 1 and 2 in appendix A.1

3.2 Effect Connectivity and the Existence of t′(t∗,h(t∗2))
The key element in Theorem 1 is the surrogate intervention t′ such that its conditional effect given
h(t′), equals that of t∗ and h(t∗2). The orthogonality ∇t̃f

>∇t̃h = 0, is a functional condition that
does not guarantee t′(t∗,h(t∗2)) exists in supp(t); a necessity to compute E[y | t = t′] without
additional parametric assumptions. We give a general condition called Effect Connectivity that
guarantees the surrogate intervention exists. With conditional effect φ(t∗,h(t∗2)), for any t∗

p(h(t) = h(t∗2)) > 0 =⇒ p(φ(t,h(t)) = φ(t∗,h(t∗2)) |h(t) = h(t
∗
2)) > 0. (9)

In words, t has a chance of setting the conditional effect to any possible value supp(φ(t,h(t2)))
given any confounder value h(t∗2) ∈ supp(h(t)). An equivalent statement is that every level
set of the conditional effect φ(t∗,h(t∗2)), with h(t∗2) fixed, contains an intervention for each
confounder value. That is, for some h(t∗2) define the level set Ac = {t∗; f(t∗,h(t∗2)) = c}, then
∀h(t∗2) ∈ supp(h(t)), p(t ∈ Ac |h(t) = h(t∗2)) > 0.

Theorem 3. Under Effect Connectivity, eq. (9), any surrogate intervention t′(t∗,h(t∗2)) ∈ supp(t).

We give the proof in appendix A.4. Whether the intervention t′(t∗,h(t∗2)) can be found via tractable
search is problem-specific. If the surrogate t′(t∗,h(t∗2)) exists ∀t∗,h(t∗2), then eq. (9) holds by
definition of the surrogate. Effect Connectivity allows us to reason about values of f anywhere in
supp(t)× supp(h(t)) using only samples from p(y, t). Further, it is necessary in EFC:

Theorem 4. Effect Connectivity is necessary for nonparametric effect estimation in EFC.

We prove this in appendix A.5. Effect Connectivity ensures that causal models with different causal
effects have different observational distributions. Then, parametric assumptions on the causal model
are not necessary to estimate effects.

4 Experiments
We evaluate LODE on simulated data first and show that LODE can correct for confounding. We also
investigate the error induced by imperfect estimation of the surrogate intervention in LODE. Further,
we run LODE on a GWAS dataset [6] and demonstrate that LODE is able to correct for confounding and
recovers genetic variations that have been reported relevant to Celiac disease [8, 25, 14, 1].

4.1 Simulated experiments
We investigate different properties of LODE on simulated data where ground truth is available. Let the
dimension of t (pre-outcome variables) be T = 20 and outcome noise be η ∼ N(0, 0.1). We consider
two EFC causal models, denoted by A and B with different h(t) and f(t,h(t),η):

(A) h(t) = γ

∑
i ti√
T

, t ∼ N(0,σ2IT×T ), y =

∑
i(−1)iti√
T

+ αh(t)2 + (1 + α)h(t) + η

(B) h(t) =
∑
i:i∈2Z

γtiti+1, t ∼ N(0,σ2IT×T ), y =

∑
i(−1)it2

i√
T

+ αh(t) + η

6



(a) Causal Model A (b) Causal Model B

Figure 3: RMSE of estimated conditional effect vs. strength of confounding γ. LODE corrects for
confounding and produces good effect estimates across different values of γ.

(a) Causal Model A (b) Causal Model B

Figure 4: RMSE of estimated conditional effect estimate vs. the strength of confounding γ, for
different levels of variance of t, σ2. Small σ leads to large conditional estimation error.

In both causal models, C-REDUNDANCY is satisfied. The constant γ controls the strength of the
confounder and the constant α controls the Lipschitz constant of the outcome as a function of the
confounder. We let the variance σ2 = 1, unless specified otherwise. In the following, we train on
1000 samples and report conditional effect root-mean-squared error (RMSE), computed with another
1000 samples. We used a degree-2 kernel ridge regression to fit the outcome model as a function of
t. This model is correctly specified, and so the conditional E[y | t = t̃] can be estimated well. We
compare against a baseline estimate of conditional effect that is the same outcome model’s estimate
of E[y | t = t∗]. This baseline fails to account for confounding and produces a biased estimate of the
conditional effect of do(t = t∗), conditional on any h(t∗2) 6= h(t∗).

First, we investigate how well LODE can correct for confounding for both causal models. We let α = 1
and obtain surrogate estimates by Euler integrating until the quantity Et∗,h(t∗2 )(h(t̃(s)) − h(t

∗
2))

2

is smaller than 10−4 times value at initialization, where Et∗,h(t∗2 ) is expectation over the eval-
uation set. In fig. 3, we plot the mean and standard deviation of conditional effect RMSE av-
eraged over 10 seeds, for different strengths of confounding. We see that LODE is able to
estimate effects well across multiple strengths of confounding while the baseline suffers.

Figure 5: RMSE of estimated conditional
effect vs. step size in Euler Integrator in
causal modelB. Accumulating error due to
large step size in Euler integrator increases
with strength of confounding.

Second, we investigate LODE’s estimation when sur-
rogate positivity holds but the probability p(t ≈
t′(t∗,h(t∗2))) is very small. This results in estimation
error due to poor fitting of the outcome model in low
density regions of supp(t). We run LODE on simulated
data where t is generated with different variances (σ2).
For small σ, the outcome model error is large when us-
ing surrogate interventions t′(t∗,h(t∗2)), where either
h(t∗2) or t∗ is large. This leads to high variance effect
estimation as we show in fig. 4 for both causal mod-
els. For various variances of t, σ2, we plot the mean
and standard deviation of RMSE of estimated conditional
effect over 10 seeds, against different γ.
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(a) Causal Model A (b) Causal Model B

Figure 6: RMSE of estimated conditional effect vs. degree of confounder mismatch δ. Error due to
conditioning on a mismatched value of the confounder increases with strength of confounding but is
mitigated by smoothness of the outcome function.

Third, we investigate the bias induced due to imperfect estimation of the surrogate intervention in
LODE for both causal models. We construct surrogate interventions t′(t∗,h(t∗2)) by ensuring there
is confounder-value mismatch h(t̃) 6= h(t∗2). We do this by interrupting Euler integration when the
objective Et∗,h(t∗2 )(h(t

′(t∗,h(t∗2)))−h(t
∗
2))

2 = δ2 > 0, where the Et∗,h(t∗2 ) is over our evaluation
set upon which we estimate conditional effects. For different α, we plot in fig. 6 the mean and
standard deviation of RMSE of estimated conditional effect over 10 seeds, against different degrees
of confounder mismatch, δ. The error due to confounder mismatch is mitigated by small α, the
Lipschitz-constant of the outcome as a function of h(t). Finally, we consider how step size in Euler
integration affects the quality of estimated effects. Large step sizes may result in biased surrogate
estimates; this bias is captured in the accumulation error in section 3.1. We focus on the non-linear
case in causal model B where gradient errors can accumulate(see appendix A.3.1). We demonstrate
this error in fig. 5 where we plot mean and standard deviation of conditional effect RMSE against
the strength of confounding, for different step sizes `. We do not report results for larger step sizes
(` > 2) because Euler integration diverged for many surrogate estimates.

4.2 Effects in Genetics (GWAS)
In this experiment, we explore the associations of genetic factors and Celiac disease. We utilize data
from the Wellcome Trust Celiac disease GWAS dataset [8, 6] consisting of individuals with celiac
disease, called cases (n = 3796), and controls (n = 8154). We construct our dataset by filtering from
the ∼ 550, 000 SNPs. The only preprocessing in our experiments is linkage disequilibrium pruning of
adjacent SNPs (at 0.5 R2) and PLINK [5] quality control. After this, 337, 642 SNPs remain for 11, 950
people. We imputed missing SNPs for each person by sampling from the marginal distribution of that
SNP. No further SNP or person was dropped due to missingness. The objective of this experiment is
to show that LODE corrects for confounding and recovers SNPs reported in the literature [8, 25, 14, 1].
To this end, after preprocessing, we included in our data 50 SNPs reported in [8, 25, 14, 1] and 1000
randomly sampled from the rest.

We use outcome models and functional confounders h() traditionally employed in the GWAS literature.
We choose a linear h(t̃) = A>t̃, where A is a matrix of the right singular vectors of a normalized
Genotype matrix, that correspond to the top 10 singular values [19]. The outcome model is selected
from logistic Lasso linear models with various regularization strengths, via cross validation within the
training data (60% of the dataset). We defer details about the experimental setup to appendix B.

We then use this outcome model in LODE to compute causal effects on the whole filtered dataset.
The effects are computed one SNP at a time. First, for each person t̃, create t̃1

i, t̃
0
i which

correspond to the ith SNP set to 1 and 0 respectively, with all other SNPs same as t̃. Ran-
domly sample a h(t∗2) from the marginal p(h(t)) and, using the outcome model Pθ, compute
φ(t̃, i) = log Pθ(y=1 | t′(t̃1

i,h(t∗2 )))/Pθ(y=1 | t′(t̃0
i,h(t∗2 ))). The average effect of SNP i is obtained by

averaging across all persons:
∑

t̃
φ(t̃,i)/N. Any SNP that beats a specified threshold of effect is

deemed relevant to Celiac disease by LODE. We use a 60 − 40% train-test split, and outcome model
selection is done via cross-validation within the training set. We did 5-fold cross-validation using just
the training set. We use Scikit-learn [18] to fit the outcome models and for cross-validation.

Results The best outcome model was a Lasso model, trained with regularization constant 10. We
select relevant SNPs by thresholding estimated effects at a magnitude > 0.1. From 1050 SNPs (1000
not reported before) LODE returned 31 SNPs, out of which 13 were previously reported as being
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associated with Celiac disease [8, 25, 14, 1]. In appendix B.2 we plot the true positive and false
negative rates of identifying previously reported SNPs, as a function of the effect threshold.

SNP EFFECT. COEF.

rs13151961 0.17 0.32
rs2237236 0.17 0.00

rs1738074 −0.16 −0.23
rs11221332 −0.15 −0.24

Table 1: A few SNPs previously reported as
relevant and recovered by LODE, with esti-
mated effects and Lasso coefficients. LODE
produces effect estimates that do not rely
purely on the coefficients.

In table 1, we list a few SNPs that were both deemed
relevant by LODE and were reported in existing litera-
ture [8, 25, 14, 1], their effects, and their Lasso coeffi-
cients. The full list is in table 2 in appendix B. If LODE
cannot adjust for confounding, the Lasso coefficients
would dictate the effects; 0 coefficient means 0 effect.
However, the two pairs of SNPs in table 1 show that
the effects estimated by LODE do not rely solely on
the Lasso coefficients. For the first pair (rs13151961,
rs2237236), the effect is the same but the coefficient
of one is 0, while the other is positive. We note that
rs2237236 was found to be associated with ulcerative
colitis [12, 2], which is an inflammatory bowel disease
that has been reported to share some common genetic basis with celiac disease [16]. For the second
pair, (rs1738074, rs11221332), the magnitude of the effect is smaller for the former, but the coefficient
is larger. Thus, LODE adjusts for confounding factors that the outcome model ignored.

5 Discussion
When positivity is violated in traditional OBS-CI, not all effects are estimable without further
assumptions. In such cases, practitioners have to turn to parametric models to estimate causal
effects. However, parametric models can be misspecified when used without underlying causal
mechanistic knowledge. We develop a new general setting of observational causal effect estimation
called estimation with functional confounders (EFC) where the confounder can be expressed as a
function of the data, meaning positivity is violated. Even when positivity is violated, the effects of
many functional interventions are estimable. We develop a sufficient condition called functional
positivity (F-POSITIVITY) to estimate effects of functional interventions. Such effects could be of
independent interest; like the effect of cumulative dosage of a drug instead of joint effects of multiple
dosages at different times.

Second, we prove a necessary condition for nonparametric estimation of effects of the full intervention.
We propose the C-REDUNDANCY condition, under which, the effect of the full intervention on t
is estimable without parametric restrictions. We develop Level-set Orthogonal Descent Estimation
(LODE) that computes surrogate interventions whose effects are estimable and match a conditional
effect of interest. Further, we give bounds on errors (theorem 2) induced due to imperfect estimation
of the surrogate intervention. Finally, we empirically demonstrate LODE’s ability to correct for
confounding in both simulated and real data.

Future. A few directions of improvement remain which we elaborate next. First, F-POSITIVITY
may not hold for all functions g(t) that we want to intervene on. Instead, one could compute a
“projection” gΠ to the space of functions that satisfy F-POSITIVITY and inspect the effects defined by
gΠ instead. A second direction of interest is to let h(t) only account for a part of the confounding,
meaning ignorability is violated. This bias could be mitigated under smoothness conditions of the
outcome function and its interaction with the degree of violation of ignorability.

Finally, LODE’s search strategy is Euler integration, which is equivalent to gradient descent with a
fixed step size. Optimization techniques like momentum, rescaling the gradient using an adaptive
matrix, and using second order hessian information, speed up gradient descent. However, if there are
many local or global minima for (h(t̃) − h(t∗2))

2, such techniques will result in a different solution
than Euler integration, which could mean that effect estimates are biased. One extension of LODE
would allow for search strategies that use such techniques.
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Broader Impact
Our work mainly applies to causal inference where confounders are specified as functions of observed
data, such as in problems in genetics and healthcare. We choose to assess the impact of our work
through its applications in these fields. A positive impact of the work is that better estimates of causal
effects helps guide treatment for people and aid in understanding biological pathways of diseases.
However, in healthcare, data collected in hospitals has biases. If, for instance, a certain demographic
of people have more complete data collected about them, then this demographic would have better
quality effect estimates, potentially meaning that they receive better treatment. This problem could be
characterized by evaluating the positivity of treatment and completeness of confounders in electronic
health record data split by demographics.
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