
S1 Empirical data and correlations
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Figure S1: Stimulus and noise correlation in the retinal response A) Mosaic for N = 25 OFF
alpha cells. B) Scatterplot of total pairwise correlation between the spiking activity in response to
checkerboard and moving bars video. C) Total pairwise correlation versus cell distance D) Stimulus
correlation versus cell distance E) Noise correlation versus cell distance

Responses to checkerboard and moving bars stimuli show different correlation patterns (Fig. S1).
The moving bars video induces much stronger and long-ranged stimulus correlations, especially for
certain pairs of distant cells. On the contrary, noise correlations decrease smoothly with distance and
are of similar magnitude in the two datasets.

S2 Correction for the absolute refractory period

As explained in the main text, when we add the two-step coupling filters to the LNP model, we need
to correct the hiint by its mean, Eq.4. However this correction does not take into account the addition
of an absolute refractory period. In fact, if we start with an LNP model with rate λ(t), and we prevent
the cell to spike if it has spiked in the previous τ irefr time-bins during simulations, then the model rate
will become a random variable itself with an average lower than λ(t). In order to correct for this
effect, we need first to quantify the mean of n(t), the spike-count at time t:
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where the approximation is valid under the hypothesis of small λ. By taking the log of Eq. 5, we
obtain the correction term

∑
τ λ(t− τ) that needs to be added to hint(t) in order to correct for the

addition of the absolute refractory period.
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S3 Generalization results for moving bars stimulus

Figure S2: Generalization results for moving bars stimulus Simulation of the moving bars
responses for a model where stimulus filters were inferred from the response to moving bars and
couplings filter were inferred from the checkerboard data (opposite of Fig. 4) with whole log-`
maximization (A,B,C) and with our two-step inference (D,E,F). A,D) PSTH predictions. B,E) Noise
correlations. C,F) Noise cross-correlation.

S4 Time Distributed Convolutional Neural Network

In section 7 we introduce the constrained architecture of Time Distributed Convolutional Neural
Networks. In order to exploit the information in the 2D spatial structure of the data we use two
convolutional layers, as it is successfully done in [10], with kernels of 8x8 and 5x5 size and two
feature channels each. A MaxPooling layer of pool size 2x2 is then subsequently applied to complete
the spatial computation of the network. We additionally impose a Time Distributed architecture [25],
i.e. the independent application of the same spatial computation to each time slice of the input, as can
be seen Fig. 5. Each temporal slice of the input is compressed though the convolutional part of the
network to two real numbers. Subsequently the temporal information is combined through a dense
layer of 100 units with softplus activation function. A Dropout layer is additionally implemented
before the last layer in order to enforce regularisation.
This architecture reduces the number of parameters to ≈ 3000. Each model is trained for 30 epochs
using the Adam optimiser on batches of 200 samples. A validation set was used to monitor the
inference.
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