
Supplementary material for Strongly local
p-norm-cut algorithms for semi-supervised learning

and local graph clustering

Meng Liu
Computer Science Department

Purdue University
liu1740@purdue.edu

David F. Gleich
Computer Science Department

Purdue University
liu1740@purdue.edu

1 Introduction to Supplementary

For convenience, we repeat much of the material from the main manuscript here – with expanded
details as appropriate. Citation numbers are unique to each document, however.

Figure 1 details The image is a real-valued grey-scale image between 0 and 1. We use Malik
and Shi’s procedure [35] to convert the image into a weighted graph. In the graph, pixels represent
nodes and pixels are connected within a 2-squared-norm distance of 40. The weight on an edge is
w(i, j) = exp(−|I(i)− I(j)|2/σ2

I − |D(i, j)|2/σ2
x)Ind[|D(i, j)2 ≤ r], where I(i) is the intensity

at pixel i, D(i, j) is the 2-norm distance in pixel locations, and Ind[·] is the indicator function. The
value of r = 40, σ2

I = 0.001, which is the weight on differences in intensity, and the value of
σ2
d = 512/10. Our code to reproduce this will be published as part of a code package for the paper.

We ran our SLQ solver with γ = 0.001 and κ = [0.005, 0.0025, 0.001] and ρ = 0.5 for q = 1.1 to
get the 3 colored regions. We terminated this after 1, 000, 000 steps, even though it had not fully
converged. Running it longer (over one billion steps) shows that there are a few exceptionally small
entries that bleed out of the target window. (Recall that we show any non-zero entry ever introduced
by the algorithms.) These are illustrated in Figure 1.

Figure 1: Running our SLQ solver for an extremely long time (left) will cause a few entries to bleed
out of the target window (left is one billion steps vs. middle is one million steps in the main paper).
This is still much better than ACL and PageRank methods (right).

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



2 Generalized local graph cuts

We consider graphs that are undirected, connected, and weighted with positive edge weights lower-
bounded by 1. Let G = (V,E,w) be such a graph, where n = |V | and m = |E|. The adjacency
matrix A has non-zero entries w(i, j) for each edge (i, j), and all other entries are zero. This is
symmetric because the graph is undirected. The degree vector d is defined as the row sum of A and
D is a diagonal matrix defined as diag(d). The incidence matrix B ∈ {0,−1, 1}m×n measures the
differences of adjacent nodes. The kth row of B represents the kth edge and each row has exactly two
nonzero elements, i.e. 1 for start node of kth edge and −1 for end node of kth edge. For undirected
graphs, either node can be the start node or end node and the order does not matter. We use vol(S)

for the sum of weighted degrees of the nodes in S and φ(S) = cut(S)
min(vol(S),vol(S̄))

for conductance.

We use i ∼ j to represent that node i and node j are adjacent.

For simplicity, we begin with PageRank, which has been used for all of these tasks in various
guises [44, 19, 5]. A PageRank vector [18] is the solution of the linear system (I − αAD−1)x =
(1− α)v where α is a probability between 0 and 1 and v is a stochastic vector that gives the seed
distribution. This can be easily reworked into the equivalent linear system (γD + L)y = γv where
x = Dy and L is the graph Laplacian L = D −A. The starting point for our methods is a result
shown in [17], where we can further translate this into a 2-norm “cut” computation on a graph
called the localized cut graph that is closely related to common constructions in maxflow-mincut
computations for cluster improvement [4, 13].

The localized cut graph is created from the original graph, a set S, and a value γ. The construction
adds an extra source node s and an extra sink node t, and edges from s to the original graph that
localize a solution, or bias, a solution within the graph near the set S. Formally, given a graph
G = (V,E) with adjacency matrix A, a seed set S ⊂ V and a non-negative constant γ, the adjacency
matrix of the localized cut graph is:

AS =

[
0 γdT

S 0
γdS A γdS̄

0 γdT
S̄

0

]
and a small illustration is s t

R1

R2
R3

R4

R5

a1

a2

a3

U1

U2U3

U4

3γ 5γ

4γ

3γ

3γ

3γ
3γ

4γ

4γ
3γ

3γ

4γ

S S̄

Here S̄ is the complement set of S, dS = DeS , dS̄ = DeS̄ , and eS is an indicator vector for S.

Let B,w be the incidence matrix and weight vector for the localized cut-graph. Then PageRank is
equivalent to the following 2-norm-cut problem (see full details in [17])

minimize
x

wT (Bx)2 =
∑
i,j wi,j(xi − xj)2 = xTBT diag(w)Bx

subject to xs = 1, xt = 0
(1)

We call this a cut problem because if we replace the squared term with an absolute value (i.e.,∑
wi,j |xi − xj |), then we have the standard s, t-mincut problem. Our paper proceeds from changing

this power of 2 into a more general loss-function ` and also adding a sparsity penalty, which is often
needed to produce strongly local solutions [17]. We define this formally now.
Definition 1 (Generalized local graph cut). Fix a set S of seeds and a value of γ. Let B, w be the
incidence matrix and weight vector of the localized cut graph. Then the generalized local graph cut
problem is:

minimize
x

wT `(Bx) + κγdTx =
∑
ij wi,j`(xi − xj) + κγ

∑
i xidi

subject to xs = 1, xt = 0,x ≥ 0.
(2)

Here `(x) is an element-wise function and κ ≥ 0 is a sparsity-promoting term.

We compare using power functions `(x) = 1
q |x|

q to a variety of other techniques for semi-supervised
learning and local clustering in Figure 2. If ` is convex, then the problem is convex and can be solved
via general-purpose solvers such as CVX. An additional convex solver is SnapVX [20], which studied
a general combination of convex functions on nodes and edges of a graph, although neither of these
approaches scale to the large graphs we study in subsequent portions of this paper (65 million edges).
To produce a specialized, strongly local solver, we found it necessary to restrict the class of functions
` to have similar properties to the power function `(x) = 1

q |x|
q and its derivative `′(x).

2



(a) PageRank (α = 0.85) (b) q=2, γ= κ =10−3 (c) q=5, γ=10−5, κ=10−4 (d) q=1.25, γ= κ =10−3

(e) heat kernel [11, 25]
t = 10, ε = 0.003

(f) CRD [41]
U = 60, h = 60, w = 5

(g) p = 1.5-diffusion [21],
h=0.002, k = 35000

(h) 1.5-Laplacian [21], h=
0.0001, n = 7500

Figure 2: A comparison of seeded cut-like and clustering objectives on a regular grid-graph with
4 axis-aligned neighbors. The graph is 50-by-50, the seed is in the center. The diffusions localize
before the boundary so we only show the relevant region and the quantile contours of the values. We
selected the parameters to give similar-sized outputs. (Top row) At left (a), we have seeded PageRank;
(b)-(d) show our q-norm objectives; (b) is a 2-norm which closely resembles PageRank; (c) is a
5-norm that has diamond-contours; and (d) is a 1.25-norm that has square contours. (Bottom row)
Existing work with the (e) heat kernel diffusion [11, 25], (f) CRD [41], (g) nonlinear diffusions [21]
(with a simple (g) p-norm nonlinearity in the diffusion or a (h) p-Laplacian) show that similar results
are possible with existing methods, although they lack the simplicity of our optimization setup and
often lack the strongly local algorithms.

Reproduction notes for Figure 2. We release the exact code to reproduce this figure. For all
methods, for all values above a threshold, we compute 4 quantile lines to give roughly equally
spaced regions. (a). PageRank is mathematically non-zero at all nodes in connected graph. Here,
we threshold at 10−8 to focus on the circular contours. This is reproduced by (b) using q = 2. The
“wiggles” around the edge are because we used CVX to solve this problem and there were minor
tolerance issues around the edge. We also boosted the threshold to 5 · 10−7 because of the tolerance
in CVX. (c) Same as (b). (d) we used our SLQ solver because CVXpy with either the ECOS or
SCS solver reported an error while using q = 1.25. We set ρ = 0.99 to get an accurate solution
(close to KKT). Here, we used the algorithmic non-zeros as the code introduces elements “sparsely”.
(e) This used mathematical non-zeros again because the algorithm from [25] uses the same sparse
“push” mechanisms as our SLQ algorithm. (f) CRD returns a set, so we simply display that set. The
parameters were chosen to make it look as close to a square as possible. (g and h) We used the
forward Euler algorithm from [21] with non-zero truncation. k is the number of steps and h is the
step-size. These were chosen to make the pictures look like diamonds and squares, respectively to
mirror our results. The entry thresholds were also 5 times the minimum element because the vectors
are non-zero everywhere.

Definition 2. In the [−1, 1] domain, the loss function `(x) should satisfy (1) `(x) is convex; (2)
`′(x) is an increasing and anti-symmetric function; (3) For ∆x > 0, `′(x) should satisfy either of the
following condition with constants k > 0 and c > 0 (3a) `′(x+∆x) ≤ `′(x)+k`′(∆x) and `′′(x) > c
or (3b) `′(x) is strictly increasing, c-Lipschitz continuous and `′(x+ ∆x) ≥ `′(x) + k`′(∆x) when
x ≥ 0.

Remark. If `′(x) is Lipschitz continuous with Lipschitz constant to be L and `′′(x) > c, then
constraint 3(a) can be satisfied with k = L/c. However, `′(x) can still satisfy 3(a) even if it is not
Lipschitz continuous. A simple example is `(x) = |x|1.5, −1 ≤ x ≤ 1. In this case, k = 1 but it is
not Lipschitz continuous at x = 0. On the other hand, when `′(x) is Lipschitz continuous, it can

3



satisfy constraint 3(b) even if `′′(x) = 0. An example is `(x) = |x|3.5, −1 < x < 1. In this case
`′′(x) = 0 when x = 0 but `′(x+ ∆x) ≥ `′(x) + `′(∆x) when x ≥ 0.
Lemma 2.1. The power function `(x) = 1

q |x|
q, −1 < x < 1 satisfies definition 2 for any q > 1.

More specifically, when 1 < q < 2, `(x) satisfies 3(a) with c = q − 1 and k = 22−q, when q ≥ 2,
`(x) satisfies 3(b) with c = q − 1 and k = 1.

Proof. First, we know `′(x) = |x|q−1sgn(x) and `′′(x) = (q−1)|x|q−2. And we define `′′(0) =∞.
For 3(a), since −1 < x < 1, 1 < q < 2, we have `′′(x) > (q − 1). On the other hand

`′(x+ ∆x)− `′(x)

`′(∆x)
=
∣∣∣ x
∆x

+ 1
∣∣∣q−1

sgn
( x

∆x
+ 1
)
−
∣∣∣ x
∆x

∣∣∣q−1

sgn
( x

∆x

)
Define a new function f(x) = |1 + x|q−1sgn(1 + x)− |x|q−1sgn(x). f ′(x) = |1 + x|q−2 − |x|q−2.
So the maximum of f(x) is achived at f(−0.5) = 22−q .
For 3(b), since −1 < x < 1, q > 2, we have `′′(x) < (q − 1). And when x ≥ 0, (x + ∆x)q−1 ≥
xq−1 + ∆xq−1 is obvious.

Note that the `(x) = |x| does not satisfy either choice for property (3). Consequently, our theory
will not apply to mincut problems. In order to justify the generalized term, we note that q-norm
generalizations of the Huber and Berhu loss functions [34] do satisfy these definitions.
Definition 3. Given 1 < q < 2 and 0 < δ < 1, the “q-Huber” and “Berq” function are

q-Huber `(x) = =

{ 1
2δ
q−2x2 if |x| ≤ δ

1
q |x|

q + ( q−2
2q )δq otherwise

Berq `(x) = =

{
1
q δ

2−q|x|q if |x| ≤ δ
1
2x

2 + ( 2−q
2q )δ2 otherwise.

Lemma 2.2. When −1 ≤ x ≤ 1, both “q-Huber” and “Berq” satisfy Definition 2. The value of k
for both is 22−q , the c for q-Huber is q − 1 while the c for “Berq” is 1.

Proof. Obviously, both condition (1) and (2) are satisfied for “q-Huber” and “Berq”. Now we show
3(a) is also satisfied for “q-Huber” based on the proof of lemma 2.1. The proof of “Berq” is also
similar.

When ∆x > δ (∆x ≤ δ is similar)

k =
`′(x+ ∆x)− `′(x)

∆xq−1

=



∣∣∣ x
∆x

+ 1
∣∣∣q−1

sgn
( x

∆x
+ 1
)
−
∣∣∣ x
∆x

∣∣∣q−1

sgn
( x

∆x

)
, |x| > δ, |x+ ∆x| > δ

δq−2(x+ ∆x)− |x|q−1sgn(x)

∆xq−1
, |x| > δ, |x+ ∆x| ≤ δ

|x+ ∆x|q−1sgn(x+ ∆x)− δq−2x

∆xq−1
, |x| ≤ δ, |x+ ∆x| > δ

∆x2−q

δ2−q , |x| ≤ δ, |x+ ∆x| ≤ δ

Case 1:
Same as the proof of lemma 2.1. Case 2:
In this case, x can only be negative, i.e. x < −δ. After some simplification,

k =

(
∆x

δ

)2−q

−

((
−x
δ

)2−q

− 1

)(
−x
∆x

)q−1

4



Note that the right hand side is an increasing function of ∆x and −δ − x ≤ ∆x ≤ δ − x. Replacing
∆x by −δ − x yields

k =
(−x)q−1 − δq−1

(−x− δ)q−1
> 0

Replacing ∆x by δ − x yields

k =
δq−1 + (−x)q−1

(δ − x)q−1
≤ 22−q

Here the last inequality is due to Jensen’s inequality.
Case 3:
Its proof is very similar to case 2.
Case 4:
Since 0 < ∆x ≤ 2δ, 0 ≤ k ≤ 22−q .

We now state uniqueness.
Theorem 2.1. Fix a set S, γ > 0, κ > 0. For any loss function satisfying Definition 2, then the
solution x of (2) is unique. Moreover, define a residual function r(x) = − 1

γB
T diag(`′(Bx))w.

A necessary and sufficient condition to satisfy the KKT conditions is to find x∗ where x∗ ≥ 0,
r(x∗) = [rs,g

T , rt]
T with g ≤ κd (where d reflects the original graph), k∗ = [0, κd− g, 0]T and

xT (κd− g) = 0.

Proof. We first prove uniqueness. The Hessian of the objective in (2) is:

H(i, j) =


`′′(xi − (eS)i) if i = j

`′′(xi − xj) if i ∼ j
0 otherwise

(3)

Thus xTHx =
∑
i∈V x

2
i `
′′(xi − (eS)i) +

∑
i,j,i∼j xixj`

′′(xi − xj). If 3(a) is satisfied, we have
`′′(x) > 0 which means xTHx > 0. So the objective 2 is strictly convex and the uniqueness is
guaranteed. When 3(b) is satisfied, `′(x+ ∆x) ≥ `′(x) + k`′(∆x) guarantees that `′′(x) can only
become zero in a range around zero, i.e. `′(x) = `′′(x) = 0 when x ∈ [−ψ,ψ], where 0 ≤ ψ ≤ 1.
Then xTHx = 0 implies xi ≥ 1 − ψ when i ∈ S, xi ≤ ψ when i /∈ S and −ψ ≤ xi − xj ≤ ψ
or xixj = 0. In this case, the uniqueness is implied by κγd in (2), i.e. each xi will be the smallest
feasible value.

Next, we will show the KKT condition of (2). If we translate problem (2) to add the constraint
u = Bx, then the loss is `(u). The Lagrangian is

L = wT `(u) + κγdTx− fT (Bx− u)− λs(xs − 1)− λtxt − kTx

Standard optimality results give the KKT of (2) as

∂L

∂x
= κd− 1

γ
BT f − λses − λtet − k = 0

∂L

∂u
= diag(`′(u))w + f = 0

kTx = 0

Bx = u

k ≥ 0, xs = 1, xt = 0

(4)

Thus, combining the first and second equations, r = 1
γB

T f . Since k ≥ 0, from the first equation, we

have g ≤ κd. And from kTx = 0, we have xT (κd− g) = 0.

3 Strongly Local Algorithms

In this section, we will provide a strongly local algorithm to approximately optimize equation (2)
with `(x) satisfying definition 2. The simplest way to understand this algorithms is as a nonlinear

5



generalization of the Andersen-Chung-Lang push procedure for PageRank [5], which we call ACL.
(The ACL procedure has strong relationships with Gauss-Seidel, coordinate solvers, and various
other standard algorithms.) The overall algorithm is simple: find a vertex i where the KKT conditions
from Theorem 2.1 are violated and increase xi on that node until we approximately satisfy the KKT
conditions. Update the residual, look for another violation, and repeat. The ACL algorithm targets
q = 2 case, which has a closed form update. We simply need to replace this with a binary search.

Algorithm nonlin-cut(γ, κ, ρ, ε) for set S and graphG where 0<ρ<1 and 0<ε determine accuracy

1: Let x(i) = 0 except for xs = 1 and set r = − 1
γB

T diag[`′(Bx)]w

2: While there is any vertex i where ri > κdi, or stop if none exists (find a KKT violation)
3: Apply nonlin-push at vertex i, updating x and r
4: Return x

Algorithm nonlin-push(i, γ, κ,x, r, ρ, ε)

1: Use binary search to find ∆xi such that the ith coordinate of the residual after adding ∆xi to xi,
r′i = ρκdi, the binary search stops when the range of ∆x is smaller than ε (satisfy KKT at i).

2: Change the following entries in x and r to update the solution and residual
3: (a) xi ← xi + ∆xi
4: (b) For each neighbor j in the original graphG, rj ← rj+

1
γwi,j`

′(xj−xi)−1
γwi,j`

′(xj−xi−∆xi)

For ρ < 1, we only approximately satisfy the KKT conditions, as discussed further in the Section 3.3.
We have the following strongly local runtime guarantee when 3(a) or 3(b) in definition 2 is satisfied.
(This ignores binary search, but that only scales the runtime by log(1/ε) because the values are in
[0, 1].)

Theorem 3.1. Let γ > 0, κ > 0 be fixed and let k and c be the parameters from 3(a) of Definition 2
for `(x). For 0 < ρ < 1, suppose nonlin-cut stops after K iterations, and di is the degree of node
updated at the i-th iteration, thenK must satisfy:

∑K
i=1 di ≤ vol(S)/c`′−1 (γ(1− ρ)κ/k(1 + γ)) =

O(vol(S)).

The notation `
′−1 refers to the inverse functions of `′(x), This function must be invertible under the

the definition of 3(a). The runtime bound when 3(b) holds is slightly different, see below. Note that
this sum of degrees bounds the total work because a push step at node i is O(di) work (ignoring the
binary search).

Also note that if κ = 0, γ = 0, or ρ = 1, then this bound goes to ∞ and we lose our guarantee.
However, if these are not the case, then the bound shows that the algorithm will terminate in time that
is independent of the size of the graph. This is the type of guarantee provided by strongly local graph
algorithms and has been extremely useful to scalable network analysis methods [28, 22, 43, 38, 25].
We also show that a similar runtime guarantee holds when `(x) satisfies 3(b) of Definition 2.

Lemma 3.1. During algorithm 1, for any i ∈ {V \{s, t}}, gi will stay nonnegative and 0 ≤ xi ≤ 1.

Proof. We can show this by induction. At the initial step, for node i ∈ S, gi = di, and for node
i ∈ S̄, gi = 0. And after a nonlin-push step, every gi will stay nonnegative.

To prove 0 ≤ xi ≤ 1, by expanding gi, we have

gi = − 1

γ

∑
j∼i

wi`
′(xi − xj)− di`′(xi − (eS)i)

xi ≥ 0 because we only increase x and it starts at zero. Suppose xi is the largest element of x and
xi > 1, then we will have `′(xi − xj) ≥ 0 for j ∼ i and `′(xi − (eS)i) > 0. Then gi < 0, which is
a contradiction.

6



3.1 Running time analysis when 3(a) is satisfied

Lemma 3.2. When 3(a) is satisfied, after calling nonlin-push on node i, the decrease of ||g||1 will
be strictly larger than

cdi(`
′)−1

(
γ(1− ρ)κ

k(1 + γ)

)
Proof. We use g′ to denote g after calling nonlin-push on node i. At any intermediate step of
nonlin-cut procedure,

||g||1 =
∑

gi = −
∑
i∈S

di`
′(xi − 1)−

∑
i∈S̄

di`
′(xi)

This is because for any edge (i, j) ∈ E, gi has a term 1
γw(i, j)`′(xi − xj) while gj has a term

1
γw(j, i)`′(xj − xi). Since our graph is undirected, w(i, j) = w(j, i), so these two terms will cancel
out. What remains are the terms corresponding to the edges connecting to s or t. So after calling
nonlin-push on node i,

||g||1 − ||g′||1 = di`
′(xi + ∆xi − (eS)i)− di`′(xi − (eS)i)

≥ dimin{l′′(xi + ∆xi − (eS)i), l
′′(xi − (eS)i)}∆xi

≥ cdi∆xi
On the other hand, we need to choose ∆xi such that g′i = ρκdi. We know

g′i = − 1

γ

∑
j∼i

w(i, j)`′(xi + ∆xi − xj)− di`′(xi + ∆xi − (eS)i)

is a decreasing function of ∆xi. And when ∆xi = 0, g′i = κdi > ρκdi, when ∆xi = 1, g′i < 0 <
ρκdi, since `′(x) is a strictly increasing function, there exists a unique ∆xi such that g′i = ρκdi.
Moreover, we can lower bound ∆xi. To see that,

g′i = ρκdi

= − 1

γ

∑
j∼i

w(i, j)`′(xi + ∆xi − xj)− di`′(xi + ∆xi − (eS)i)

≥ − 1

γ

∑
j∼i

w(i, j)`′(xi − xj)− di`′(xi − (eS)i)−
k(1 + γ)

γ
di`
′(∆xi)

= gi −
k(1 + γ)

γ
di`
′(∆xi)

Thus, we have

∆xi ≥ (`′)−1

(
γ(gi − ρκdi)
k(1 + γ)di

)
> (`′)−1

(
γ(1− ρ)κ

k(1 + γ)

)
which means

||g||1 − ||g′||1 > cdi(`
′)−1

(
γ(1− ρ)κ

k(1 + γ)

)
.

The only step left to prove Theorem 3.1 is that at the beginning, we have ||g||1 = vol(S). Then the
theorem follows by Lemma 3.2.

3.2 Running time analysis when 3(b) is satisfied

Note that in 3(b) of Definition 2, there is an extra strictly increasing condition so that `′(γ(1−ρ)κ
c(1+γ) ) is

positive. When `′ is not strictly increasing, i.e. `′(x) = 0 in a small range round 0, it is our conjecture
that the algorithm will still finish in a strongly local time, although we have not yet proven that. Note
that this strictly increasing criteria is true for all the loss functions used in the experiments.

7



Lemma 3.3. When 3(b) is satisfied and `′(x) is strictly increasing, then after calling nonlin-push
on node i, the decrease of ||g||1 will be strictly larger than

kdi`
′
(
γ(1− ρ)κ

c(1 + γ)

)
Proof. Similarly to the proof of lemma 3.2, after calling nonlin-push on node i,

||g||1 − ||g′||1 = di`
′(xi + ∆xi − (eS)i)− di`′(xi − (eS)i)

≥ kdi`′(∆xi)

On the other hand,

g′i = ρκdi

= − 1

γ

∑
j∼i

w(i, j)`′(xi + ∆xi − xj)− di`′(xi + ∆xi − (eS)i)

≥ − 1

γ

∑
j∼i

w(i, j)`′(xi − xj)− di`′(xi − (eS)i)−
c(1 + γ)

γ
di∆xi

= gi −
c(1 + γ)

γ
di∆xi

Thus, we have

∆xi ≥
γ(ri − ρκdi)
c(1 + γ)di

>
γ(1− ρ)κ

c(1 + γ)

which means

||g||1 − ||g′||1 > kdi`
′
(
γ(1− ρ)κ

c(1 + γ)

)
.

Lemma 3.3 along with the same type of analysis as before give the following result when 3(b) is
satisfied.
Theorem 3.2. Let γ > 0, κ > 0 be fixed and let k and c be the parameters from 3(b) of Definition 2
for `(x). For 0 < ρ < 1, suppose nonlin-cut stops after T iterations, and di is the degree of node
updated at the i-th iteration, then T must satisfy:

∑T
i=1 di ≤ vol(S)/k`′ (γ(1− ρ)κ/c(1 + γ)) =

O(vol(S)).

3.3 More details on ρ

When ρ < 1, then we only approximately satisfy the KKT conditions. Here, we do some quick
analysis of the difference in the idealized slackness condition kTx = 0 compared to what we get
from our solver. Note that by choosing ρ close to 1, we do produce a fairly accurate solution when
3(a) is satisfied.
Lemma 3.4. When Algorithm 1 returns, if `(x) satisfies 3(a) we have

kTx ≤ κk`′(1)(1− ρ)vol(S)

c

Proof. We know k = [0, κd−r, 0]T . Every time algorithm 2 is called at node i, it will set gi = ρκdi.
In the following iterations, gi can only increase until algorithm 2 is called at node i again. This means
k ≤ (1− ρ)κd.

On the other hand, when 3(a) is satisfied, `′(1− xi) ≤ −`′(xi) + k`′(1)

||g||1 = −
∑
i/∈S

di`
′(xi)−

∑
i∈S

di`
′(xi−1) ≤ −

∑
i∈V

di`
′(xi)+k`

′(1)vol(S) ≤ −cdTx+k`′(1)vol(S)

8



Thus

dTx ≤ k`′(1)

c
vol(S)

Combining the two inequality gives this lemma.

When 3(b) is satisfied, it is easy to see kTx ≤ (1 − ρ)κdTx, however, there isn’t a closed form
equation on the upper bound of kTx in terms of vol(S).

4 Main Theoretical Results – Cut Quality Analysis

4.1 Useful Observations

The following two observations are not directly related to the proof of lemma or theorem in the main
text. But we still find them useful in understanding the problem in general.
Lemma 4.1. For two seed sets S1 and S2, denote x1 and x2 to be the solutions of Lq norm cut
problem using S1 and S2 correspondingly, if S1 ⊆ S2, then x1 ≤ x2.

Proof. Considering two nonlin-cut processes P1, P2 using S1 or S2 as input correspondingly,
suppose we set the initial vector of P2 to be the solution of P1, i.e. x1, then for nodes i /∈ S2\S1,
its residual stays zero, while for nodes i ∈ S2\S1, its residual becomes positive. This means P2

needs more iterations to converge. And each iteration can only add nonnegative values to x1. Thus,
x1 ≤ x2.

Lemma 4.2. Suppose that κ = 0. We can compute the exact solution of problem (2) under two
extreme cases γ →∞ and γ → 0,

• When γ →∞, xi = 1 for i ∈ S and xi = 0 for i ∈ S̄.

• When γ → 0, xi ≥ (vol(S))
1

q−1

(vol(V ))
1

q−1
for any i ∈ V .

Proof. When κ = 0, the objective function of (2) becomes∑
i∼j

w(i, j)`(xi − xj) + γ
∑
i∈V

di`(xi − (eS)i)

When γ →∞, the first term vanishes, and the second term achieves its smallest value, when xi = 1
for i ∈ S and xi = 0 for i ∈ S̄.

When γ → 0, the second term vanishes, and the first term is minimal with objective zero when every
xi converges to a fixed constant. Moreover, the KKT condition now becomes

1

γ

∑
j∼i

w(i, j)`′(xi − xj) + di`
′(xi − (eS)i) = 0

Summing the KKT condition over all nodes yields:∑
i∈V

di`
′(xi − (eS)i) = 0

So we can compute the constant that xi converges to by making xi = c, which is c =

(vol(S))
1

q−1

(vol(V )−vol(S))
1

q−1 +(vol(S))
1

q−1
≥ (vol(S))

1
q−1

(vol(V ))
1

q−1
.

4.2 Proof of Theorems in Main Text

A common use for the results of these localized cut solutions is as localized Fiedler vectors of a graph
to induce a cluster [5, 28, 30, 45, 33]. This was the original motivation of the ACL procedure [5],
for which the goal was a small conductance cluster. One of the most common (and theoretically
justified!) ways to convert a real-valued “clustering hint” vector x into clusters is to use a sweep

9



cut process. This involves sorting x in decreasing order and evaluating the conductance of each
prefix set Sj = {x1, x2, ..., xj} for each j ∈ [n]. The set with the smallest conductance will be
returned. This computation is a key piece of Cheeger inequalities [12, 31]. In the following, we seek
a slightly different type of guarantee. We posit the existence of a target cluster T and show that if T
has useful clustering properties (small conductance, no good internal clusters), then a sweep cut over
a q-norm or q-Huber localized cut vector seeded inside of T will accurately recover T . The key piece
is understanding how the computation plays out with respect to T inside the graph and T as a graph
by itself. We use volT (S), φT (S) to be the volume or conductance of set S in the subgraph induced
by T and ∂T ⊂ T to be the boundary set of T , i.e. nodes in ∂T has at least one edge connecting to
T̄ . Quantities with tildes, e.g., d̃, reflect quantities in the subgraph induced by T . We assume κ = 0,
ρ = 1 and:

Assumption 1. The seed set S satisfies S ⊆ T , S ∩ ∂T = ∅ and
∑
i∈∂T (di − d̃i)x

q−1
i ≤

2φ(T )vol(S).

We call this the leaking assumption, which roughly states that the solution with the set S stays mostly
within the set T . As some quick justification for this assumption, we note that when when q = 2, [45]
shows by a Markov bound that there exists Tg where vol(Tg) ≥ 1

2 vol(T ) such that any node i ∈ Tg
satisfies

∑
i∈∂T (di − d̃i)xi ≤ 2φ(T )di. So in that case, any seed sets S ⊆ Tg meets our assumption.

For 1 < q < 2, it is straightforward to see any set S with vol(S) ≥ 1
2 vol(T ) satisfies this assumption

since the left hand side is always smaller than cut(T ). However, such a strong assumption is not
necessary for our approach. The above guarantee allows for a small vol(S) and we simply require
Assumption 1 holds. We currently lack a detailed analysis of how many such seed sets there will be.

Our second assumption regards the behavior within only the set T compared with the entire graph.
To state it, we wish to be precise. Consider the localized cut graph associated with the hidden target
set T on the entire graph and let B,w be the incidence and weights for this graph. We wish to
understand how the solution x on this problem

minimize
x

wT `(Bx)

subject to xs = 1, xt = 0,x ≥ 0
(5)

compares with one where we consider the problem only on the subgraph induced by T . Let B̃, w̃ be
the incidence matrix of the localized cut graph on the vertex induced subgraph corresponding to T
and seeded on T (so the tilde-problem is seeded on all nodes). So formally, we wish to understand
how x̃ in

minimize
x̃

w̃T `(B̃x̃)

subject to x̃s = 1, x̃t = 0, x̃ ≥ 0
(6)

compares to x. For these comparisons, we assume we are looking at values other than xs, xt and
x̃s, x̃t.

Assumption 2. A relatively small γ should be chosen such that the solution of localized q-norm cut
problem in the subgraph induced by target cluster T can satisfy min(x̃T ) ≥ (0.5volT (S))1/(q−1)

(volT (T ))1/(q−1) = M .

We will call Assumption 2 a “mixing-well” guarantee.

To better understand this assumption, when `(x) = 1
q |x|

q and q = 2, a solution of the nonlin-cut
process (Algorithm 1) will be equivalent to a Markov process. In this case, one can lower bound
min(x̃) by the well known infinity-norm mixing time of Markov chain. In fact, as shown in the proof
of lemma 3.2 of [45], when γ ≤ O (φ(T ) · Gap), they show that min(x̃T ) ≥ 0.8volT (S)

volT (T ) . Here Gap is
defined as the ratio of internal connectivity and external connectivity and often assumed to be Ω(1).
Formally:

Definition 4. Given a target cluster T with vol(T ) ≤ 1
2 vol(V ), φ(T ) ≤ Ψ and minA⊂TφT (A) ≥ Φ,

the Gap is defined as:

Gap =
Φ2/logvol(T )

Ψ

10



1 We refer to [45] for a detailed explanation of this. For 1 < q < 2, nonlin-cut is no longer
equivalent to the solution of a Markov process and thus it will be more difficult to derive a closed
form equation on how small γ needs to be so that equation 2 is satisfied. However, lemma 4.3 (below)
shows that for graphs with small diameters, it is easier (i.e. γ can be larger) for the solution of (6) to
satisfy equation 2. This is reasonable because we expect good clusters and good communities to have
small diameters.

Lemma 4.3. Assume the subgraph induced by target cluster T has diameter O(log(|T |)) and when
we uniformly randomly sample points from T as seed sets, the expected largest distance of any node
in S̄ to S is O

(
log(|T |)
|S|

)
. Also define γ2 to be the largest γ such that assumption 2 is satisfied at

q = 2 and assume γ2 < 1, if we set γ = γq−1
2 for 1 < q < 2, and

volT (S)

volT (T )
≤ 2

 γ2

1 + γ2
· 1

|T |
1
|S| log

(
1+l

1
q−1

)

q−1

where l ≤ (1 + γ)max(d̃i). Then the solution of 6 can satisfy assumption 2.

Proof. Given a seed set S, we can partition the S̄ into disjoint subsets L1 ∪L2 ∪L3 . . . ∪Ln, where
Li contains nodes that are i distance away from S. For any node i ∈ Lk, we denote douti to be

douti =
∑

j∼i,j∈Lk∪Lk+1

w(i, j)

And dini = d̃i − douti . Also define l = (1 + γ)
dout
i

dini
≤ (1 + γ)max(d̃i). Suppose x̃i ≥ c for any node

i with distance at most k− 1, then we can show for node i ∈ Lk, x̃i ≥ c

1+l
1

q−1
. To see this, if x̃i < c,

then by the KKT condition,

dini (c− x̃i)q−1 ≤ douti xq−1
i + γdix

q−1
i

Here for j ∼ i, if j is closer to S, we set x̃j to be c, otherwise, we set x̃j to be 0. This means

x̃i ≥
c(dini )

1
q−1

(douti + γdi)
1

q−1 + (dini )
1

q−1

≥ c

l
1

q−1 + 1

Also, for node i ∈ S, the first iteration of q-norm process will add at least γ
1

q−1

1+γ
1

q−1
to x̃i (This

follows from unrolling the first loop of our algorithm and checking that this satisfies the binary search

criteria.), which means x̃i ≥ γ
1

q−1

1+γ
1

q−1
. Thus, for node i ∈ Lk,

x̃i ≥
γ

1
q−1

1 + γ
1

q−1

· 1(
1 + l

1
q−1

)k =
γ2

1 + γ2
· 1(

1 + l
1

q−1

)k
Since the subgraph induced by target cluster T has diameter O(log(|T |)) and when we uniformly
randomly sample points from T as seed sets, the expected largest distance r of any node in S̄ to S is
O
(

log(|T |)
|S|

)
, we have r = O

(
log(|T |)
|S|

)
, which means

min(x̃) ≥ γ2

1 + γ2
· 1

|T |
1
|S| log

(
1+l

1
q−1

)

1The proof of lemma 3.2 in [45] proves that the teleportation probability β = 1− α needs to be smaller than
O (φ(T ) · Gap). When q = 2, as shown in [17], β = γ2

1+γ2
, which means γ2 = β

1−β
. Since we assume γ2 < 1,

we have β < γ2 < 2β. In other words, γ2 and β are only different by a constant factor.

11



Assumption 2 requires min(x̃) ≥ (0.5volT (S))
1

q−1

(volT (T ))
1

q−1
. So we just need

volT (S)

volT (T )
≤ 2

 γ2

1 + γ2
· 1

|T |
1
|S| log

(
1+l

1
q−1

)

q−1

,

which was the final assumption.

Lemma 4.4. Under the previous assumptions, define a sweep cut set Sc as{
i ∈ V | xi ≥ c(0.5vol(S))

1
q−1

(vol(T ))
1

q−1

}
, then for any 0 < c ≤ 1

2 ,

vol(Sc\T ) = O

(
φ(T )

γcq−1

)
vol(T ) vol(T\Sc) = O

(
φ(T )

γ

)
vol(T )

Proof. The proof is mostly a generalization to the proof of Lemma 3.4 in [45]. For any i ∈ T̄ , by the
KKT condition and Assumption 1

0 = ri(x)

= − 1

γ

∑
j∼i

w(i, j)`′(xi − xj)− dixq−1
i

= − 1

γ

∑
j∼i,j∈T̄

w(i, j)`′(xi − xj)−
1

γ

∑
j∼i,j∈T

w(i, j)`′(xi − xj)− dixq−1
i

= − 1

γ

∑
j∼i,j∈T̄

w(i, j)`′(xi − xj) +
1

γ

∑
j∼i,j∈T

w(i, j)`′(xj − xi)− dixq−1
i

< − 1

γ

∑
j∼i,j∈T̄

w(i, j)`′(xi − xj) +
1

γ

∑
j∼i,j∈T

w(i, j)`′(xj)− dixq−1
i .

By summing the inequality above over all nodes in T̄ , the first term will all cancel out, it yields that

∑
i∈T̄

dix
q−1
i <

1

γ

∑
i∈∂T

(di − d̃i)xq−1
i ≤ 2φ(T )vol(S)

γ
.

Now by the definition of our sweep cut set, we know that for i ∈ Sc\T , xq−1
i ≥ cq−1uvol(S)

vol(T ) , thus

cq−1vol(S)

2vol(T )
vol(Sc\T ) ≤

∑
i∈Sc\T

dix
q−1
i ≤ 2φ(T )vol(S)

γ

which means

vol(Sc\T ) = O

(
φ(T )

γcq−1

)
vol(T ).

12



In the following, we define xi = x̃i + vi and `′(xi − (eS)i) = `′(x̃i − (eS)i) + ki`
′(vi). For any

node i ∈ T , by KKT condition,

0 = ri(x)

= − 1

γ

∑
j∼i

w(i, j)`′(xi − xj)− di`′(xi − (eS)i)

= − 1

γ

∑
j∼i,j∈T

w(i, j)`′(xi − xj)−
1

γ

∑
j∼i,j∈T̄

w(i, j)`′(xi − xj)− di`′(xi − (eS)i)

> − 1

γ

∑
j∼i,j∈T

w(i, j)`′(xi − xj)−
1

γ

∑
j∼i,j∈T̄

w(i, j)`′(xi)− d̃i`′(xi − (eS)i)− (di − d̃i)`′(xi)

= − 1

γ

∑
j∼i,j∈T

w(i, j)`′(xi − xj)− d̃i`′(x̃i − (eS)i)− kidi`′(vi)− (1 +
1

γ
)(di − d̃i)`′(xi)

= − 1

γ

∑
j∼i,j∈T

w(i, j)`′(xi − xj)−

1

γ

∑
j∼i,j∈T

w(i, j)`′(x̃i − x̃j)− kidi`′(vi)− (1 +
1

γ
)(di − d̃i)`′(xi).

By summing the inequality above over all nodes in T , the first and the second terms cancel out, so it
yields: ∑

i∈T
kidi`

′(vi) > −
2(1 + γ)

γ
φ(T )vol(S).

For nodes i ∈ T\Sc, xi < cx̃i, which means vi < (c − 1)x̃i. And `′(vi) = −(−vi)q−1 <

−(1 − c)q−1 0.5volT (S)
volT (T ) ≤ −(1 − c)q−1 0.5vol(S)

vol(T ) . (Here we use the fact that volT (T ) ≤ vol(T ) and
S ∩ ∂T = ∅). From the proof of lemma 4.3, we know that S will be included in Sc. When i /∈ S,

ki =

(
− x̃i
vi

+ 1

)q−1

−
(
− x̃i
vi

)q−1

>
(2− c)q−1 − 1

(1− c)q−1
.

Thus, we have

vol(T\Sc) = O

(
φ(T )

γ

)
vol(T ).

Lemma 4.5. Under the same assumptions as lemma 4.4, among sweep cut sets Sc ∈ {Sc| 14 ≤ c ≤
1
2},

there exsits one R such that φ(R) = O

(
φ(T )

1
q

Gap
q−1

2

)
.

Proof. Our proof is mostly a generalization to the proof of Lemma 4.1 in [45]. If cut(Sc, S̄c) ≥ E0

holds for all 1
4 ≤ c ≤

1
2 , then we just need to upper bound E0.

We introduce values k(i, j) that allow us to break `′(xi−xj) into `′(xi)−k(i, j)`′(xj). The specific
choice k(i, j) > 0 is uniquely determined by xi and xj . For any node i ∈ Sc, by KKT condition,

0 =
1

γ

∑
j∼i

w(i, j)`′(xi − xj) + di`
′(xi − (eS)i)

=
1

γ

∑
j∼i

(w(i, j)`′(xi)− w(i, j)k(i, j)`′(xj)) + di`
′(xi)− kidi(eS)i.

Define K to be the matrix induced by k(i, j). Rearranging the equation above yields:

(K ◦Axq−1)i = (1 + γ)dix
q−1
i − γkidi(eS)i.

Also for two adjacent nodes i, j that are both in Sc, we have

k(i, j)`′(xj) + k(j, i)`′(xi) = `′(xi) + `′(xj).

13



This is because `′(xi − xj) + `′(xj − xi) = 0. And for two adjacent nodes i, j such that i ∈ Sc and
j /∈ Sc, xi > xj , k(i, j) < 1. Define a Lovasz-Simonovits curve y over dix

q−1
i , then we have∑

i∈Sc

(K ◦Axq−1)i +
∑
i∈Sc

dix
q−1
i = 2

∑
i∈Sc

∑
j∼i,j∈Sc

w(i, j)xq−1
j +

∑
i∈Sc

∑
j∼i,j /∈Sc

k(i, j)w(i, j)xq−1
j

< 2
∑
i∈Sc

∑
j∼i,j∈Sc

w(i, j)xq−1
j +

∑
i∈Sc

∑
j∼i,j /∈Sc

w(i, j)xq−1
j

≤ y[vol(S)− cut(Sc, S̄c)] + y[vol(S) + cut(Sc, S̄c)]
≤ y[vol(S)− E0] + y[vol(S) + E0]

here the second inequality is due to the definition of Lovasz-Simonovits curve and the third inequality
is due to y(x) is concave. This means

y[vol(S)− E0] + y[vol(S) + E0] ≥
∑
i∈Sc

(K ◦Axq−1)i +
∑
i∈Sc

dix
q−1
i

≥ (2 + γ)
∑
i∈Sc

dix
q−1
i − γ

∑
i∈Sc

kidi(eS)i

≥ (2 + γ)
∑
i∈Sc

dix
q−1
i − γ

∑
i∈S

kidi

= (2 + γ)
∑
i∈Sc

dix
q−1
i − γ

∑
i∈V

dix
q−1
i

= 2
∑
i∈Sc

dix
q−1
i − γ

∑
i/∈Sc

dix
q−1
i

≥ 2y[vol(Sc)]−O(φ(T )vol(S)).

Thus,

y[vol(Sc)]− y[vol(Sc − E0)] ≤ y[vol(Sc + E0)]− y[vol(Sc)] +O(φ(T )vol(S)).

Similarly to the proof of Lemma 4.1 in [45], we can then derive

0.5E0vol(S)

4q−1vol(T )
≤ y[vol(S1/4)]− y[vol(S1/4)− E0]

≤
vol(S1/8\S1/4)

E0
O(φ(T )vol(S)) + y[vol(S1/8)]− y[vol(S1/8)− E0]

≤
vol(S1/8\T ) + vol(T\S1/4)

E0
O(φ(T )vol(S)) +

0.5E0vol(S)

8q−1vol(T )

≤ O(φ(T )/γ)vol(T )

E0
O(φ(T )vol(S)) +

0.5E0vol(S)

8q−1vol(T )
.

Hence, E0 ≤ O
(
φ(T )
√
γ

)
vol(T ).

And from lemma 4.4, we know vol(Sc) = 1±O
(
φ(T )
γ

)
vol(T), since we choose γ = (γ2)q−1 and

γ2 = Θ(φ(T ) · Gap), vol(Sc) = Θ(vol(T )). So there exists R such that

φ(R) = O

(
φ(T )
√
γ

)
= O

(
φ(T )

3−q
2

Gap(q−1)/2

)
≤ O

(
φ(T )

1
q

Gap(q−1)/2

)
.

Here the last inequality uses the fact that (3− q)/2 > 1/q when 1 < q < 2.

Define γ2 to be the largest γ such that assumption 2 is satisfied at q = 2 and assume γ2 < 1. Then
[45] shows that γ2 = Θ(φ(T ) · Gap). Here Gap is defined as the ratio of internal connectivity and
external connectivity and often assumed to be Ω(1). Formally:

14



Definition 5. Given a target cluster T with vol(T ) ≤ 1
2 vol(V ), φ(T ) ≤ Ψ and minA⊂TφT (A) ≥ Φ,

the Gap is defined as:

Gap =
Φ2/log vol(T )

Ψ

We refer to [45] for a detailed explanation of this. In the case of q = 2, by using the infinity-norm
mixing time of a Markov chain, any γ ≤ O(φ(T ) ·Gap) satisfies this assumption as shown in lemma
3.2 of [45]. For 1 < q < 2, it will be more difficult to derive a closed form solution on how small γ
needs to be. However, in the supplement, we can show that this assumption still holds for subgraphs
with small diameters, i.e. O(log(|T |)) (This is reasonable because we expect good clusters and good
communities to have small diameters.).

So by combing all these lemmas, we can get the following theorem from the main manuscript.
Theorem 4.1. Assume the subgraph induced by target cluster T has diameter O(log(|T |)), when
we uniformly randomly sample points from T as seed sets, the expected largest distance of any
node in S̄ to S is O

(
log(|T |)
|S|

)
. Assume volT (S)

volT (T ) ≤ 2
(
( γ2

1+γ2
)/|T |

1
|S| log(1+l1/(q−1)))q−1

where l ≤
(1 + γ)max(d̃i), then we can set γ = γq−1

2 to satisfy assumption 2 for 1 < q < 2. Then a sweep cut
over x will find a cluster R where φ(R) = O

(
φ(T )

1
q /Gap

q−1
2
)
.

5 Experiments

We perform three experiments that are designed to compare our method to others designed for similar
problems. We call ours SLQ (strongly local q-norm) for `(x) = (1/q)|x|q with parameters γ for
localization and κ for the sparsity. We call it SLQδ with the q-Huber loss. Existing solvers are
(i) ACL [5], that computes a personalized PageRank vector approximately adapted with the same
parameters [17]; (ii) CRD [41], which is hybrid of flow and spectral ideas; (iii) FS is FlowSeed [39],
a 1-norm based method; (iv) HK is the push-based heat kernel [25]; (v) NLD is a recent nonlinear
diffusion [21]; (vi) GCN is a graph convolutional network [23]. Parameters are chosen based on
defaults or with slight variations designed to enhance the performance within a reasonable running
time. All experiments in this section are performed on a server with Intel Xeon Platinum 8168
CPU and 5.9T RAM. (Nothing remotely used the full capacity of the system and these were run
concurrently with other processes.) We evaluate the routines in terms of their recovery performance
for planted sets and clusters. The bands reflect randomizing seeds choices in the target cluster.

5.1 Our Full Julia implementation

We verified this was as efficient as ACL implemented in C++. So there is no appreciable overhead of
using Julia compared with C or C++ for this computation.� �

using LinearAlgebra
using SparseArrays

module SLQ

using SparseArrays, DataStructures, LinearAlgebra, ProgressMeter
struct GraphAndDegrees{

T<: Union{Float32,Float64,Int32,Int64},
Ti <: Union{Int,Int32,Int64}} # T is the type of edges,

A::SparseMatrixCSC{T,Ti}
deg::Vector{T}

end

abstract type EdgeLoss{T} end

struct QHuberLoss{T} <: EdgeLoss{T}
q::T
delta::T

end

struct TwoNormLoss{T} <: EdgeLoss{T}
end

""" This function isn't type stable, so don't use it except it outer codes. """
function loss_type(q::T, delta::T) where T

15



if q == 2.0
return TwoNormLoss{T}()

else
return QHuberLoss{T}(q, delta)

end
end

minval(f, L::QHuberLoss) = fˆ(1/(L.q-1))
minval(f, L::TwoNormLoss) = sqrt(f)

function loss_gradient(x::T, L::QHuberLoss{T}) where T
if abs(x) < L.delta

return L.deltaˆ(L.q-2)*x
else

return sign(x)*(abs(x)ˆ(L.q-1))
end

end

function loss_gradient(x::T, L::TwoNormLoss{T}) where T
return x

end

function loss_function(x::T, L::QHuberLoss{T}) where T
if abs(x) < L.delta

return 0.5*(L.deltaˆ(L.q-2))*(xˆ2)
else

return (abs(x)ˆL.q)/L.q+(0.5-1/L.q)*(L.deltaˆL.q)
end

end

function loss_function(x::T, L::TwoNormLoss{T}) where T
return 0.5*(xˆ2)

end

function graph(A::SparseMatrixCSC)
d = vec(sum(A,dims=2))
return GraphAndDegrees(A, d)

end

function _buffer_neighbors!(x::Vector, A::SparseMatrixCSC,
i::Int, buf_x::Vector{T}, buf_vals::Vector{T}) where T

nneighs = A.colptr[i+1]-A.colptr[i]
for (iter,k) in enumerate(A.colptr[i]:(A.colptr[i+1]-1))

j = A.rowval[k]
buf_x[iter] = x[j]
buf_vals[iter] = T(A.nzval[k])

end
return nneighs

end

function _eval_residual_i(xi::T, di::T, dx::T, seed::Bool,
neigh_x::AbstractVector{T}, neigh_vals::AbstractVector{T},
L::EdgeLoss{T}, gamma::T) where T

ri_new = zero(T)
for k in 1:length(neigh_x)
ri_new -= neigh_vals[k]*loss_gradient(xi+dx-neigh_x[k],L)/gamma

end
if seed
ri_new -= di*loss_gradient(xi+dx-1,L)

else
ri_new -= di*loss_gradient(xi+dx,L)

end
return ri_new

end

function dxi_solver(G::GraphAndDegrees,x::Vector{T},
kappa::T,epsilon::T,gamma::T,r::Vector{T},
seedset,rho::T,i::Int,L::TwoNormLoss{T},
buf_x::Vector,buf_vals::Vector,thd1,thd2) where T

di = G.deg[i]
found_dxi = false
A = G.A

dxi = r[i]*rho*gamma/(di*(1+gamma))

return dxi
end

16



function dxi_solver(G::GraphAndDegrees,x::Vector{T},
kappa::T,epsilon::T,gamma::T,r::Vector{T},
seedset,rho::T,i::Int,L::EdgeLoss{T},
buf_x::Vector,buf_vals::Vector,thd1,thd2) where T

di = G.deg[i]
found_dxi = false
A = G.A
nneighs::Int = _buffer_neighbors!(x,A,i,buf_x, buf_vals)

nbisect = 0

ri_new = r[i]
dx_min = 0
thd_min = min(thd1,thd2)
thd_max = max(thd1,thd2)
thd = thd_max
dx = thd
ri_new = _eval_residual_i(x[i], T(di), dx, i in seedset,

@view(buf_x[1:nneighs]), @view(buf_vals[1:nneighs]),
L, gamma)

if ri_new < 0
ri_new = r[i]
thd = thd_min

end
last_dx = 0

ratio = 10 # 2020-05-27 switched this ratio from 2 to 10
while ri_new > rho*kappa*di

dx = thd
ri_new = _eval_residual_i(x[i], T(di), dx, i in seedset,

@view(buf_x[1:nneighs]), @view(buf_vals[1:nneighs]),
L, gamma)

#=
if nbisect >= 40

@show i, dx, T(di), ri_new, rho*kappa*di
end
=#
last_dx = dx_min
dx_min = thd
thd *= ratio
nbisect += 1

end
dx_min = last_dx
dx_max = thd/ratio

dx_mid = 0
while (found_dxi == false && dx_max - dx_min > epsilon) || (ri_new < 0)

dx_mid = dx_max/2+dx_min/2
ri_new = _eval_residual_i(x[i], T(di), dx_mid, i in seedset,

@view(buf_x[1:nneighs]), @view(buf_vals[1:nneighs]),
L, gamma)

if ri_new < rho*kappa*di
dx_max = dx_mid

elseif ri_new > rho*kappa*di
dx_min = dx_mid

else
found_dxi = true

end
end
if dx_mid == 0

dxi = dx_max
else

dxi = dx_mid
end
return dxi

end

function residual_update!(G::GraphAndDegrees,
x::Vector,dxi,i,seedset::Set{Int},r,gamma,Q,kappa,L::EdgeLoss)

A = G.A
r[i] = 0
for k in A.colptr[i]:(A.colptr[i+1]-1)

j = A.rowval[k]
dri = loss_gradient(x[j]-x[i]-dxi,L)
drij = A.nzval[k]*(loss_gradient(x[j]-x[i],L)-dri)
drij /= gamma
rj_old = r[j]
r[j] += drij
r[i] += A.nzval[k]*dri/gamma

17



if rj_old <= kappa*G.deg[j] && r[j] > kappa*G.deg[j]
push!(Q,j)

end
end
if i in seedset

r[i] -= G.deg[i]*loss_gradient(x[i]+dxi-1,L)
else

r[i] -= G.deg[i]*loss_gradient(x[i]+dxi,L)
end
if r[i] > kappa*G.deg[i]

push!(Q,i)
end

end

function _max_nz_degree(A::SparseMatrixCSC)
n = A.n
maxd = zero(eltype(A.colptr))
for i=1:n

maxd = max(maxd, A.colptr[i+1]-A.colptr[i])
end
return maxd

end

"""
EdgeLoss{T} includes either TwoNormLoss or QHuberLoss, where we have
- `q` the value of q in the q-norm
- `delta` the value of delta in the q-Huber function
use loss_type(q,delta) for a type-unstable solution that will dispatch correctly

- `gamma` is for regularization, Infty returns seed set, 0 is hard/ill-posed.
- `kappa` is the sparsity regularilzation term.
- `rho` is the slack term in the KKT conditions to get faster convergence.

(rho=1 is slow, rho=0)
- `eps` the value of epsilon in the local binary search
"""
function slq_diffusion(G::GraphAndDegrees,S,gamma::T,kappa::T,rho::T,L::EdgeLoss{T};

max_iters::Int=1000,epsilon::T=1.0e-8,progress::Bool=true) where {T <: Real}

A = G.A
n = size(A,1)
x = zeros(n)
r = zeros(n)

max_deg = _max_nz_degree(A)

buf_x = zeros(max_deg)
buf_vals = zeros(max_deg)
Q = CircularDeque{Int}(n)
#
for i in S

r[i] = G.deg[i]
push!(Q,i)

end
seedset = Set(S)

iter = 0

t0 = time()
checkinterval = 10ˆ5
if progress == false

checkinterval = max_iters
end
pushvol = 0
nextcheck = checkinterval
notify_time = 60.0
last_time = t0
last_iter = 0
used_pm = false
pm = Progress(max_iters, "SLQ: ")

#thd1 = (sum(G.deg[S])/sum(G.deg))^(1/(q-1))
thd1 = minval(sum(G.deg[S])/sum(G.deg), L)
thd2 = thd1

while length(Q) > 0 && iter < max_iters
i = popfirst!(Q)
dxi = dxi_solver(G,x,kappa,epsilon,gamma,r,seedset,rho,i,L,buf_x,buf_vals,thd1,thd2)
thd2 = dxi
residual_update!(G,x,dxi,i,seedset,r,gamma,Q,kappa,L)
x[i] += dxi

18



pushvol += A.colptr[i+1] - A.colptr[i]
iter += 1

if iter > nextcheck
nextcheck = iter+checkinterval
ct = time()

if ct - t0 >= notify_time
used_pm = true
ProgressMeter.update!(pm, iter; showvalues =

[(:pushes_per_second,(iter-last_iter)/(ct-last_time)),
(:edges_per_second,pushvol/(ct-last_time))])

end

last_iter = iter
last_time = ct
pushvol = 0

end
end

if used_pm == true
ProgressMeter.finish!(pm)

end

if iter == max_iters && length(Q) > 0
@warn "reached maximum iterations"

end
return x,r,iter

end

function objective(G::GraphAndDegrees,S,x::Vector{T},
kappa::Real,gamma::Real,L::EdgeLoss{T}) where T

obj = 0.0
A = G.A
n = size(A,1)
for i in 1:n

for k in A.colptr[i]:(A.colptr[i+1]-1)
j = A.rowval[k]
obj += A.nzval[k]*loss_function(x[i]-x[j],L)

end
end
for i in S

obj += gamma*G.deg[i]*loss_function(x[i]-1,L)
end
Sbar = setdiff(1:n,S)
for i in Sbar

obj += gamma*G.deg[i]*loss_function(x[i],L)
end
obj += kappa*gamma*sum(G.deg.*x)
return obj

end

end # end module

include("common.jl")
using Test
@testset "SLQ" begin

A,xy = two_cliques(5,5)
@test_nowarn SLQ.slq_diffusion(SLQ.graph(A), [1], 0.1, 0.1, 0.5,

SLQ.loss_type(2.0,0.0))
@test_nowarn SLQ.slq_diffusion(SLQ.graph(A), [1], 0.1, 0.1, 0.5,

SLQ.QHuberLoss(2.0,0.0))

A = sparse(ones(10,10)-I)
G = SLQ.graph(A)
x, r, iters = SLQ.slq_diffusion(G, [1], 0.1, 1.0, 0.99999,

SLQ.loss_type(2.0, 0.0))
@test all(isfinite.(r))

end� �
5.2 More experiment details

The first experiment uses the LFR benchmark [27]. We vary the mixing parameter µ (where larger µ
is more difficult) and provide 1% of a cluster as a seed, then we check how much of the cluster we

19



104 105 nodes

10 2

100

102
Running time (seconds)

0.1 0.2 0.3 0.4 0.5
0.2
0.4
0.6
0.8
1.0

F1 score
SLQ (q=1.2) SLQ (q=1.4) SLQ (q=1.6) CRD (h=3) CRD (h=5) ACL heat kernel

0.1 0.2 0.3 0.4 0.5

0.2
0.4
0.6
0.8

conductance

Figure 3: The left figure shows the median running time for the methods as we scale the graph size
keeping the cluster sizes roughly the same. As we vary cluster mixing µ for a graph with 10, 000
nodes, the middle figure shows the median F1 score (higher is better) along with the 20-80% quantiles;
the right figure shows the conductance values (lower is better). These results show SLQ is better than
ACL and competitive with CRD while running much faster.

recover after a conductance-based sweep cut over the solutions from various methods. Here, we use
the F1 score (harmonic mean of precision and recall) and conductance value (cut to volume ratio) of
the sets to evaluate the methods. The results are in Figure 3. When creating the LFR graphs, we set
the power law exponent for the degree distribution to be 2, power law exponent for the community
size distribution to be 2, desired average degree to be 10, maximum degree to be 50, minimum size of
community to be 200 and maximum size of community to be 500. We create 40 random graphs for
each µ. For SLQ, we set δ = 0, γ = 0.1, ρ = 0.5 and ε = 10−8. For ACL, we set γ = 0.1. For both
SLQ and ACL, κ is automatically chosen from 0.005 and 0.002 based on which will give a cluster
with smaller conductance. For HK, we use four different pairs of (ε, t), which are (0.0001, 10),
(0.001, 20), (0.005, 40) and (0.01, 80). And we return the one with the smallest conductance. For
CRD, we use default parameters from "localgraphclustering" Python package except h, which is is
the maximum flow that each edge can handle. We provide results of using h = 3 and h = 5. For
methods that are using multiple choices of parameters, we report the total running time.

The second experiment uses the class-year metadata on Facebook [37], which is known to have good
conductance structure for at least class year 2009 [40] that should be identifiable with many methods.
Other class years are harder to detect with conductance. Here, we use F1 values alone. We use 1%
of the true set as seed. (For GCN, we also use the same number of negative nodes.) The results are
in Table 1,2 and show SLQ is as good, or better than, CRD and much faster. In this experiment, for
SLQ, we set q = 1.2, γ = 0.05, κ = 0.005, ε = 10−8, ρ = 0.5 and δ = 0. For SLQδ, the parameters
are the same as SLQ except we set δ = 10−5. For ACL, we set γ = 0.05 and κ = 0.005. For CRD
and HK, we use the same parameters as the first experiment. For FS, we set the locality parameter to
be 0.5. For NLD, we set the power to be 1.5, step size to be 0.002 and the number of iterations to be
5000. For GCN, we use 5 hidden layers and negative log likelihood loss. We set dropout ratio to be
0.5, learning rate to be 0.01, weight decay to be 0.0005 and the number of iterations to be 200. The
feature vector is the 6 different metadata info as described in [37]. For each true set, we randomly
choose 1% of the true set as seed 50 times.

The final experiment evaluates a finding from [26] on the recall of seed-based community detection
methods. For a group of communities with roughly the same size, we evaluate the recall of the
largest k entries in a diffusion vector. Minimizing conductance is not an objective in this experiment.
They found PageRank (ACL) outperformed many different methods. Also, ACL – with the standard
degree normalization for conductance based sweepcuts performed worse than ACL without degree
normalization in this particular setting, which is different from what conductance theory suggests.
Here, with the flexibility of q, we see the same general result with respect to degree normalization and
found that SLQ with q > 2 gives the best performance even though the conductance theory suggests
1 < q < 2 for the best conductance bounds.

Additional details only in supplement

First we want to mention that in our experiments, we find that we can speed up SLQ by using a
slightly modified binary search procedure. The logic is when q is close to 1 and vol(S) is small, ∆xi
after each step of “push” procedure is also small. So it doesn’t make sense to set the initial range of
binary search to be [0, 1]. Instead, we set the initial range to be [10k−1t, 10kt], where t is chosen from
either last ∆xi or (vol(S)/vol(A))1/(q−1). (Note this is just the lower bound of xi when γ → 0.)

20



Table 1: Cluster recovery results from a set of 7 Facebook networks [37]. Students with a specific
graduation class year are used as target cluster. We use a random set of 1% of the nodes identified
with that class year as seeds. The class year 2009 is the set of incoming students, which form better
conductance groups because the students had not yet mixed with the other classes. Class year 2008 is
already mixed and so the methods do not do as well there. The values are median F1 and the violin
plots show the distribution over choices of the seeds.
Year Alg UCLA MIT Duke UPenn Yale Cornell Stanford

F1 & Med. F1 & Med. F1 & Med. F1 & Med. F1 & Med. F1 & Med. F1 & Med.

2009 SLQ 0.9 0.9 1.0 1.0 1.0 0.9 0.9
SLQδ 0.9 0.8 1.0 0.9 0.9 0.9 0.9
CRD-3 0.3 0.7 0.7 0.6 0.7 0.5 0.5
CRD-5 0.9 0.9 1.0 1.0 1.0 0.9 0.9
ACL 0.9 0.8 0.9 0.9 0.9 0.9 0.9
FS 0.4 0.4 0.9 0.9 0.5 0.5 0.4
HK 0.9 0.5 0.9 0.9 0.9 0.9 0.9
NLD 0.2 0.2 0.3 0.3 0.3 0.3 0.3
GCN 0.3 0.2 0.3 0.3 0.2 0.3 0.2

2008 SLQ 0.7 0.5 0.8 0.8 0.8 0.8 0.8
SLQδ 0.6 0.5 0.7 0.7 0.7 0.7 0.7
CRD-3 0.6 0.5 0.7 0.7 0.7 0.6 0.6
CRD-5 0.5 0.5 0.5 0.5 0.7 0.6 0.5
ACL 0.5 0.5 0.7 0.7 0.7 0.7 0.7
FS 0.5 0.5 0.7 0.6 0.7 0.6 0.7
HK 0.5 0.5 0.0 0.5 0.5 0.5 0.5
NLD 0.3 0.3 0.3 0.3 0.3 0.3 0.2
GCN 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Table 2: Total running time of methods in this experiment.
Method SLQ SLQδ CRD-3 CRD-5 ACL FS HK NLD GCN

Time (seconds) 123 80 3049 9378 12 1593 106 10375 16534
(a) DBLP (b) LiveJournal

0 100 200 300 400
0.0
0.1
0.2
0.3

SLQ (q=1.5)

SLQ-DN (q=1.5)

SLQ (q=4.0)

SLQ-DN (q=4.0)

SLQ (q=8.0)

SLQ-DN (q=8.0)
ACL

ACL-DN
HK-DNHK
CRD

0 1000200030004000
0.0
0.1
0.2
0.3

SLQ (q=1.5)

SLQ-DN (q=1.5)

SLQ (q=8.0)

SLQ-DN (q=4.0)

SLQ (q=4.0)

SLQ-DN (q=8.0)
ACL

ACL-DNHK-DNHK

CRD

Figure 4: A replication of an experiment from [26] with SLQ on DBLP [6, 42] (with 1M edges) and
edges LiveJournal [32] (with 65M edges). The plot shows median recall over 600 groups of roughly
the same size as we look at the top k entries in the solution vector (x axis). The envelope represents 2
standard error. This shows SLQ with q > 2 gives better performance than ACL (PageRank), and all
improve on the degree-normalized (DN) versions used for conductance-minimizing sweep cuts.

Since we can check which side of the bounds we are on, we then determine a value of k by checking
k = 1, 2, ... until the residual becomes negative. This strategy is implemented in our code above.

Using more seeds

Then we would like to describe an additional experiment where we study the performance change
of different methods when varying the size of the seed set. The dataset we use is the same MIT
Facebook dataset and the target cluster is class year 2008. This choice is one where most of the
methods in Table 1 did poorly, but ACL did better in some trials. We repeat 50 times for each seed
size level. From the previous experiments, we can see that none of the methods works well finding
this cluster. In this experiment, we only report results from SLQ, ACL, FS, CRD-3 and HK as they

21



are all strongly local methods and they perform better than global methods as we have seen from
previous experiments. Also, we didn’t add CRD-5 because CRD-3 performed better than CRD-5 on
this particular cluster as shown in table 1. The result of this experiment is in 5. When seed size is
smaller than 15 nodes, the F1 score of all methods improves as we increase seed size. After 15 nodes,
only the F1 score of SLQ and ACL continues to improve when seed size becomes larger, while the
performance of other methods stays the same or even slightly worse.

For HK and CRD-3, we use the same parameters as the previous Facebook experiment. For ACL
and SLQ, we use a coarse binary search (initial region is between 0.001 and 0.1, smallest feasible
region is 0.001) to find a good sparsity level such that the total number of nonzero entries is 20% of
the total number of nodes. The other parameters are the same as the previous Facebook experiment.
We also use a similar coarse binary search (initial region is between 0.4 and 5.0, smallest feasible
region is 0.1) to choose ε for FS. We didn’t implement this procedure for CRD and HK because CRD
doesn’t have a standalone parameter to control the sparsity of the solution and HK has already been
set up to choose the best cluster from a list of parameters. One thing we would like to mention is that
in Table 1, we use 1% nodes of the true cluster as seeds which is roughly 32 nodes in this case. So
we can see that the performance of both ACL and SLQ is improved upon this extra layer of binary
search (i.e. the median F1 score is increased to 0.6). While the performance of FS remains the same.

10 20 30 40 50 600.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

SLQ
ACL
CRD-3
FS
HK

Figure 5: This figure shows the performance change (F1 score) of different methods when we vary
the size of seed set. The dataset is MIT Facebook with the true cluster to be class year 2008. The
envelope represents 20%-80% quantile.

6 Related work and discussion

The most strongly related work was posted to arXiv [15] contemporaneously as we were finalizing
our results. This research applies a p-norm function to the flow dual of the mincut problem with a
similar motivation. This bears a resemblance to our procedures, but does differ in that we include the
localizing set S in our nonlinear penalty. Also, our solver uses the cut values instead of the flow dual
on the edges and we include details that enable q-Huber and Berq functions for faster computation.
In the future, we plan to compare the approaches more concretely.

There also remain ample opportunities to further optimize our procedures. As we were developing
these ideas, we drew inspiration from algorithms for p-norm regression [1]. Also there are faster
converging (in theory) solvers using different optimization procedures [14] for 2-norm problems as
well as parallelization strategies [36].

Our work further contributes to the ongoing research into p-Laplacian research [3, 9, 2, 8, 29] by
giving a related problem that can be solved in a strongly local fashion. We note that our ideas can be
easily adapted to the growing space of hypergraph and higher-order graph analysis literature [7, 43, 29]
where the strategy is to derive a useful hypergraph from graph data to support deeper analysis.
We are also excited by the opportunities to combine with generalized Laplacian perspectives on
diffusions [16]. Moreover, our work contributes to the general idea of using simple nonlinearities
on existing successful methods. A recent report shows that a simple nonlinearity on a Laplacian
pseudoinverse is competitive with complex embedding procedures [10].

Finally, we note that there are more general constructions possible. For instance, differential penalties
for S and S̄ in the localized cut graph can be used for a variety of effects [33, 40]. For 1-norm
objectives, optimal parameters for γ and κ can also be chosen to model desierable clusters [40] –
similar ideas may be possible for these p-norm generalizations. We view the structured flexibility

22



of these ideas as a key advantage because ideas are easy to compose. This contributed to using
personalized PageRank to make graph convolution networks faster [24].

In conclusion, given the strong similarities to the popular ACL – and the improved performance in
practice – we are excited about the possibilities for localized p-norm-cuts in graph-based learning.

References
[1] Deeksha Adil, Rasmus Kyng, Richard Peng, and Sushant Sachdeva. Iterative refinement for `p-norm

regression. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1405–1424. SIAM, 2019.

[2] Morteza Alamgir and Ulrike V. Luxburg. Phase transition in the family of p-resistances. In J. Shawe-Taylor,
R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 24, pages 379–387. Curran Associates, Inc., 2011.

[3] S. Amghibech. Eigenvalues of the discrete p-laplacian for graphs. Ars Comb., 67, 2003.

[4] R. Andersen and K. J. Lang. An algorithm for improving graph partitions. In Proceedings of the nineteenth
annual ACM-SIAM symposium on Discrete algorithms, pages 651–660, 2008.

[5] Reid Andersen, Fan Chung, and Kevin Lang. Local graph partitioning using pagerank vectors. In 2006
47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pages 475–486. IEEE,
2006.

[6] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. Group formation in large social
networks: membership, growth, and evolution. In Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD ’06, pages 44–54, New York, NY, USA, 2006.
ACM.

[7] Austin Benson, David F. Gleich, and Jure Leskovec. Higher-order organization of complex networks.
Science, 353(6295):163–166, 2016.

[8] Nick Brindle and Xiaojin Zhu. p-voltages: Laplacian regularization for semi-supervised learning on
high-dimensional data. Workshop on Mining and Learning with Graphs (MLG2013), 2013.

[9] Thomas Bühler and Matthias Hein. Spectral clustering based on the graph p-laplacian. In Proceedings of
the 26th Annual International Conference on Machine Learning, pages 81–88, 2009.

[10] Sudhanshu Chanpuriya and Cameron Musco. Infinitewalk: Deep network embeddings as laplacian
embeddings with a nonlinearity, 2020.

[11] Fan Chung. The heat kernel as the PageRank of a graph. Proceedings of the National Academy of Sciences,
104(50):19735–19740, December 2007.

[12] Fan R. L. Chung. Spectral Graph Theory. American Mathematical Society, 1992.

[13] K. Fountoulakis, M. Liu, D. F. Gleich, and M. W. Mahoney. Flow-based algorithms for improving clusters:
A unifying framework, software, and performance. arXiv, cs.LG:2004.09608, 2020.

[14] Kimon Fountoulakis, Farbod Roosta-Khorasani, Julian Shun, Xiang Cheng, and Michael W. Mahoney.
Variational perspective on local graph clustering. Mathematical Programming, Dec 2017.

[15] Kimon Fountoulakis, Di Wang, and Shenghao Yang. p-norm flow diffusion for local graph clustering. In
Proceedings of the International Conference on Machine Learning, pages 5619–5629, 2020.

[16] Rumi Ghosh, Shang-hua Teng, Kristina Lerman, and Xiaoran Yan. The interplay between dynamics and
networks: centrality, communities, and cheeger inequality. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 1406–1415, New York, NY,
USA, 2014. ACM, ACM.

[17] David Gleich and Michael Mahoney. Anti-differentiating approximation algorithms: A case study with
min-cuts, spectral, and flow. In International Conference on Machine Learning, pages 1018–1025, 2014.

[18] David F. Gleich. PageRank beyond the web. SIAM Review, 57(3):321–363, August 2015.

[19] David F. Gleich and Michael W. Mahoney. Using local spectral methods to robustify graph-based learning
algorithms. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’15, pages 359–368, New York, NY, USA, 2015. ACM.

[20] David Hallac, Christopher Wong, Steven Diamond, Abhijit Sharang, Rok Sosic, Stephen Boyd, and Jure
Leskovec. Snapvx: A network-based convex optimization solver. The Journal of Machine Learning
Research, 18(1):110–114, 2017.

[21] Rania Ibrahim and David F. Gleich. Nonlinear diffusion for community detection and semi-supervised
learning. In The World Wide Web Conference, WWW ’19, pages 739–750, New York, NY, USA, 2019.
ACM.

23



[22] Lucas G. S. Jeub, Prakash Balachandran, Mason A. Porter, Peter J. Mucha, and Michael W. Mahoney.
Think locally, act locally: Detection of small, medium-sized, and large communities in large networks.
Phys. Rev. E, 91:012821, January 2015.

[23] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

[24] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. In International Conference on Learning Representations
(ICLR), 2019.

[25] Kyle Kloster and David F. Gleich. Heat kernel based community detection. In Proceedings of the 20th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’14, pages
1386–1395, New York, NY, USA, 2014. ACM.

[26] Isabel M. Kloumann and Jon M. Kleinberg. Community membership identification from small seed sets.
In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’14, pages 1366–1375, New York, NY, USA, 2014. ACM.

[27] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Benchmark graphs for testing community
detection algorithms. Phys. Rev. E, 78:046110, Oct 2008.

[28] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. Community structure in
large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics,
6(1):29–123, September 2009.

[29] Pan Li and Olgica Milenkovic. Submodular hypergraphs: p-laplacians, Cheeger inequalities and spectral
clustering. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 3014–3023,
Stockholm Sweden, 10–15 Jul 2018. PMLR.

[30] Michael W. Mahoney, Lorenzo Orecchia, and Nisheeth K. Vishnoi. A local spectral method for graphs:
With applications to improving graph partitions and exploring data graphs locally. Journal of Machine
Learning Research, 13:2339–2365, August 2012.

[31] M. Mihail. Conductance and convergence of markov chains-a combinatorial treatment of expanders. In
Foundations of Computer Science, 1989., 30th Annual Symposium on, pages 526 –531, oct-1 nov 1989.

[32] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Druschel, and Bobby Bhattacharjee.
Measurement and analysis of online social networks. In Proceedings of the 7th ACM SIGCOMM Conference
on Internet Measurement, IMC ’07, pages 29–42, New York, NY, USA, 2007. ACM.

[33] Lorenzo Orecchia and Zeyuan Allen Zhu. Flow-based algorithms for local graph clustering. In Proceedings
of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pages 1267–1286. Society for
Industrial and Applied Mathematics, 2014.

[34] Art B Owen. A robust hybrid of lasso and ridge regression. Contemporary Mathematics, 443(7):59–72,
2007.

[35] Jianbo Shi and J. Malik. Normalized cuts and image segmentation. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 22(8):888–905, August 2000.

[36] J. Shun, F. Roosta-Khorasani, K. Fountoulakis, and M. W. Mahoney. Parallel local graph clustering.
Proceedings of the VLDB Endowment, 9(12):1041–1052, 2016.

[37] Amanda L. Traud, Peter J. Mucha, and Mason A. Porter. Social structure of facebook networks. Physica
A: Statistical Mechanics and its Applications, 391(16):4165–4180, 2012.

[38] Luke N. Veldt, David F. Gleich, and Michael W. Mahoney. A simple and strongly-local flow-based method
for cut improvement. In International Conference on Machine Learning, pages 1938–1947, 2016.

[39] Nate Veldt, Christine Klymko, and David F. Gleich. Flow-based local graph clustering with better seed set
inclusion. In Proceedings of the SIAM International Conference on Data Mining, pages 378–386, 2019.

[40] Nate Veldt, Anthony Wirth, and David F. Gleich. Learning resolution parameters for graph clustering. In
The World Wide Web Conference, WWW ’19, pages 1909–1919, New York, NY, USA, 2019. ACM.

[41] Di Wang, Kimon Fountoulakis, Monika Henzinger, Michael W Mahoney, and Satish Rao. Capacity
releasing diffusion for speed and locality. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 3598–3607. JMLR. org, 2017.

[42] Jaewon Yang and J. Leskovec. Defining and evaluating network communities based on ground-truth. In
Data Mining (ICDM), 2012 IEEE 12th International Conference on, pages 745–754, Dec 2012.

[43] Hao Yin, Austin R. Benson, Jure Leskovec, and David F. Gleich. Local higher-order graph clustering.
In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’17, pages 555–564, New York, NY, USA, 2017. ACM.

24



[44] Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and Bernhard Schölkopf. Learning
with local and global consistency. In NIPS, 2003.

[45] Zeyuan Allen Zhu, Silvio Lattanzi, and Vahab S Mirrokni. A local algorithm for finding well-connected
clusters. In ICML (3), pages 396–404, 2013.

25


	Introduction to Supplementary
	Generalized local graph cuts
	Strongly Local Algorithms
	Running time analysis when 3(a) is satisfied
	Running time analysis when 3(b) is satisfied
	More details on 

	Main Theoretical Results – Cut Quality Analysis
	Useful Observations
	Proof of Theorems in Main Text

	Experiments
	Our Full Julia implementation
	More experiment details

	Related work and discussion

