
On the training dynamics of deep networks with L2

regularization

Aitor Lewkowycz

Google
Mountain View, CA

alewkowycz@google.com

Guy Gur-Ari

Google
Mountain View, CA
guyga@google.com

Abstract

We study the role of L2 regularization in deep learning, and uncover simple
relations between the performance of the model, the L2 coefficient, the learning rate,
and the number of training steps. These empirical relations hold when the network
is overparameterized. They can be used to predict the optimal regularization
parameter of a given model. In addition, based on these observations we propose a
dynamical schedule for the regularization parameter that improves performance and
speeds up training. We test these proposals in modern image classification settings.
Finally, we show that these empirical relations can be understood theoretically in
the context of infinitely wide networks. We derive the gradient flow dynamics of
such networks, and compare the role of L2 regularization in this context with that
of linear models.

1 Introduction

Machine learning models are commonly trained with L2 regularization. This involves adding the term
1
2�k✓k22 to the loss function, where ✓ is the vector of model parameters and � is a hyperparameter. In
some cases, the theoretical motivation for using this type of regularization is clear. For example, in
the context of linear regression, L2 regularization increases the bias of the learned parameters while
reducing their variance across instantiations of the training data; in other words, it is a manifestation
of the bias-variance tradeoff. In statistical learning theory, a “hard” variant of L2 regularization, in
which one imposes the constraint k✓k2  ✏, is often employed when deriving generalization bounds.

In deep learning, the use of L2 regularization is prevalent and often leads to improved performance in
practical settings [Hinton, 1986], although the theoretical motivation for its use is less clear. Indeed,
it well known that overparameterized models overfit far less than one may expect [Zhang et al., 2016],
and so the classical bias-variance tradeoff picture does not apply [Neyshabur et al., 2017, Belkin et al.,
2018, Geiger et al., 2020]. There is growing understanding that this is caused, at least in part, by the
(implicit) regularization properties of stochastic gradient descent (SGD) [Soudry et al., 2017]. The
goal of this paper is to improve our understanding of the role of L2 regularization in deep learning.

1.1 Our contribution

We study the role of L2 regularization when training over-parameterized deep networks, taken here to
mean networks that can achieve training accuracy 1 when trained with SGD. Specifically, we consider
the early stopping performance of a model, namely the maximum test accuracy a model achieves
during training, as a function of the L2 parameter �. We make the following observations based on
the experimental results presented in the paper.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



10�4 10�3

�

0.90

0.92

0.94

0.96

0.98

T
es

t
ac

cu
ra

cy

0.1/� epochs

200 epochs

� = 0

(a) � independence

0 500 1000 1500 2000
Total training epochs

0.90

0.92

0.94

0.96

0.98

T
es

t
ac

cu
ra

cy

Predicted �

Optimal �

(b) Optimal � prediction

0 50 100 150 200
Epochs

0.85

0.90

0.95

1.00

T
es

t
ac

cu
ra

cy

Auto-L2

� =0.0001

(c) AUTOL2 schedule

Figure 1: Wide ResNet 28-10 trained on CIFAR-10 with momentum and data augmentation. (a)
Final test accuracy vs. the L2 parameter �. When the network is trained for a fixed amount of epochs,
optimal performance is achieved at a certain value of �. But when trained for a time proportional
to ��1, performance plateaus and remains constant down to the lowest values of � tested. This
experiment includes a learning rate schedule. (b) Test accuracy vs. training epochs for predicted
optimal L2 parameter compared with the tuned parameter. (c) Training curves with our dynamical
L2 schedule, compared with a tuned, constant L2 parameter.

1. The number of SGD steps until a model achieves maximum performance is t⇤ ⇡
c
� , where

c is a coefficient that depends on the data, the architecture, and all other hyperparameters.
We find that this relationship holds across a wide range of � values.

2. If we train with a fixed number of steps, model performance peaks at a certain value of the L2

parameter. However, if we train for a number of steps proportional to ��1 then performance
improves with decreasing �. In such a setup, performance becomes independent of � for
sufficiently small �. Furthermore, performance with a small, non-zero � is often better than
performance without any L2 regularization.

Figure 1a shows the performance of an overparameterized network as a function of the L2 parameter
�. When the model is trained with a fixed steps budget, performance is maximized at one value of �.
However, when the training time is proportional to ��1, performance improves and approaches a
constant value as we decrease �.

As we demonstrate in the experimental section, these observations hold for a variety of training setups
which include different architectures, data sets, and optimization algorithms. In particular, when
training with vanilla SGD (without momentum), we observe that the number of steps until maximum
performance depends on the learning rate ⌘ and on � as t⇤ ⇡

c0

⌘·� . The performance achieved after
this many steps depends only weakly on the choice of learning rate.

Applications. We present two practical applications of these observations. First, we propose a
simple way to predict the optimal value of the L2 parameter, based on a cheap measurement of the
coefficient c. Figure 1b compares the performance of models trained with our predicted L2 parameter
with that of models trained with a tuned parameter. In this realistic setting, we find that our predicted
parameter leads to performance that is within 0.4% of the tuned performance on CIFAR-10, at a cost
that is marginally higher than a single training run. As shown below, we also find that the predicted
parameter is consistently within an order of magnitude of the optimal, tuned value.

As a second application we propose AUTOL2, a dynamical schedule for the L2 parameter. The idea
is that large L2 values achieve worse performance but also lead to faster training. Therefore, in
order to speed up training one can start with a large L2 value and decay it during training (this is
similar to the intuition behind learning rate schedules). In Figure 1c we compare the performance
of a model trained with AUTOL2 against that of a tuned but constant L2 parameter, and find that
AUTOL2 outperforms the tuned model both in speed and in performance.

Learning rate schedules. Our empirical observations apply in the presence of learning rate sched-
ules. In particular, Figure 1a shows that the test accuracy remains approximately the same if we
scale the training time as 1/�. As to our applications, in section 3 we propose an algorithm for
predicting the optimal L2 value in the presence of learning rate schedules, and the predicted value

2



gives comparable performance to the tuned result. As to the AUTOL2 algorithm, we find that in the
presence of learning rate schedules it does not perform as well as a tuned but constant L2 parameter.
We leave combining AUTOL2 with learning rate schedules to future work.

Theoretical contribution. Finally, we turn to a theoretical investigation of the empirical observa-
tions made above. As a first attempt at explaining these effects, consider the following argument based
on the loss landscape. For overparameterized networks, the Hessian spectrum evolves rapidly during
training [Sagun et al., 2017, Gur-Ari et al., 2018, Ghorbani et al., 2019]. After a small number of
training steps with no L2 regularization, the minimum eigenvalue is found to be close to zero. In the
presence of a small L2 term, we therefore expect that the minimal eigenvalue will be approximately �.
In quadratic optimization, the convergence time is inversely proportional to the smallest eigenvalue of
the Hessian.1 Based on this intuition, we may then expect that convergence time will be proportional
to ��1. The fact that performance is roughly constant for sufficiently small � can then be explained
if overfitting can be mostly attributed to optimization in the very low curvature directions [Rahaman
et al., 2018]. Now, our empirical finding is that the time it takes the network to reach maximum
accuracy is proportional to ��1. In some cases this is the same as the convergence time, but in other
cases (see for example Figure 4a) we find that performance decays after peaking and so convergence
happens later. Therefore, the loss landscape-based explanation above is not sufficient to fully explain
the effect.

To gain a better theoretical understanding, we consider the setup of an infinitely wide neural network
trained using gradient flow. We focus on networks with positive-homogeneous activations, which
include deep networks with ReLU activations, fully-connected or convolutional layers, and other
common components. By analyzing the gradient flow update equations of such networks, we are
able to show that the performance peaks at a time of order ��1 and deteriorates thereafter. This
is in contrast to the performance of linear models with L2 regularization, where no such peak is
evident. These results are consistent with our empirical observations, and may help shed light on the
underlying causes of these effects.

According to known infinite width theory, in the absence of explicit regularization, the kernel that
controls network training is constant [Jacot et al., 2018]. Our analysis extends the known results on
infinitely wide network optimization, and indicates that the kernel decays in a predictable way in
the presence of L2 regularization. We hope that this analysis will shed further light on the observed
performance gap between infinitely wide networks which are under good theoretical control, and
the networks trained in practical settings [Arora et al., 2019, Novak et al., 2019, Wei et al., 2018,
Lewkowycz et al., 2020].

Related works. L2 regularization in the presence of batch-normalization [Ioffe and Szegedy, 2015]
has been studied in [van Laarhoven, 2017, Hoffer et al., 2018, Zhang et al., 2018]. These papers
discussed how the effect of L2 on scale invariant models is merely of having an effective learning
rate (and no L2). This was made precise in Li and Arora [2019] where they showed that this effective
learning rate is ⌘e↵ = ⌘e2⌘�t (at small learning rates). Our theoretical analysis of large width
networks will have has the same behaviour when the network is scale invariant. Finally, in parallel
to this work, Li et al. [2020] carried out a complementary analysis of the role of L2 regularization
in deep learning using a stochastic differential equation analysis. Their conclusions regarding the
effective learning rate in the presence of L2 regularization are consistent with our observations.

2 Experiments

Performance and time scales. We now turn to an empirical study of networks trained with L2

regularization. In this section we present results for a fully-connected network trained on MNIST,
a Wide ResNet [Zagoruyko and Komodakis, 2016] trained on CIFAR-10, and CNNs trained on
CIFAR-10. The experimental details are in SM A. The empirical findings discussed in section 1.1
hold across this variety of overparameterized setups.

1In linear regression with L2 regularization, optimization is controlled by a linear kernel K = XTX + �I ,
where X is the sample matrix and I is the identity matrix in parameter space. Optimization in each kernel
eigendirection evolves as e��t where � is the corresponding eigenvalue. When � > 0 and the model is
overparameterized, the lowest eigenvalue of the kernel will be typically close to �, and therefore the time to
convergence will be proportional to ��1.

3



10�6 10�4 10�2

� · �

101

102

103

104

105

E
p
oc

hs
to

m
ax

te
st

ac
c

�=0.0025

�=2.0
0.05
�·�  t 

0.5
�·�

(a) FC

10�4 10�2 100

�

0.2

0.4

0.6

0.8

T
es

t
ac

cu
ra

cy

�=0.0025

�=2.0

� = 0

(b) FC

10�4 10�2

�

0.87

0.88

0.89

0.90

T
es

t
ac

cu
ra

cy

c/� epochs

2000 epochs

8000 epochs

32000 epochs

� = 0

(c) FC

10�5 10�4 10�3

� · �

101

102

103

E
p
oc

hs
to

m
ax

te
st

ac
c

�=0.013

�=1.6
0.01
�·�  t 

0.1
�·�

(d) WRN

10�4 10�3 10�2

�

0.2

0.4

0.6

0.8
T
es

t
ac

cu
ra

cy

�=0.013

�=1.6

� = 0

(e) WRN

10�4 10�3 10�2

�

0.6

0.7

0.8

0.9

T
es

t
ac

cu
ra

cy

c/� epochs

200 epochs

1000 epochs

2000 epochs

� = 0

(f) WRN

Figure 2: Sweep over ⌘ and � illustrating how smaller �’s require longer times to achieve the same
performance. In the left, middle plots, the learning rates are logarithmically spaced between the
values displayed in the legend, the specific values are in the SM A. Left: Epochs to maximum test
accuracy (within .5%), Middle: Maximum test accuracy (the � = 0 line denotes the maximum test
accuracy achieved among all learning rates), Right: Maximum test accuracy for a fixed time budget.
(a,b,c) Fully connected 3-hidden layer neural network evaluated in 512 MNIST samples, evolved for
t · ⌘ · � = 2. ⌘ = 0.15 in (c). (d,e,f) A Wide Residual Network 28-10 trained on CIFAR-10 without
data augmentation, evolved for t · ⌘ · � = 0.1. In (f), ⌘ = 0.2. The � = 0 line was evolved for longer
than the smallest L2 but there is still a gap.

Figure 2 presents experimental results on fully-connected and Wide ResNet networks. Figure 3
presents experiments conducted on CNNs. We find that the number of steps until optimal performance
is achieved (defined here as the minimum time required to be within .5% of the maximum test
accuracy) scales as ��1, as discussed in Section 1.1. Our experiments span 6 decades of ⌘ · � (larger
⌘,� won’t train at all and smaller would take too long to train). Moreover, when we evolved the
networks until they have reached optimal performance, the maximum test accuracy for smaller L2

parameters did not get worse. We compare this against the performance of a model trained with a
fixed number of epochs, reporting the maximum performance achieved during training. In this case,
we find that reducing � beyond a certain value does hurt performance.

While here we consider the simplified set up of vanilla SGD and no data augmentation, our ob-
servations also hold in the presence of momentum and data augmentation, see SM C.2 for more
experiments. We would like to emphasize again that while the smaller L2 models can reach the same
test accuracy as its larger counterparts, models like WRN28-10 on CIFAR-10 need to be trained for a
considerably larger number of epochs to achieve this.2

Learning rate schedules. So far we considered training setups that do not include learning rate
schedules. Figure 1a shows the results of training a Wide ResNet on CIFAR-10 with a learning rate
schedule, momentum, and data augmentation. The schedule was determined as follows. Given a total

2The longer experiments ran for 5000 epochs while one usually trains these models for ⇠300 epochs.

4



10�6 10�5 10�4

� · �

101

102

103

104

E
p
oc

hs
to

m
ax

te
st

ac
c

�=0.01
0.0005

�·�  t 
0.005
�·�

(a) CNN No BN

10�4 10�3 10�2

�

0.2

0.4

0.6

0.8

T
es

t
ac

cu
ra

cy

�=0.01

� = 0

(b) CNN No BN

10�4 10�3 10�2

�

0.70

0.75

0.80

0.85

T
es

t
ac

cu
ra

cy

c/� epochs

200 epochs

1000 epochs

2000 epochs

� = 0

(c) CNN No BN

10�6 10�5 10�4

� · �

101

102

103

E
p
oc

hs
to

m
ax

te
st

ac
c

�=0.01
0.0005

�·�  t 
0.005
�·�

(d) CNN BN

10�4 10�3 10�2

�

0.2

0.4

0.6

0.8
T
es

t
ac

cu
ra

cy

�=0.01

� = 0

(e) CNN BN

10�4 10�3 10�2

�

0.70

0.75

0.80

0.85

T
es

t
ac

cu
ra

cy

c/� epochs

200 epochs

1000 epochs

2000 epochs

� = 0

(f) CNN BN

Figure 3: CNNs trained with and without batch-norm with learning rate ⌘ = 0.01. Presented results
follow the same format as Figure 2.

number of epochs T , the learning rate is decayed by a factor of 0.2 at epochs {0.3 ·T, 0.6 ·T, 0.9 ·T}.
We compare training with a fixed T against training with T / ��1. We find that training with a
fixed budget leads to an optimal value of �, below which performance degrades. On the other hand,
training with T / ��1 leads to improved performance at smaller �, consistent with our previous
observations.

3 Applications

We now discuss two practical applications of the empirical observations made in the previous section.

Optimal L2. We observed that the time t⇤ to reach maximum test accuracy is proportional to ��1,
which we can express as t⇤ ⇡

c
� . This relationship continues to hold empirically even for large values

of �. When � is large, the network attains its (significantly degraded) maximum performance after
a relatively short amount of training time. We can therefore measure the value of c by training the
network with a large L2 parameter until its performance peaks, at a fraction of the cost of a normal
training run.

Based on our empirical observations, given a training budget T we predict that the optimal L2

parameter can be approximated by �pred = c/T . This is the smallest L2 parameter such that model
performance will peak within training time T . Figure 1b shows the result of testing this prediction
in a realistic setting: a Wide ResNet trained on CIFAR-10 with momentum= 0.9 , learning rate
⌘ = 0.2 and data augmentation. The model is first trained with a large L2 parameter for 2 epochs
in order to measure c, and we find c ⇡ 0.0066, see figure 4a. We then compare the tuned value of
� against our prediction for training budgets spanning close to two orders of magnitude, and find
excellent agreement: the predicted �’s have a performance which is rather close to the optimal one.
Furthermore, the tuned values are always within an order of magnitude of our predictions see figure
4b.

5



So far we assumed a constant learning rate. In the presence of learning rate schedules, one needs to
adjust the prediction algorithm. Here we address this for the case of a piecewise-constant schedule.
For compute efficiency reasons, we expect that it is beneficial to train with a large learning rate as long
as accuracy continues to improve, and to decay the learning rate when accuracy peaks. Therefore,
given a fixed learning rate schedule, we expect the optimal L2 parameter to be the one at which
accuracy peaks at the time of the first learning rate decay. Our prediction for the optimal parameter is
then �pred = c/T1, where T1 is the time of first learning rate decay, and the coefficient c is measured
as before with a fixed learning rate. In our experiments, this prediction is consistently within an order
of magnitude of the optimal parameter, and gives comparable performance. For example, in the case
of Figure 1a with T = 200 epochs and T1 = 0.3T , we find �pred ⇡ 0.0001 (leading to test accuracy
0.960), compared with the optimal value 0.0005 (with test accuracy 0.967).

0.000 0.005 0.010 0.015 0.020
Epochs ·�

0.1

0.2

0.3

A
cc

ur
ac

y

Train

Test

(a)

0 500 1000 1500 2000
Total training epochs

0.00000

0.00005

0.00010

0.00015

0.00020

�

Predicted

Optimal (within 0.1% )

(b)

Figure 4: Wide ResNet trained with momentum and data augmentation. (a) We train the model
with a large L2 parameter � = 0.01 for 2 epochs and measure the coefficient c = t⇤ · � ⇡ 0.0066,
representing the approximate point along the x axis where accuracy is maximized. (b) Optimal
(tuned) � values compared with the theoretical prediction. The error bars represent the spread of
values that achieve within 0.1% of the optimal test accuracy.

AUTOL2: Automatic L2 schedules. We now turn to another application, based on the observation
that models trained with larger L2 parameters reach their peak performance faster. It is therefore
plausible that one can speed up the training process by starting with a large L2 parameter, and
decaying it according to some schedule. Here we propose to choose the schedule dynamically by
decaying the L2 parameter when performance begins to deteriorate. See SM E for further details.

AUTOL2 is a straightforward implementation of this idea: We begin training with a large parameter,
� = 0.1, and we decay it by a factor of 10 if either the empirical loss (the training loss without the L2

term) or the training error increases. To improve stability, immediately after decaying we impose a
refractory period during which the parameter cannot decay again. Figure 1c compares this algorithm
against the model with the optimal L2 parameter. We find that AUTOL2 trains significantly faster and
achieves superior performance. See SM E for other architectures.

In other experiments we have found that this algorithm does not yield improved results when the
training procedure includes a learning rate schedule. We leave the attempt to effectively combine
learning rate schedules with L2 schedules to future work.

4 Theoretical results

We now turn to a theoretical analysis of the training trajectory of networks trained with L2 regular-
ization. We focus on infinitely wide networks with positively-homogeneous activations. Consider a
network function f : Rd

! R with model parameter ✓ 2 Rp. The network initialized using NTK pa-
rameterization [Jacot et al., 2018]: the initial parameters are sampled i.i.d. from N (0, 1). The model
parameters are trained using gradient flow with loss Ltot = L+ �

2 k✓k22, where L =
P

(x,y)2S `(x, y)
is the empirical loss, ` is the sample loss, and S is the training set of size Nsamp.

We say that the network function is k-homogeneous if f↵✓(x) = ↵kf✓(x) for any ↵ > 0.
As an example, a fully-connected network with L layers and ReLU or linear activations is L-
homogeneous. Networks made out of convolutional, max-pooling or batch-normalization layers are

6



also k-homogeneous.3 See Li and Arora [2019] for a discussion of networks with homogeneous
activations.

Jacot et al. [2018] showed that when an infinitely wide, fully-connected network is trained using gradi-
ent flow (and without L2 regularization), its network function obeys the differential equation df

dt (x) =
�
P

x02S ⇥0(x, x0)`0(x0), where t is the gradient flow time and ⇥t(x, x0) = r✓ft(x)Tr✓ft(x) is
the Neural Tangent Kernel (NTK).

Dyer and Gur-Ari [2020] presented a conjecture that allows one to derive the large width asymptotic
behavior of the network function, the Neural Tangent Kernel, as well as of combinations involving
higher-order derivatives of the network function. In what follows, we will assume the validity of this
conjecture. The following is our main theoretical result.
Theorem 1. Consider a k-homogeneous network, and assume that the network obeys the correlation

function conjecture of Dyer and Gur-Ari [2020]. In the infinite width limit, the network function

ft(x) and the kernel ⇥t(x, x0) evolve according to the following equations at training time t.

dft(x)

dt
= �e�2(k�1)�t

X

(x0,y0)2S

⇥0(x, x
0)
@`(x0, y0)

@ft
� �kft(x) , (1)

d⇥t(x, x0)

dt
= �2(k � 1)�⇥t(x, x

0) . (2)

The proof hinges on the following equation, which holds for k-homogeneous functions:P
µ ✓µ@µ@⌫1 · · · @⌫mf(x) = (k � m)@⌫1 · · · @⌫mf(x). This equation allows us to show that the

only effect of L2 regularization at infinite width is to introduce simple terms proportional to � in the
gradient flow update equations for both the function and the kernel.

We refer the reader to the SM for the proof. We mention in passing that the case k = 0 corresponds to
a scaling-invariant network function which was studied in Li and Arora [2019]. In this case, training
with L2 term is equivalent to training with an exponentially increasing learning rate.

For commonly used loss functions, and for k > 1, we expect that the solution obeys limt!1 ft(x) =
0. We will prove that this holds for MSE loss, but let us first discuss the intuition behind this statement.
At late times the exponent in front of the first term in (1) decays to zero, leaving the approximate
equation df(x)

dt ⇡ ��kf(x) and leading to an exponential decay of the function to zero. Both the
explicit exponent in the equation, and the approximate late time exponential decay, suggest that this
decay occurs at a time tdecay / ��1. Therefore, we expect that the minimum of the empirical loss to
occur at a time proportional to ��1, after which the bare loss will increase because the function is
decaying to zero. We observe this behaviour empirically for wide fully-connected networks and for
Wide ResNet in the SM.

We now focus on MSE loss and solve the gradient flow equation (1) for this case.
Theorem 2. Let the sample loss be `(x, y) = 1

2 (f(x) � y)2, and assume that k � 2. Suppose that,

at initialization, the kernel ⇥0 has eigenvectors êa 2 RNsamp with corresponding eigenvalues �a.

Then during gradient flow, the eigenvalues evolve as �a(t) = �ae�2(k�1)�t
while the eigenvectors

are static. Suppose we treat f 2 RNsamp as a vector defined on the training set. Then each mode of

the function, fa := (êa)T f 2 R, evolves independently as

fa(x; t) = e
�a(t)

2(k�1)��k�t

(
e�

�a
2(k�1)� fa(x; 0) + �aya

Z t

0
dt0 exp


�

�a(t0)

2(k � 1)�
� (k � 2)�t0

�)
.

(3)
Here, ya := (êa)T y. At late times, limt!1 ft(x) = 0 on the training set.

The properties of the solution (3) depend on whether the ratio �a/� is greater than or smaller than
1, as illustrated in Figure 5. When �a/� > 1, the function approaches the label mode ymode = ya
at a time that is of order 1/�a. This behavior is the same as that of a linear model, and represents
ordinary learning. Later, at a time of order ��1 the mode decays to zero as described above; this late
time decay is not present in the linear model. Next, when �a/� < 1 the mode decays to zero at a
time of order ��1, which is the same behavior as that of a linear model.

3Batch normalization is often implemented with an ✏ parameter meant to prevent numerical instabilities.
Such networks are only approximately homogeneous.

7



10�1 101 103

t

0.0

0.5

1.0

1.5

f m
od

e

� =0.001

� =10.0
ymode

1/�

(a) 2-layer network

10�1 101 103

t

0.5

1.0

1.5

f l
in

,m
od

e

� =0.001

� =10.0
ymode

1/�

(b) linear model

10�1 101 103

t

0

10

20

L
os

s

linear

2-layer

exp.

1/�

(c) losses
Figure 5: (a) The theoretical evolution of an infinitely wide 2-layer network with L2 regularization
(k = 2, � = 0.01). Two modes are shown, representing small and large ratios �/�. (b) The same, for
a linear model (k = 1). (c) Training loss vs. time for a wide network trained on a subset of MNIST
with even/odd labels, with � = 0.002. We compare the kernel evolution with gradient descent for a
2-layer ReLU network. The blue and orange curves are the theoretical predictions when setting k = 1
and k = 2 in the solution (3), respectively. The green curve is the result of a numerical experiment
where we train a 2-layer ReLU network with gradient descent. We attribute the difference between
the green and orange curves at late times to finite width effects.

Generalization of wide networks with L2. It is interesting to understand how L2 regularization
affects the generalization performance of wide networks. This is well understood for the case of
linear models, which correspond to k = 1 in our notation, to be an instance of the bias-variance
tradeoff. In this case, gradient flow converges to the function f⇤(x) = ⇥(x,X)(⇥+�I)�1(X,X)Y ,
where X 2 RNsamp⇥d are the training samples, Y 2 RNsamp is are the labels, and x 2 Rd is any
input. When � = 0, the solution is highly sensitive to small perturbations in the inputs that affect the
flat modes of the kernel, because the kernel is inverted in the solution. In other words, the solution has
high variance. Choosing � > 0 reduces variance by lifting the low kernel eigenvalues and reducing
sensitivity on small perturbations, at the cost of biasing the model parameters toward zero.

Let us now return to infinitely wide networks. These behave like linear models with a fixed kernel
when � = 0, but as we have seen when � > 0 the kernel decays exponentially. Nevertheless,
we argue that this decay is slow enough such that the training dynamics follow that of the linear
model (obtained by setting k = 1 in eq. (1)) up until a time of order ��1, when the function begins
decaying to zero. This can be seen in Figure 5c, which compares the training curves of a linear and a
2-layer network using the same kernel. We see that the agreement extends until the linear model is
almost fully trained, at which point the 2-layer model begins deteriorating due to the late time decay.
Therefore, if we stop training the 2-layer network at the loss minimum, we end up with a trained and
regularized model. It would be interesting to understand how the generalization properties of this
model with decaying kernel differ from those of the linear model.

Finite-width network. Theorem 1 holds in the strict large width, fixed � limit for NTK parameter-
ization. At large but finite width we expect (1) to be a good description of the training trajectory at
early times, until the kernel and function because small enough such that the finite-width corrections
become non-negligible. Our experimental results imply that this approximation remains good until
after the minimum in the loss, but that at late times the function will not decay to zero; see for
example Figure 5c. See the SM for further discussion for the case of deep linear models. We reserve
a more careful study of these finite width effects to future work.

5 Discussion

In this work we consider the effect of L2 regularization on overparameterized networks. We make two
empirical observations: (1) The time it takes the network to reach peak performance is proportional to
�, the L2 regularization parameter, and (2) the performance reached in this way is independent of �
when � is not too large. We find that these observations hold for a variety of overparameterized training
setups; see the SM for some examples where they do not hold. We expect the peak performance
to depend on � and ⌘, but not on other quantities such as the initialization scale. We verify this
empirically in SM F.

8



Motivated by these observations, we suggest two practical applications. The first is a simple method
for predicting the optimal L2 parameter at a given training budget. The performance obtained using
this prediction is close to that of a tuned L2 parameter, at a fraction of the training cost. The second
is AUTOL2, an automatic L2 parameter schedule. In our experiments, this method leads to better
performance and faster training when compared against training with a tuned L2 parameter. We find
that these proposals work well when training with a constant learning rate; we leave an extension of
these methods to networks trained with learning rate schedules to future work.

We attempt to understand the empirical observations by analyzing the training trajectory of infinitely
wide networks trained with L2 regularization. We derive the differential equations governing this
trajectory, and solve them explicitly for MSE loss. The solution reproduces the observation that the
time to peak performance is of order ��1. This is due to an effect that is specific to deep networks,
and is not present in linear models: during training, the kernel (which is constant for linear models)
decays exponentially due to the L2 term.

Acknowledgments and Disclosure of Funding

The authors would like to thank Yasaman Bahri, Ethan Dyer, Jaehoon Lee, Behnam Neyshabur, and
Sam Schoenholz for useful discussions. We especially thank Behnam for encouraging us to use our
scaling law observations to come up with a schedule for the L2 parameter.

Broader Impact

This work does not present any foreseeable societal consequence.

References

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. In Advances in Neural Information Processing

Systems, pages 8139–8148, 2019.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mand al. Reconciling modern machine learning
practice and the bias-variance trade-off. arXiv e-prints, art. arXiv:1812.11118, December 2018.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, and Skye Wanderman-Milne. JAX: composable transformations of Python+NumPy programs.
2018. URL http://github.com/google/jax.

Ethan Dyer and Guy Gur-Ari. Asymptotics of wide networks from feynman diagrams. In International

Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=
S1gFvANKDS.

Mario Geiger, Arthur Jacot, Stefano Spigler, Franck Gabriel, Levent Sagun, Stéphane d’Ascoli,
Giulio Biroli, Clément Hongler, and Matthieu Wyart. Scaling description of generalization with
number of parameters in deep learning. Journal of Statistical Mechanics: Theory and Experiment,
2(2):023401, February 2020. doi: 10.1088/1742-5468/ab633c.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An Investigation into Neural Net Optimization
via Hessian Eigenvalue Density. arXiv e-prints, art. arXiv:1901.10159, January 2019.

Guy Gur-Ari, Daniel A. Roberts, and Ethan Dyer. Gradient Descent Happens in a Tiny Subspace.
arXiv e-prints, art. arXiv:1812.04754, December 2018.

G. E. Hinton. Learning distributed representations of concepts. Proc. of Eighth Annual Conference

of the Cognitive Science Society, 1986, 1986.

Elad Hoffer, Ron Banner, Itay Golan, and Daniel Soudry. Norm matters: efficient and accurate
normalization schemes in deep networks, 2018.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. CoRR, abs/1502.03167, 2015. URL http://arxiv.org/abs/
1502.03167.

9



Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems 31, pages
8571–8580. Curran Associates, Inc., 2018.

Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein, and Guy Gur-Ari. The large
learning rate phase of deep learning: the catapult mechanism, 2020.

Zhiyuan Li and Sanjeev Arora. An exponential learning rate schedule for deep learning, 2019.

Zhiyuan Li, Kaifeng Lyu, and Sanjeev Arora. Reconciling modern deep learning with traditional
optimization analyses: The intrinsic learning rate. arXiv preprint arXiv:2010.02916, 2020.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nathan Srebro. Exploring Gener-
alization in Deep Learning. arXiv e-prints, art. arXiv:1706.08947, June 2017.

Roman Novak, Lechao Xiao, Yasaman Bahri, Jaehoon Lee, Greg Yang, Daniel A. Abolafia, Jeffrey
Pennington, and Jascha Sohl-dickstein. Bayesian deep convolutional networks with many channels
are gaussian processes. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=B1g30j0qF7.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred A Hamprecht,
Yoshua Bengio, and Aaron Courville. On the spectral bias of neural networks. arXiv preprint

arXiv:1806.08734, 2018.

Levent Sagun, Utku Evci, V. Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical Analysis of
the Hessian of Over-Parametrized Neural Networks. arXiv e-prints, art. arXiv:1706.04454, June
2017.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit
bias of gradient descent on separable data, 2017.

Twan van Laarhoven. L2 regularization versus batch and weight normalization, 2017.

Colin Wei, Jason D. Lee, Qiang Liu, and Tengyu Ma. Regularization matters: Generalization and
optimization of neural nets v.s. their induced kernel, 2018.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. CoRR, abs/1605.07146, 2016.
URL http://arxiv.org/abs/1605.07146.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv e-prints, art. arXiv:1611.03530, November
2016.

Guodong Zhang, Chaoqi Wang, Bowen Xu, and Roger Grosse. Three mechanisms of weight decay
regularization, 2018.

10


