
Appendix Outline

This appendix is organized as follows. In Section A, we provide background material on Gaussian
processes. In Section B, we discuss different ways of approximating the Bayesian model average.
In Section C, we present further results comparing MultiSWAG and MultiSWA to Deep Ensembles
under data distribution shift on CIFAR-10. In Section D, we provide the details of all experiments
presented in the paper.

A Gaussian processes

With a Bayesian neural network, a distribution over parameters p(w) induces a distribution over
functions p(f(x;w)) when combined with the functional form of the network. Gaussian processes
(GPs) are often used to instead directly specify a distribution over functions.

A Gaussian process is a distribution over functions, f(x) ⇠ GP(m, k), such that any collection of
function values, queried at any finite set of inputs x1, . . . , xn, has a joint Gaussian distribution:

f(x1), . . . , f(xn) ⇠ N (µ,K) . (2)
The mean vector, µi = E[f(xi)] = m(xi), and covariance matrix, Kij = cov(f(xi), f(xj)) =
k(xi, xj), are determined by the mean function m and covariance function (or kernel) k of the
Gaussian process.

The popular RBF kernel has the form

k(xi, xj) = exp

✓
� 1

2`2
kxi � xjk2

◆
. (3)

The length-scale hyperparameter ` controls the extent of correlations between function values. If ` is
large, sample functions from a GP prior are simple and slowly varying with inputs x.

Gaussian processes with RBF kernels (as well as many other standard kernels) assign positive density
to any set of observations. Moreover, these models are universal approximators [40]: as the number
of observations increase, they are able to approximate any function to arbitrary precision.

Work on Gaussian processes in machine learning was triggered by the observation that Bayesian
neural networks become Gaussian processes with particular kernel functions as the number of hidden
units approaches infinity [35]. This result resembles recent work on the neural tangent kernel [e.g.,
16].

B Approximating the BMA

In Figure 8, we illustrate the conceptual difference between deep ensembles, a standard variational
single basin approach, and MultiSWAG. In the top panel, we have a conceptualization of a multimodal
posterior. VI approximates the posterior with multiple samples within a single basin. But we see in the
middle panel that the conditional predictive distribution p(y|x,w) does not vary significantly within
the basin, and thus each additional sample contributes minimally to computing the marginal predictive
distribution p(y|x,D). On the other hand, p(y|x,w) varies significantly between basins, and thus
each point mass for deep ensembles contributes significantly to the marginal predictive distribution.
By sampling within the basins, MultiSWAG provides additional contributions to the predictive
distribution. In the bottom panel, we have the gain in approximating the predictive distribution when
adding a point mass to the representation of the posterior, as a function of its location, assuming
we have already sampled the mode in dark green. Including samples from different modes provides
significant gain over continuing to sample from the same mode, and including weights in wide basins
provide relatively more gain than the narrow ones.

C Deep Ensembles and MultiSWAG Under Distribution Shift

In Figures 9, 10, 11, 12 we show the negative log-likelihood for Deep Ensembles, MultiSWA and Mul-
tiSWAG using PreResNet-20 on CIFAR-10 with various corruptions as a function of independently

13

Deep Ensembles VI Multi-SWAG

wŵ

w

w

dist(p, q)

p(y|w)

p(w|D)

Figure 8: Approximating the BMA. p(y|x,D) =
R
p(y|x,w)p(w|D)dw. Top: p(w|D), with

representations from VI (orange) deep ensembles (blue), MultiSWAG (red). Middle: p(y|x,w) as
a function of w for a test input x. This function does not vary much within modes, but changes
significantly between modes. Bottom: Distance between the true predictive distribution and the
approximation, as a function of representing a posterior at an additional point w, assuming we have
sampled the mode in dark green. There is more to be gained by exploring new basins, than continuing
to explore the same basin.

(a) Gaussian Noise

(b) Impulse Noise

(c) Shot Noise

Figure 9: Noise Corruptions. Negative log likelihood on CIFAR-10 with a PreResNet-20 for Deep
Ensembles, MultiSWAG and MultiSWA as a function of the number of independently trained models
for different types of corruption and corruption intensity (increasing from left to right).

trained models (SGD solutions, SWA solutions or SWAG models, respectively). For MultiSWAG, we
generate 20 samples from each independent SWAG model. Typically MultiSWA and MultiSWAG
significantly outperform Deep Ensembles when a small number of independent models is used, or
when the level of corruption is high.

In Figure 14, following Ovadia et al. [38], we show the distribution of negative log likelihood,
accuracy and expected calibration error as we vary the type of corruption. We use a fixed training
time budget: 10 independently trained models for every method. For MultiSWAG we ensemble 20
samples from each of the 10 SWAG approximations. MultiSWAG particularly achieves better NLL
than the other two methods, and MultiSWA outperforms Deep Ensembles; the difference is especially

14

(a) Defocus Blur

(b) Glass Blur

(c) Motion Blur

(d) Zoom Blur

(e) Gaussian Blur

Figure 10: Blur Corruptions. Negative log likelihood on CIFAR-10 with a PreResNet-20 for Deep
Ensembles, MultiSWAG and MultiSWA as a function of the number of independently trained models
for different types of corruption and corruption intensity (increasing from left to right).

pronounced for higher levels of corruption. In terms of ECE, MultiSWAG again outperforms the
other two methods for higher corruption intensities.

We note that Ovadia et al. [38] found Deep Ensembles to be a very strong baseline for prediction
quality and calibration under distribution shift. For this reason, we focus on Deep Ensembles in our
comparisons.

D Details of Experiments

In this section we provide additional details of the experiments presented in the paper.

15

(a) Contrast

(b) Saturate

(c) Elastic Transform

(d) Pixelate

(e) JPEG Compression

Figure 11: Digital Corruptions. Negative log likelihood on CIFAR-10 with a PreResNet-20 for
Deep Ensembles, MultiSWAG and MultiSWA as a function of the number of independently trained
models for different types of corruption and corruption intensity (increasing from left to right).

D.1 Approximating the True Predictive Distribution

For the results presented in Figure 3 we used a network with 3 hidden layers of size 10 each. The
network takes two inputs: x and x2. We pass both x and x2 as input to ensure that the network can
represent a broader class of functions. The network outputs a single number y = f(x).

To generate data for the plots, we used a randomly-initialized neural network of the same architecture
described above. We sampled the weights from an isotropic Gaussian with variance 0.12 and added
isotropic Gaussian noise with variance 0.12 to the outputs:

y = f(x;w) + ✏(x),

with w ⇠ N (0, 0.12 · I), ✏(x) ⇠ N (0, 0.12 · I). The training set consists of 120 points shown in
Figure 3.

For estimating the ground truth we ran 10 chains of Hamiltonian Monte Carlo (HMC) using the
hamiltorch package [6]. We initialized each chain with a network pre-trained with SGD for 3000

16

(a) Snow

(b) Fog

(c) Brightness

Figure 12: Weather Corruptions. Negative log likelihood on CIFAR-10 with a PreResNet-20 for
Deep Ensembles, MultiSWAG and MultiSWA as a function of the number of independently trained
models for different types of corruption and corruption intensity (increasing from left to right).

�10 �5 0 5 10

�0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(a) HMC chain 1
�10 �5 0 5 10

�0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(b) HMC chain 2

0 50 100 150 200 250 300 350

HMC Iteration

�110

�100

�90

�80

�70

lo
g

p(
w

)

(c) sample log-probs

�1.0 �0.5 0.0 0.5 1.0

wi

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(d) wi marginal

Figure 13: HMC convergence diagnostics. (a), (b): predictive distributions approximated from two
different chains of HMC.The predictive distributions are virtually identical despite using different
initializations for the chains. (c): Convergence of sample log-probability as a function of HMC
iteration. The log-probability fluctuates around a fixed value throughout the sampling and doesn’t
have a clear trend. (d): Marginal distribution of the weight wi from a middle layer in the network
estimated from samples from a single chain. The marginal distribution resembles a zero-mean
Gaussian corresponding to the prior distribution. The presented diagnostics suggest that each of the
HMC chains is converged and provides a good coverage of the posterior.

steps, then ran Hamiltonian Monte Carlo (HMC) for 5 · 105 steps at 1000 leapfrog steps per sample,
producing 500 samples.

For Deep Ensembles, we independently trained 50 networks with SGD for 20000 steps each. We
used minus posterior log-density as the training loss. For SVI, we used a fully-factorized Gaussian
approximation initialized at an SGD solution trained for 20000 steps. For HMC and SVI we set prior
variance to 0.1 and noise variance to 0.0005. For deep ensembles we had to use a high prior variance
of 100 to avoid converging to degenerate solutions.

HMC covergence diagnostics. To ensure convergence of our Hamiltonian Monte Carlo sampler
we apply several diagnostics. First we look at the difference in predictions between different chains.
In Figure 13 (a), (b) we visualize the predictive distributions for two different chains, and they are
virtually indistinguishable. To verify this visual intuition, we compute the Gelman–Rubin convergence
diagnostic [11] for the predictive distributions at each position in the input space. The diagnostic R̂ is

17

Figure 14: Negative log likelihood, accuracy and expected calibration error distribution on CIFAR-10
with a PreResNet-20 for Deep Ensembles, MultiSWAG and MultiSWA as a function of the corruption
intensity. Following Ovadia et al. [38] we summarize the results for different types of corruption
with a boxplot. For each method, we use 10 independently trained models, and for MultiSWAG
we sample 20 networks from each model. As in Figures 5, 11-14, there are substantial differences
between these three methods, which are hard to see due to the vertical scale on this plot. MultiSWAG
particularly outperforms Deep Ensembles and MultiSWA in terms of NLL and ECE for higher
corruption intensities.

defined as

B =
N

M � 1

MX

m=1

(ȳm � ȳ)2, W =
1

M

MX

m=1

s2m, R̂ =

s
N�1
N W + 1

NB

W
, (4)

where ȳm is the average prediction at a given position x within the chain m, ȳ is the average prediction
at that position across all the chains, s2m = 1

N�1

PN
i=1(ymi � ȳm) is an estimate of the variance of

the prediction at position x within the chain m, M is the number of chains and N is the length of
each chain. Intuitively, the diagnostic R̂ measures the ratio of the within-chain and between-chain
variances of predictions at a given position. The values of the diagnostic are 1. ± 0.01, which is
very close to 1, as desired. Additionally, in Figure 13 in panel (c) we show the convergence of the
log-probability of the HMC samples as a function of iteration, and in panel (d) we show the marginal
distribution of one of the weights estimated from a single chain. Both diagnostics suggest that each
of the chains has converged and provide a good approximation of the predictive distribution.

Discrepancy with true BMA. For the results presented in panel (d) of Figure 3 we computed
Wasserstein distance between the predictive distribution approximated with HMC and the predictive
distribution for Deep Ensembles and SVI. We used the one-dimensional Wasserstein distance func-
tion1 from the scipy package. We computed the Wasserstein distance between marginal distributions
at each input location, and averaged the results over the input locations. In the top sub-panels of
panels (b), (c) of Figure 3 we additionally visualize the marginal Wasserstein distance between the
HMC predictive distribution and Deep Ensembles and SVI predictive distrbutions respectively for
each input location.

D.2 Deep Ensembles and MultiSWAG

We evaluate Deep Ensembles, MultiSWA and MultiSWAG under distribution shift in Section 4.
Following Ovadia et al. [38], we use a PreResNet-20 network and the CIFAR-10 dataset with
different types of corruptions introduced in Hendrycks and Dietterich [14]. For training individual

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wasserstein_
distance.html

18

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wasserstein_distance.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wasserstein_distance.html

Figure 15: Prior correlations under corruption. Prior correlations between predictions (logits)
for PreResNet-20, Linear Model and RBF kernel on original and corrupted images as a function
of corruption intensity for different types of corruptions. The lengthscale of the RBF kernell is
calibrated to produce similar correlations to PreResNet on uncorrupted datapoints. We report the
mean correlation values over 100 different images and show the 1� error bars with shaded regions.
For all corruptions except Snow, Saturate, Fog and Brightness the correlations decay slower for
PreResNet compared to baselines.

SGD, SWA and SWAG models we use the hyper-parameters used for PreResNet-164 in Maddox
et al. [29]. For each SWAG model we sample 20 networks and ensemble them. So, Deep Ensembles,
MultiSWA and MultiSWAG are all evaluated under the same training budget; Deep Ensembles and
MultiSWA also use the same test-time budget.

For producing the corrupted data we used the code2 released by Hendrycks and Dietterich [14]. We
had issues producing the data for the frost corruption type, so we omit it in our evaluation, and include
Gaussian blur which was not included in the evaluation of Hendrycks and Dietterich [14].

D.3 Rethinking Generalization

In Section 6, we experiment with Bayesian neural networks and Gaussian processes on CIFAR-
10 with noisy labels, inspired by the results in Zhang et al. [51] that suggest we need to re-think
generalization to understand deep learning.

Following Zhang et al. [51], we train PreResNet-20 on CIFAR-10 with different fractions of random
labels. To ensure that the networks fits the train data, we turn off weight decay and data augmentation,
and use a lower initial learning rate of 0.01. Otherwise, we follow the hyper-parameters that were
used with PreResNet-164 in Maddox et al. [29]. We use diagonal Laplace approximation to compute

2https://github.com/hendrycks/robustness/blob/master/ImageNet-C/create_c/make_
cifar_c.py

19

https://github.com/hendrycks/robustness/blob/master/ImageNet-C/create_c/make_cifar_c.py
https://github.com/hendrycks/robustness/blob/master/ImageNet-C/create_c/make_cifar_c.py

0 1 2 4 7

MNIST Class

0

1

2

4

7

M
N

IS
T

C
la

ss

0.98

0.96

0.97

0.97

0.97

0.96

0.99

0.97

0.97

0.97

0.97

0.97

0.98

0.97

0.97

0.97

0.97

0.97

0.98

0.97

0.97

0.97

0.97

0.97

0.98

0.90

0.92

0.94

0.96

0.98

1.00

(a) ↵ = 0.02

0 1 2 4 7

MNIST Class

0

1

2

4

7

M
N

IS
T

C
la

ss

0.89

0.75

0.83

0.81

0.81

0.75

0.90

0.82

0.79

0.82

0.83

0.82

0.89

0.83

0.85

0.81

0.79

0.83

0.89

0.84

0.81

0.82

0.85

0.84

0.88

0.5

0.6

0.7

0.8

0.9

1.0

(b) ↵ = 0.1

0 1 2 4 7

MNIST Class

0

1

2

4

7

M
N

IS
T

C
la

ss

0.85

0.71

0.77

0.76

0.76

0.71

0.89

0.80

0.78

0.79

0.77

0.80

0.84

0.80

0.80

0.76

0.78

0.80

0.85

0.81

0.76

0.79

0.80

0.81

0.85

0.5

0.6

0.7

0.8

0.9

1.0

(c) ↵ = 1.

10�2 10�1 100 101

Prior std �

5 · 102

103

5 · 103

104

N
LL

(d)

(e) ↵ = 0.02 (f) ↵ = 0.1 (g) ↵ = 1

10�2 10�1 100 101

Prior std �

1%

5%

20%

90%

C
la

ss
ifi

ca
ti
on

E
rr

or

(h)

Figure 16: (a)–(c): Average pairwise prior correlations for pairs of objects in classes {0, 1, 2, 4, 7}
of MNIST induced by LeNet-5 for p(f(x;w)) when p(w) = N (0,↵2I). Images in the same class
have higher prior correlations than images from different classes, suggesting that p(f(x;w)) has
desirable inductive biases. The correlations slightly decrease with increases in ↵. Panels (e)–(g) show
sample functions from LeNet-5 along the direction connecting a pair of MNIST images of 0 and 1
digits. The complexity of the samples increases with ↵. (d): NLL and (h) classification error of an
ensemble of 20 SWAG samples on MNIST as a function of ↵ using a LeNet-5. The NLL is high for
overly small ↵ and near-optimal for larger values with an optimum near ↵ = 0.3.

an estimate of marginal likelihood for each level of label corruption. Following Ritter et al. [42] we
use the diagonal of the Fisher information matrix rather than the Hessian.

We perform a similar experiment with a Gaussian process with RBF kernel on the binary classification
problem for two classes of CIFAR-10. We use variational inference to fit the model, and we use
the variational evidence lower bound to approximate the marginal likelihood. We use variational
inference to overcome the non-Gaussian likelihood and not for scalability reasons; i.e., we are not
using inducing inputs. We use the GPyTorch package [10] to train the models. We use an RBF kernel
with default initialization from GPyTorch and divide the inputs by 5000 to get an appropriate input
scale. We train the model on a binary classification problem between classes 0 and 1.

For the 10-class GP classification experiment we train 10 one-vs-all models that classify between a
given class and the rest of the data. To reduce computation, in training we subsample the data not
belonging to the given class to 10k datapoints, so each model is trained on a total of 15k datapoints.
We then combine the 10 models into a single multi-class model: an observation is attributed to
the class that corresponds to the one-vs-all model with the highest confidence. We use the same
hyper-parameters as in the binary classification experiments.

D.4 Double Descent

In Section 7 we evaluate SGD, SWAG and MultiSWAG for models of varying width. Following
Nakkiran et al. [33] we use ResNet-18 on CIFAR-100; we consider original labels, 10% and 20%
label corruption. For networks of every width we reuse the hyper-paramerers used for PreResNet-164
in Maddox et al. [29]. For original labels and 10% label corruption we use 5 independently trained
SWAG models with MultiSWAG, and for 20% label corruption we use 10 models; for 20% label
corruption we also show performance varying the number of independent models in Figures 7(e) and
17(c). Both for SWAG and MultiSWAG we use an ensemble of 20 sampled models from each of the
SWAG solutions; for example, for MultiSWAG with 10 independent SWAG solutions, we use an
ensemble of 200 networks.

20

10 20 30 40 50

ResNet-18 width

25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

T
es

t
E
rr

or
(%

)

SGD

SWAG

Multi-SWAG

(a) 10% Corrupted (Err)

10 20 30 40 50

ResNet-18 width

1.0

1.2

1.4

1.6

1.8

2.0

2.2

T
es

t
N

LL

(b) 10% Corrupted (NLL)

10 20 30 40 50

ResNet-18 width

1.2

1.4

1.6

1.8

2.0

M
ul

ti
SW

A
G

T
es

t
N

LL

SWAG Models
1 3 5 10

(c) 20% Corrupted (# Mod-
els)

Figure 17: Double Descent. (a): Test error and (b): NLL loss for ResNet-18 with varying width
on CIFAR-100 for SGD, SWAG and MultiSWAG when 10% of the labels are randomly reshuffled.
MultiSWAG alleviates double descent both on the original labels and under label noise, both in
accuracy and NLL. (e): Test NLLs for MultiSWAG with varying number of independent models
under 20% label corruption; NLL monotonically decreases with increased number of independent
models, alleviating double descent.

21

	Introduction
	Related Work
	Bayesian Marginalization
	Beyond Monte Carlo
	Deep Ensembles are BMA

	An Empirical Study of Marginalization
	Neural Network Priors
	Deep Image Prior and Random Network Features
	Prior Class Correlations

	Rethinking Generalization
	Double Descent
	Discussion
	Gaussian processes
	Approximating the BMA
	Deep Ensembles and MultiSWAG Under Distribution Shift
	Details of Experiments
	Approximating the True Predictive Distribution
	Deep Ensembles and MultiSWAG
	Rethinking Generalization
	Double Descent

